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ABSTRACT 

Hydraulic fracturing is an increasingly utilized 
technology to enhance the extraction of hot water or 
gas from a subsurface reservoir. Fluids are pressed 
into the reservoir formation from a treatment well at 
high pressures to open fractures and hence increase 
the permeability of the reservoir. Monitoring the 
seismic emission associated with the fluid injection 
allows to estimate the stimulated reservoir volume, 
and hence the effectiveness of the treatment. 
However, oftentimes little is known about the 
mechanical properties of the reservoir rocks, making 
it difficult to predict the response of the medium to 
the fluid injection. On the one hand, one would like 
to ensure that the fluid injection operation alters the 
medium sufficiently to make the reservoir economic, 
and on the other hand it needs to be insured that the 
magnitude of induced seismic events does not exceed 
values where shaking can affect surface 
infrastructure. A proper estimation of the in-situ 
mechanical properties of the reservoir is therefore 
necessary for an assessment of both the economics of 
reservoir treatment as well as the associated seismic 
hazard at the surface. We introduce ISHA – a 
probabilistic hazard assessment for induced 
seismicity, which combines statistical and physics-
based models to determine the seismic hazard during 
the different stages of an EGS experiment. Statistical 
models have the advantage that they can easily be 
adapted to the particular conditions of the induced 
seismicity and that many have been previously tested 
for other seismic sequences. These models can then 
be enriched by first order physical models, for 
example of the pore pressure distribution or the total 
flow rate. We show examples from an EGS project in 
Basel, Switzerland, where 3,500 events were located 
within a volume of approximately 2 km³ at a depth of 
4-5 km. We then investigate the spatio-temporal 
variability of the earthquake size distribution, 
characterized by the b-value, and find significant 
variations ranging from high values close to the 
injection point to lower values further away. 
Additionally, the b-value changes from high values 
during the fluid injection to lower values later on. A 

model, simulating the pore pressure diffusion and 
relating the event-sizes to the differential stress via an 
inverse relationship established for tectonic events, 
aims to evaluate this observation of the b-value 
distribution. The model implies that high pore 
pressures lead to high b- values as preferably events 
with smaller sizes are induced. Moderate pressures 
lead to values of b similar to the regional average. 
Since pore pressures decline as a function of distance 
to the injection point, the probability of observing a 
large magnitude event thus increases with distance. 
We are therefore able to establish a link between the 
seismological observables and the geomechanical 
properties of the source region and thus a reservoir. 
Understanding the geomechanical properties is 
essential for estimating the probability of exceeding a 
certain magnitude value in the induced seismicity and 
hence the associated seismic hazard of the operation.  

INTRODUCTION 

Enhanced Geothermal Systems (EGS) represent a 
promising alternative for clean energy. For such 
systems,  two boreholes are drilled to depths of below 
3 km into the basement, between which a fluid, 
typically water, is circulated to extract the heat at 
temperatures well above 100°C. The fluid is pumped 
at high pressure into the first borehole, to increase the 
permeability of the rock; a process called reservoir 
stimulation. This process is accompanied by 
thousands of micro-earthquakes, their hypocenters 
reveal critical information about the ongoing 
evolution of the reservoir. Few events eventually 
happen to be large enough to be felt at the surface, 
creating nuisance for the population or even damage 
to the building stock. The seismic hazard and risk 
associated with the induced seismicity is in some 
cases estimated as too high to be acceptable for 
society. Induced seismicity is currently the largest 
obstacle to the widespread installation of EGS 
systems near urban centers (Giardini, 2009).  
The EGS project in Basel (Switzerland) in 2006 was 
terminated after a magnitude ML 3.4 event occurred 
which was widely felt by the public. A seismic risk 
study (Baisch et al, 2009) was conducted a posteriori 
and concluded that the risk was too high to be 



acceptable so the project had to be abandoned. To 
prevent such a scenario, an alarm-system was in 
place in Basel, a so-called traffic-light-system. This 
defined actions of this system are based on public 
response, observed local magnitude and peak ground 
velocity. According to this system, the fluid injection 
was reduced and then terminated a few hours before 
the ML 3.4 event.  However, the system could not 
prevent the large event and the following 
determination of the project.  
 
Here we introduce a new approach, where we asses 
the hazard in (pseudo) real-time and update it during 
the fluid injection. To model the seismicity, we use 
statistical models and more physics-based models. 
We apply different updating strategies and compare 
the performance of the model to find either the best-
suiting one or to create a hybrid model. 
 
We investigate the spatio-temporal variability of the  
earthquake size distribution, characterized by the b-
value, to analyze the potential for large magnitude 
events. We introduce a geomechanical model that 
recreates the size distribution and can be used to 
determine the probability for large magnitude events. 

DATA 

Here we analyze data from a commercial geothermal 
project in Basel, Switzerland from 2006. This project 
was conducted by Geothermal Explorers Limited 
(GEL).  Figure 1 indicates the location of the 
borehole within the city of Basel and the location of 
the seismic network.  
 

 
Figure 1: Overview of the study region with all 

seismic stations. Different symbols show 
borehole and strong motion stations 
maintained by either Geothermal 
Explorers or the Swiss Seismological  
Service. The inset indicates the location of 
all seismic stations in Switzerland with the 
high density of stations around Basel 

 
Fluid was injected during six days from 2. December 
2006 to 8. December. The seismicity was recorded by 

a six-sensore borehole network and a adapted “traffic 
light system” was used to monitor the ongoing 
seismicity (Häring et al, 2008). Predefined levels 
determined actions according to the (1) public 
response, (2) the observed local magnitude and (3) 
peak ground velocity (PGV).  According to this 
system, the injection rate was first reduced and then 
terminated after two events with magnitudes greater 
than ML 2.5 were registered. An earthquake with 
magnitude ML 3.4, recorded a few hours after the 
shut-in, lead to the bleed-off of the borehole.  
 

 
Figure 2: Distribution of the events in plane view 

(top left panel) and as depth distributions 
(EW lower panel and NS right panel). 
Circle sizes are scaled by magnitude; 
events with magnitudes above 3 are 
highlighted with darker colors. Events in 
black occurred during the injection and 
events in gray after water injection was 
terminated. The borehole is indicated; the 
darker part is cased and the lighter part is 
open. 

 
In total about 11'000 events were recorded, of which 
around 3'500 were located (Figure 2). For our 
analysis we use the moment magnitudes provided by 
GEL. These range from MW 0.1 to 3.2, with three 
events above MW 3 (occurring 0.22, 38 and 55 days 
after the termination of the injection). 

METHOD 

Induced Seismicity Hazard Assessment 

Traditional Probabilistic Seismic Hazard 
Assessments (PSHA) quantifies the potential ground 
shaking due to earthquakes. These approaches 
determine the probability of exceeding a certain 
ground velocity for a long period of time (e.g. 



Giardini et al., 2004, Wiemer et al., 2009). They are 
based on historic earthquake catalogs, zonation 
models and recurrence time models. While this 
hazard is determined for the longterm and is stable 
over this period, the hazard associated with induced 
seismicity is relatively short-term and changes 
strongly over time. 
First estimations of time-varying hazard assessments 
have been done for aftershock sequences 
(Gerstenberger et al., 2005, Wiemer & Wyss, 2000). 
Here we expand this approach and introduce Induced 
Seismicity Hazard Assessment (ISHA) to determine 
the hazard specifically related to induced seismicity. 
The seismic hazard varies with time during an EGS 
project. We can distinguish between four different 
periods for which the hazard needs to be assessed: I) 
The planning period, II) the reservoir stimulation, III) 
the operation period and IV) the post-operation 
period. The hazard during the first period is equal to 
the hazard in this region determined by traditional 
PSHA, while for the other three periods the hazard 
from the injection is added to this background. 
Analyzing the seismicity during reservoir stimulation 
is an important first step towards ISHA. Using 
methods to determine the validity of the models 
established in the framework of the Collaboratory 
Study for Earthquake Predictability (CSEP, 
http://www.cseptesting.org/), we assess which 
assumptions lead to the models with the best 
predictive power. 

Forecasting Models 

We use three different models to forecast the ongoing 
seismicity, two are statistical model and one is more 
physics-based. The statistical models have previously 
been used to forecast seismic aftershock sequences; 
we use a model of Reasenberg and Jones (RJ) 
(Reasenberg & Jones (1989, 1990, 1994)) and an 
Epidemic Type Aftershock Model (ETAS) (Ogata 
1988, Hainzl & Ogata 2005). The more physics-
based model was introduced by Shapiro (S) 
specifically to model induced seismicity. While two 
of these models (ETAS and S) incorporate the 
applied flow rate, one does not (RJ).  
The RJ model is based on the Omori law and the 
Gutenberg-Richter law and combines them both to 
determine the rate λ for events with magnitudes 
above Mc at time t:  
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The Reasenberg and Jones model is the basis of the 
Short-Term Earthquake Probability (STEP) model 
(Woessner et al., 2010). 
 

We use an ETAS model of Ogata (1988). The rate of 
aftershocks induced by an event occurring at time t 
with magnitude Mi is given by: 
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for time t > ti . The parameters c and p are empirical 
parameters and K and α describe the productivity of 
the sequence. The total occurrence rate is the sum of 
the rate of all preceding earthquakes and a constant 
background rate. We consider that the forcing term 
should depend on the applied injection flow rate Fr. 
According to Shapiro & Dinske (2009), we can 
model the fluid-triggered event rate as proportional to 
the injection rate. We therefore modify the 
background to be: 
 

   tFc+μ=tλ rf 0   (3) 

 
with cf  and μ being free parameters. 
 
Shapiro et al. (2010) introduce a model where the 
number of events is linked to the the injected fluid 
volume Qc: 
 

    Σ+bMtQ=tN cM loglog   (4) 

       
where M is the magnitude, b is the b-value of the 
frequency-magnitude distribution (Gutenberg & 
Richter, 1942) and Σ is the seismogenic index.  

Modeling Approaches 

Before we apply and compare the forecast models, 
we define a common framework in which we apply 
and test the models. This involves choosing the 
testing period, the updating strategy and the 
magnitude range in which to test the forecast. 
Although these choices are somewhat arbitrary, they 
can potentially have a significant effect on the 
outcome of the testing, and they reflect to some 
extent the requirements of end users. We use the 
experience of the RELM and CSEP experiments to 
define the „rules of the game‟ and retrospective 
testing of aftershock sequences (Field 2007; 
Schorlemmer et al. 2010; Woessner et al. 2011). 
For all model classes, we apply two modeling 
approaches: (1) Use one set of pre-determined 
parameters from the entire sequence; and (2) Update 
model parameter values with successively extending 
the period for assembling data by 6 hr. We choose six 
hours arbitrary as this is a time period within which 
actions can be executed.  



Performance Evaluation 

To quantitatively test the model forecasts in a 
pseudo-prospective approach, we use the N(umber)-
test (Schorlemmer et al. 2007, 2010; Lombardi & 
Marzocchi 2010; Werner et al. 2010; Woessner et al. 
2011). This test compares the total forecast rates with 
the total number of observed earthquakes in the entire 
volume and indicates whether the too few or too 
many events are forecast or if the forecast is 
consistent with the observation. For example, if the 
model forecasts 0.5 events and 1 is observed, the 
cumulative Poisson distribution (PCDF) results in a 
quantile score of δ= PCDF (1, 0.5) = 0.910. We reject 
the forecasts at the 0.05 significance level, thus for δ-
values smaller than 0.025 and larger than 0.975. We 
determine the N-test for each 6-hr bin; the rejection 
ratio RN denotes the percentage of test bins that are 
rejected. In addition, we perform the L(ikelihood)-
test (Schorlemmer et al. 2007, 2010). This test 
evaluates whether the forecast number of events and 
the distribution in the magnitude bins is consistent 
with the observation, again assuming the entire 
volume as one spatial bin. For each magnitude bin we 
compute the log-likelihoods and sum this to a joint 
log-likelihood of the forecast. To verify that the joint 
log-likelihood is consistent with what is expected if 
the model is correct, we simulate 10'000 synthetic 
catalogs consistent with the forecast model and 
compute their log-likelihood values. This distribution 
of likelihood values is then compared with the 
observed log-likelihood. The quantile score γ then 
measures the amount of simulated log-likelihood 
values that are smaller than the observed log-
likelihood. This test is one-sided and we reject a 
model if γ <0.025 which implies that the observed 
log-likelihood is much smaller than expected if the 
model is true. According to the N-Test, we define the 
rejection ratio RL that denotes the percentage of test 
bins that do not pass the L-test.  
There are two different approaches on how to find the 
best-fitting model: (1) We search for the model with 
the lowest joint log-likelihood (Bachmann et al, 
2011) or (2) we weigh all models according to their 
Akaike weight (Wiemer et al, 2009) and compute a 
combined model (Mena et al, 2012). 

Probability-based alarm-system 

Based on the best-fitting model, we can convert the 
forecast rates into time-dependent probabilities of a 
given ground motion intensity, using standard 
procedures introduced originally by Cornell (1968). 
Hazard is the result of a combination of seismic rates, 
their frequency-size distribution and the Ground 
Motion Prediction Equation (GMPE) and its 
uncertainty. In contrast to the standard hazard 
assessment, which is computed for recurrence periods 
of hundreds to thousands of years, we are here 
interested in short term hazard in the order of hours 
to days. This is identical to the time-dependent 

hazard assessment introduced for aftershocks 
sequences by Wiemer (2000) and used in California 
(Gerstenberger et al. 2005). 
Thresholds for these intensities - and actions 
according to them - have to be defined beforehand by 
the authorities and the people in charge. 

Spatio-temporal variability of the seismic 
parameters 

An important input to the models mentioned above is 
the scaling of the earthquake-size distribution, 
characterized by the so called b-value from the 
Gutenberg-Richter law.  
 

bMa=N log   (5) 

 
where N is the number of events with magnitudes 
larger or equal to M, a describes the productivity of 
the sequence and b the ratio of small to large events.  
 
As the evolution of the induced seismicity is a highly 
dynamic process, we need to investigate the dataset 
with respect to both time and space, and to identify 
the most prominent gradients in the earthquake-size 
distribution.  
To determine the temporal evolution of the b-value, 
we divide the dataset into the co- and post-injection 
period and determine and overall b-value for each 
subset. To calculate the spatial evolution, we 
introduce a new focus-centered mapping of the b-
value. We determine the local completeness Mc using 
the closest 150 events in space to each event. The 
completeness is calculated with the maximum 
curvature method (Woessner and Wiemer , 2005). Mc  

defines the catalog threshold for determination of the 
b-value. To determine the b-value with the maximum 
likelihood method (Bender , 1983; Utsu , 1999), we 
require at least 25 events with M > Mc  in each 
sample. 

Geomechanical Model 

We develop a geomechanical model to understand 
the observed systematic behavior of the b-values with   
space and time. For this, we simulate the induced 
seismic cloud in space and time under the hypothesis 
that high b-values are a response to the pore-pressure 
perturbation. 
We distribute potential failure points (called seed 
faults), representing pre-stressed faults,  randomly in 
a three-dimensional space with the size of one cubic 
kilometer, centered around the injection point. At 
each seed point, we assign values for the minimum 
and maximum principal stress, σ3 and σ1, assuming a 
Gaussian perturbation to a given background stress 
regime. A stress perturbation like this could be 
interpreted as due to the variation of elastic 
parameters (Langenbruch  and Shapiro, 2011). We 
impose a limit on σ1, so it cannot exceed a maximum 



value as defined by the strong crust limit (Zoback, 
2007) and on σ3, such that it cannot be smaller than 
the hydrostatic pore pressure ph. Additionally, σ1 is 
always larger than σ3. The stress distribution for one 
example seed point is shown in Figure 3 a as a Mohr 
diagram. The distribution of σ1 and σ3 is indicated by 
the gray histograms (actual distribution after 
application of limiting constraints) and dashed bell 
curves (nominal perturbation of values). 

 

 
Figure 3: a) Example stress distribution for an 

average crust at 4.5 km depth at one point 
in the medium depicted by the Mohr 
diagram (shear stress τs versus normal 
stress τn ). The bold dashed line shows the 
failure envelope. Distribution of stress 
values around the mean σ3 and σ1 are 
indicated by the dotted line (planned) and 
the histogram (actual). The vertical 
dashed line shows the strong crust upper 
limit for σ1. b) The black Mohr circle 
shows the original stress distribution at 
one point in the medium. The gray circle 
shows the effective stress of an induced 
event with the depicted critical pore 
pressure.  

 

The density of seed faults is a free parameter of the 
model; it can be adjusted to match the observed 
amount of seismicity.  
We use a time-dependent point pressure source at the 
injection point. Dinske et al. (2010) introduced an 
analytical solution to the diffusion equation (Wang, 
2000) for the case of a linearly increasing source time 
function. The pressure-time function is a simplified 
version of the actual injection pressure pressure in 
Basel; it is represented as a linearly increasing 
function over six days. We propagate the pore-
pressure through the model space based on linear 
diffusion in a hydraulically isotropic medium with an 
effective diffusivity of 0.05 m

2
/s. We the solution of 

Dinske et al., 2011, assuming an effective source 
radius of 70 m, in order to reach realistic values of 

the pore-pressure perturbation. The naturally 
occurring pore-pressure variation in the reservoir due 
to tides is assumed to be on the order of 2000 Pa 
(Evans pers. Comm.), we therefore conclude that this 
is the minimum pressure that is required to trigger an 
event. 
The Mohr circles are shifted towards failure as the 
normal stresses are reduced due to the pore-pressure 
evolution. Once the Mohr circle touches the failure 
envelope, an event is induced. We exploit the 
observation from laboratory and natural earthquake 
analysis that b-values are inversely related to the 
differential stress σD (Amitrano, 2003; Schorlemmer 
et al., 2005), to assign a magnitude to an event. To 
model the event size of each induced event we link 
the b-value to σD in an inversely proportional 
relationship (b = −0.023 σD + 4). We then draw a 
magnitude randomly from the underlying Gutenberg-
Richter relation. 
Based on this simple geomechanical simulation, we 
can also address the question of how large future 
events will be and how likely they will be. Therefore, 
we evaluate the synthetic seismicity cloud in time 
and space for a  and b-values within specific time- 
and distance bins. For each time- or distance bin, we 
can estimate the  probability p  of an event exceeding 
a certain magnitude M  as (Wiemer, 2000) 
 

bMa
=x wheree=p x




1
1 /1

  (6) 

We choose time bins of 10
5
s, moving at 10

4
s  

intervals, and distance bins of 100m, moving across 
distance in 10m increments.  

RESULTS 

Forecasting Models 

We find that from the three tested models, the 
Shapiro model leads to the best-fitting individual 
model. However, a combined model out of all three 
models using Akaike weights (Wiemer et al, 2009, 
Kenneth et al, 2002), the performance is even better.  
 
We conclude from this that it is important to include 
several models in the analysis of induced seismicity 
and preferably use a combination of them. The 
temporal evolution of the Akaike weights indicates 
that the performance of each model changes over 
time (Figure 5). While the statistical models get 
higher weights during the injection (first six days), 
the Shapiro model dominates later on. 



 
Figure 4: Seismicity rates in time domain. The rates 

within six hours time bins are based on 
different approaches of the three models  
and plotted on top of the observed rates 
shown in red. The combined model is 
shown in green.  

 

 
Figure 5:  Akaike weights for each forecasting model 

(SR, R2, E4, E5) computed for six hours 
time bins. 

 

Spatio-temporal variability of the seismic 

parameters 

We find a substantial decrease of the b-value from 
1.58 ± 0.05 to 1.15 ± 0.07 for co- and post-injection 
events, respectively, using an overall magnitude of 
completeness of Mc = 0.9. All uncertainties are 
computed by bootstrapping the data set 100 times and 
fitting the parameters values to the bootstrap samples.  
 

 
Figure 6: Gutenberg–Richter frequency-magnitude 

relation for two different sequences. 
Darker squares show events during the 
injection, lighter triangles mark events 
after the termination of water injection. 
Gutenberg-Richter parameters are 
indicated for each sequence. 

 
The lower b-value in the post-injection period 
indicates an increase of the seismic hazard in this 
period.  
The spatial mapping shows a highly varying b-value. 
The b-value is highest close to the injection point and 
lower further out. Dividing the map into the co- and 
post-injection period indicates again that the overall 
values are higher during the injection and lower after 
the termination (Figure 6). Events with magnitudes 
M > 2.5 generally lie within regions of lower b-
values (pink stars in Figure 6) 
 

 
Figure 7:  Cross section along the N-S axis, with b-

value distribution based on a) co-injection 
and b) post-injection events. Events with 
M > 2.5 are marked with pink stars.  

Geomechanical Model 

We find that the simulated seismicity from the 
geomechanical model shows the similar 
characteristics as the recorded events from the 
seismic sequence in Basel. The spatial distribution of 
the b-value shows highest values close to the 
injection point and lower values further out. 
However, the area with the highest b-values is more 
concentrated around the injection point and we do not 
find any higher b-value for the post-injection period 
(bmax < 1.6). Figure 8 shows the b-value distribution 
based on one typical outcome of the simulation, we 
calculated in total 100 simulations.   



 
Figure 8: Cross section along the N-S axis, with b-

value distribution based on a) co-injection 
and b) post-injection events for one 
realization of the geomechanical mode. 

 
Comparing b-value based on all events triggered with 
pore-pressures above the mean value (2.75 MPa for 
this simulation) and below shows that the b-value is 
related the the pore-pressure. We find bhighP = 1.45+/-
0.01 and blowP = 1.11+/-0.05.  
 
Figure 9 indicates the probability for an event 
exceeding M 4 based on 100 simulations of our 
model. We compare the probability based on our 
synthetic event cloud with varying b-values (white) 
with the probability based on an event cloud 
synthesized from a constant b-value of 1.2 (gray). 
Error bars indicate the standard deviation obtained 
from 100 simulations. The probabilistic for large 
magnitude events increases with time during the 
injection and decays after the water injection is 
terminated. With a varying b-value, the mean 
probability for a M > 4 is substantially increased for 
the time period right after the shut-in (Figure 9a). The 
maximum probability is also shifted to further out 
distances from the injection point (Figure 9b). 
 

DISCUSSION AND CONCLUSION 

Here we show how the analysis from induced 
seismicity can profit from statistical seismology. 
Models introduced to analyze natural seismic 
sequences are also valid for induced seismicity. 
While we have to adapt the parameters to fit the 
different circumstances, the general theories can still 
be used. By fitting the induced seismic sequence in 
real-time with statistical and physical models, we can 
better determine the evolution of seismicity and 
forecast the rates of seismicity and the expected 
intensities. Based on predefined thresholds, actions 
can be executed that are not only based on single 
observed events alone, but on the integration of the 
whole observed seismicity.  
Analyzing the spatio-temporal evolution of the 
seismic parameters – such as the b-value – gives us a 
better insight into the structure of the seismic cloud.  
While we introduce our simple geomechanical model 
here mainly to illustrate the link between the b-value 

and the pore-pressure, it can also be extend in the 
future into a real time model.  
 

 
Figure 9: Occurrence probability of M 4 event, 

varying with a) time and b) radial 
distance from the injection point for a 
varying b -value (white) and a constant b 
-value (gray). The error bar denotes the 
standard deviation based on 100 
simulations of the geomechanical model. 
The dashed line in a) marks the shut-in 
time and in b) the location of the largest 
observed Basel event. 
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