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ABSTRACT 

Pursuit and use of geothermal energy in the 
Netherlands is developing steadily. However, in 
order to make sound decisions, investors and insurers 
are requesting the probability of success of each 
planned geothermal project. A methodological 
appraisal system was developed in order to achieve a 
meaningful probability of success of the expected 
flow rate and thermal capacity. The appraisal system 
follows a methodological workflow integrating the 
errors in raw data, uncertainties in the geological 
interpretation, and in projected design of the 
geothermal system. The designed appraisal system is 
capable of working with all data available within 
sedimentary basins and comprises three major steps. 
 
The first two steps comprise Monte Carlo 
simulations. In the first simulation every calculation 
of the petrophysical analysis, within predefined 
uncertainty or error bands, is redone to determine the 
uncertainties for all significant parameters. A 
sensitivity analysis has revealed that within this step 
a crucial parameter is the uncertainty in the derived 
porosity-permeability relationship.  
This first step will be applied to every single well and 
the resulting probability distributions of permeability, 
net-to-gross ratio and temperature are combined with 
the results of the seismic interpretation and spatially  
extrapolated to the proposed subsurface locations of 
the planned geothermal wells.  
A second Monte Carlo simulation provides the 
probability distributions of the desired variables: net 
reservoir thickness, reservoir temperature, reservoir 
depth, and transmissivity.  
The third and final step delivers the information 
investors and insurers are actually interested in: the 
probability distributions of the feasible thermal 
capacity and the feasible flow rate, which are 
calculated by running the results of the second step 
through a simple analytical reservoir model. This 
reservoir model includes reservoir properties, 
properties of formation water, and well design. One 
parameter with significant influence on the feasible 

flow/installed thermal capacity and thus economics 
of the project is the coefficient of performance 
(COP). The COP can be adjusted within the model to 
meet client requirements. 
 
Although it is realized that this model may need some 
refinement, in particular when it comes to spatial 
extrapolation of well data, it is believed that this is  
the best practice at the moment, yielding a solution 
that covers the most significant uncertainties for 
geothermal reservoir feasibility studies in 
sedimentary rock. 

INTRODUCTION 

With the current state of development of deep 
geothermal energy in the Netherlands, investors as 
well as insurers are requesting comprehensible 
information as base to their decisions. This 
information comprises amongst others figures 
preferably in units such as flow or delivered thermal 
or electrical capacity. In the Netherlands geothermal 
systems are currently being planned and realized in 
sedimentary aquifer systems between 1,500 and 
3,000 m depth (van Heekeren and Koenders 2010). 
 
These aquifer systems are layers of sandstone or 
limestone and have been targeted by the oil and gas 
industry for production since the 1940’s. 
Consequently, the Dutch subsurface has been 
extensively sampled by wells and seismic surveys. 
This dataset, consisting of thousands of well logs and 
tens of thousands of square kilometers 3D seismic 
data, is however biased on the potential oil and gas 
provinces. The difference between oil and gas 
exploration and geothermal exploration is found in 
the targeted subsurface structures. Where oil and gas 
accumulations are found in structural highs or traps, 
geothermal reservoirs are ideally located in deep 
extended structures. Consequently most available 
well data are restricted to structurally highs and thus 
potentially less valuable for geothermal exploration 
purposes. This bias leads to an enhanced uncertainty 
in quantitative geological parameters when assessing  
the aquifer systems for their geothermal potential. 



 
Currently no consensus exists in the Netherlands on 
how to quantify the geological uncertainties when 
assessing geothermal feasibility. For the national 
geothermal guarantee fund founded by the 
government, an attempt has been made by TNO1 with 
DoubletCalc (Mijnlieff et al. 2009). Doublet Calc 
comprises a Monte Carlo simulation to predict the 
expected range of geothermal power produced by the 
geothermal system. However, the actual quantitative 
uncertainty of geological parameters is left to 
interpreters without guidelines, leaving this crucial 
topic without any apparent restraints. 
 
In this paper a description is given of a methodology 
aiming at quantification of uncertainties in the 
geological parameters and delivering a meaningful 
distribution of expected flow rate and expected 
thermal capacity for geothermal system. The 
developed systematic appraisal follows a 
methodological workflow that takes into account  
measurement errors of the raw data, uncertainties in 
the geological interpretation, and the projected design 
of the geothermal system. The methodological 
workflow was developed as an integral part of 
several geothermal feasibility studies over a time 
span of approximately two years. 
 
This appraisal system is aiming at the development of 
a reporting code for geothermal systems in 
sedimentary aquifers in the European geothermal 
market similar to the one implemented within the 
Australian geothermal market (The Australian 
Geothermal Code Committee 2008). In combination 
with the proposal made by TNO (Mijnlieff et al. 
2009), this appraisal system might serve as a first 
step towards such reporting code supported by all 
stakeholders involved in the European geothermal 
market. 
 
The appraisal system comprises three steps, in view 
of the available geological data, consisting of 
information from oil and gas wells, seismic data and 
literature. Each steps handles a bigger amount of the 
collected and interpreted data. The first step 
comprises a Monte Carlo simulation of the 
interpreted petrophysical data of each well. Its results 
are extrapolated to the project location and combined 
with the results of the seismic interpretation. 
Subsequently a second Monte-Carlo simulation is run 
on this new dataset, resulting in a probability 
distribution of relevant geological parameters, such 
as temperature, transmissivity and net reservoir 
thickness. The third and final step uses an iterative 
process, combining the ensemble  of geological 
parameters with the projected well design, in order to 

                                                           
1 TNO: the Dutch geological service, mainly working 
for the government. 

calculate the thermal capacity and the efficiency of 
the geothermal system. 

WORKFLOW 

Individual steps of the uncertainty analysis workflow 
can be grouped into two major categories, 
quantitative uncertainty and qualitative uncertainty. 
Quantitative uncertainty comprises all uncertainties 
which can be explicitly expressed, qualitative 
uncertainties on the other hand include those 
uncertainties which are related to concepts based on 
geological arguments (Bond et al. 2007; Bond et al. 
2008).  
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Figure 1: Schematized flowchart of the 

systematic methodology described. 
Grey areas indicate results, 
rectangular white areas indicate 
actions. Where φ = porosity, k = 
permeability, N/G = net-to-gross 
ratio, H = gross reservoir 
thickness, z = reservoir depth, kH 
= transmissivity, and T = 
temperature. 



The described methodology aims at minimizing the 
influence of the inevitable qualitative uncertainties by 
quantifying as much geological parameters as 
possible. Nevertheless, numerous interpretative 
decisions based on geological insight have to be 
made during the analyses of well log data, resulting 
in qualitative information. Another qualitative point 
is the spatial extrapolation of the well data to the 
project location. 
 
As mentioned before, the workflow is divided into 
three steps: a first Monte Carlo simulation and  a 
second Monte Carlo simulation followed by a so-
called ‘COP iteration’ to determine the thermal 
capacity, flow rate and efficiency of the system. In 
Figure 1 the flowchart of the methodology is 
sketched. In the following paragraphs each step 
shown in Figure 1 is described separately. 

Step 1: first Monte Carlo simulation 
For every relevant well, the available well-log data 
are petrophysically interpreted. This interpretation 
leads to a set of deterministic results such as porosity, 
φ, permeability, k, and net-to-gross ratio, N/G. 
Permeability values are estimated on basis of a 
porosity-permeability relation; obviously 
permeability constitutes a vital parameter. The 
uncertainty in the porosity-permeability relation 
significantly determines width and shape of the 
probability distribution of the final stochastic results. 
 
For this purpose the uncertainty of the porosity-
permeability relationship needs to be determined as 
accurately as possible. The porosity-permeability 
relationship is usually derived from a cross-plot of 
porosity and permeability measurements on core 
samples, both corrected for decompaction. A 
logarithmic relation is intrinsically assumed. 
Therefore, by plotting permeability values on a 
logarithmic scale, a linear relation can be found with 
respect to porosity values. Since the measurements 
are assumed to be the result of random sampling of a 
much bigger population, the resulting regression line 
will always remain an unbiased  approximation of the 
real porosity-permeability relationship. 
 
As measurements of both porosity and permeability 
are assumed to be subject to a similar degree of 
relative errors, the application of Reduced Major 
Axis (RMA) regression is preferred. Another 
argument in favour of the application of RMA is that 
the errors are uncorrelated to each other or to the 
quantity itself. The area of confidence is bound by 
hyperbole lines of 95% confidence. The asymptotes 
of these lines of confidence define the upper and 
lower values of the porosity-permeability 
relationship. The area of confidence of the RMA 
regression is approximated using a technique called 
bootstrapping (Bohonak 2004). In Figure 2 an 

example of a porosity-permeability relation with the 
asymptotes of its uncertainty bands is shown. 
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Figure 2: Example of a porosity permeability 

relationship. The diamonds 
represent individual porosity-
permeability measurements. The 
asymptotes of the uncertainty bands 
are the dotted lines around the 
solid regression line. Note that the 
permeability is plotted on a 
logarithmic scale.  

 
Well data form the basis of the petrophysical 
analysis, which are prone to measurement errors, 
either by instrument or more importantly by adverse 
borehole conditions. During the analysis itself, 
several sources of data are combined, leading to an 
accumulation of uncertainties. The range of 
measurement errors is well known for the logging 
technique; since the logs have been scrutinised for 
borehole effects, these errors are left out of 
consideration. Together with the intrinsic uncertainty 
in the porosity-permeability relation, the 
measurement errors and uncertainties are integrated 
into a Monte Carlo simulation. The resulting 
parameters that are transferred towards the next step 
are the probability distributions of the porosity, the 
permeability and the net-to-gross ratio.  
 
It must be noted that this simulation is performed for 
every analysed well. This results in probability 
density distributions of the considered geological 
parameters which are valid only for the location from 
which they have been derived, e.g. the location of the 
interpreted well. 

Step 2: Second Monte Carlo simulation 
Since the results of the 1st Monte-Carlo simulation 
reflect only the geological properties at the positions 
of the analyzed wells, a spatial extrapolation to the 
projected subsurface locations of the geothermal 
wells has to be made. Depending on the available 



data, this is done quantitatively or qualitatively. At 
this point of the appraisal, two new parameters are 
added to the dataset; reservoir thickness and reservoir 
temperature. 

Thickness 
When seismic data of appropriate quality and 
resolution are available and reservoir thickness can 
be reasonably mapped, the spatial reservoir thickness 
and the accompanying uncertainty can be used for 
further analysis. It is assumed that the quality of the 
seismic data is sufficient to determin the depth of the 
reservoir. In case no appropriate seismic data are 
available to map reservoir thickness, the thickness 
measured in the well logs is used in the spatial 
extrapolation. 

Temperature 
Temperature measurements are available from wells 
in the form of maximum temperatures measured at 
the bottom of the borehole at each logging run. The 
measurements are taken at various time intervals 
between the measurement and the end of mud 
circulation (BHT measurements). These time 
intervals are generally too short for establishing a 
thermal equilibrium between the relative cold drilling 
fluid with the surrounding host rock. Therefore, the 
temperature measurements need to be corrected. This 
correction is made by applying the Horner method to 
the temperature data (Pasquale et al. 2008). 
 
The temperature correction applies to one single 
depth per borehole. To find a representative 
geothermal gradient for a certain area, temperature 
measurements from different representative 
boreholes need to be used, resulting in a dataset of 
corrected temperatures and corresponding depths. 
The geothermal gradient is determined by applying 
an Ordinary Least Squares (OLS) regression to the  
dataset. This regression is appropriate since one of 
the variables, depth, can be considered free of 
uncertainty. Out of the regression, the uncertainty in 
surface temperature and geothermal gradient can 
easily be determined (Squires 1985; Draper and 
Smith 1981) and represented graphically (Figure 3). 

Spatial extrapolation 
A quantitative spatial extrapolation can be made by 
Kriging or some other extrapolation method, when 
sufficient representative data points are available. 
Qualitative spatial extrapolation is based on 
geological insight, experience and/or literature and 
can for example be performed by applying some 
weighting method or, when considering permeability 
and porosity, depth correction to the data. Local 
geological setting should always be taken into 
account, e.g. faults, depositional history and/or 
tectonic history, for either approach. The parameters 
spatially extrapolated are porosity, permeability, and 

net-to-gross ratio. The porosity-permeability 
relationship and the geothermal gradient are not tied 
to location and consequently do not need to be 
extrapolated. 
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Figure 3: Example of a geothermal gradient 

with uncertainty bands. 

Second Monte Carlo simulation 
The individual values of the created probability 
distributions are generally expressed as p-values or 
percentiles, which represents the probability of a 
certain value to occur within the distribution. A p97.5 
value for permeability of 100 mD implies that 97.5 
percent of the probability distribution contains values 
greater than 100 mD. In other words: there is a 97.5% 
chance that the actual value is greater than 100 mD. 
A 95% confidence interval of the probability 
distribution of a certain parameter can be expressed 
with its p97.5, p50 and p2.5 values.  
 
The p97.5, p50 and p2.5 values of the extrapolated 
parameters: average permeability and net-to-gross 
ratio as well as p97.5, p50 and p2.5 values of the 
gross reservoir thickness, reservoir depth, and the 
values of the variation in the geothermal gradient are 
integrated into the second Monte Carlo simulation. It 
is assumed that the variables considered can be 
approximated either by a normal (e.g. porosity) or a 
lognormal (e.g. permeability) probability distribution. 
For the Monte Carlo simulation the probability 
distribution of the variables are represented by a 
double triangle distribution approximation, given the 
fact that for some variables the value-range at one 
side of the distribution is significantly different 
compared to the other side. Moreover, a double 
triangular distribution is a better approximation to a 
log-normal distribution than a single-triangular one. 
In Figure 4 a double triangular approximation is 
given for both a permeability (log-normal) and a 
porosity (normal) distribution. The second Monte 
Carlo simulation results in probability distributions of 
reservoir temperature, transmissivity (net thickness x 
permeability), reservoir net thickness and reservoir 
depth. 



 
Figure 4: Examples of a double triangular 

distribution approximation for both 
a lognormal (permeability) and a 
normal (porosity) distribution. 

Step 3: COP iteration 
The Coefficient of Performance (COP) is a measure 
of the environmental sustainability of the geothermal 
system. It is the ratio between the thermal capacity 
installed and the capacity needed to keep the system 
running. Consequently a higher COP represents a 
higher efficiency of the geothermal system and is 
thus a measure of its environmental sustainability. 
However, in view of the need to be economically 
viable, investors and insurers are generally only 
interested in thermal capacity and the potential flow 
rate from the geothermal system. 
 
The COP is determined by a large number of 
parameters, derived from the results of the second 
Monte Carlo simulation (i.e. depth, temperature and 
transmissivity), pressures in the reservoir, properties 
of the formation water, proposed well and system 
design and flow rate. Formation pressures and 
properties of the formation water are intrinsically 
dependent on depth and temperature of the 
geothermal reservoir. The well design influences  
both flow rate and thermal capacity and is 
represented by the total length of tubing of the 
geothermal system. The diameter of the tubing is 
assumed constant and equal to the narrowest tubing 

installed in the geothermal wells. The total produced 
geothermal capacity as well as the necessary pump 
capacity corresponding to a certain flow rate can be 
determined by summation of pressures developed in 
every component of the geothermal system. In Figure 
5 a basic geothermal system with its main 
components, aquifer at the production well, 
production well, injection well and aquifer at the 
injection well, is sketched. 
 
When the COP is taken as fixed value, thermal 
capacity and flow rate - both dependent on 
temperature and transmissivity - can only be 
determined with an iterative approach. The COP 
iteration combines the output values for temperature 
and transmissivity of the second Monte Carlo 
simulation to find the probability distributions of 
thermal capacity and flow rate for a predetermined 
COP value. The routine does this by stepwise 
increasing the flow rate for each temperature and 
transmissivity combination and comparing the 
resultant COP with its predefined value until the 
correct flow rate is found. The result is a large 
population of thermal capacities and flow rates of 
which probability distributions can be made. These 
are a measure of the probability of success for the 
desired flow rate and thermal capacity of the 
geothermal system. 

 
Figure 5: Schematic sketch of a geothermal 

system as regarded in the COP 
iteration. The different components 
of the system regarded are: 1) 
aquifer at production well, 2) 
production well, 3) injection well, 
and 4) aquifer at injection well. 

DISCUSSION 

The workflow presented in this paper is applicable 
for geothermal systems in sedimentary aquifers when 
both borehole and seismic data are available. 
Although some additional work is still needed for a 
few topics, this workflow enables quantification of 
uncertainties of relevant geological parameters during 
a geothermal project.  
 



One of the topics that need to be further worked out 
is the spatial extrapolation of the results of the first 
Monte Carlo simulation. Since the quality of the 
seismic data is seldom sufficient to map reservoir 
thickness, qualitative spatial extrapolation is needed. 
Furthermore, the number of interpretably wells is 
limited by the lack of good quality borehole data and 
time constraints, often resulting in a spatial 
extrapolation based on only two to three interpreted 
wells. Sparse data sets make gridding results subject 
to large uncertainty and the application of a 
qualitative spatial extrapolation method necessary. 
Since qualitative spatial extrapolation is based solely 
on geological insight, experience and the imagination 
of the specialist, the spatial extrapolation is a 
potential weak link in the appraisal.  
 
Potentially Kriging has the possibilities to overcome 
the problem of the uncertainties inherent to 
qualitative spatial extrapolation. However, to achieve 
a trustworthy spatial extrapolation by Kriging  a large 
dataset is necessary for the construction the 
semivariogram, that characterises the spatial 
dependence. This dataset may be created by using 
data from a greater area or transferred from 
analogous sedimentary basins. The application of 
Kriging for quantitative extrapolation thus requires 
the interpretation of additional data. A potential 
drawback from applying this gridding routine is that 
by increasing the dataset, the resulting spatial 
extrapolation becomes more regional and is thus less 
representative for the project location. 
 
Another point that is not taken into account in the 
uncertainty analysis, is the relation between depth 
and porosity (Athy 1930; Dutta 2002). This can lead 
to inaccuracies when large depth differences exist 
between the geothermal reservoir at the project 
location and the location of the interpreted wells. The 
depth correction should be applied on the porosity 
distribution after the porosity is spatially 
extrapolated, it can also be applied to the porosity 
distribution representative for the reservoir, but only 
when the standard deviation of the distribution is 
corrected simultaneously. To integrate the depth 
correction properly the developed routines are 
currently being adjusted. 
 
Currently only the uncertainties in transmissivity and 
temperature are taken into account when calculating 
the feasible flow rate and thermal capacity. The 
uncertainty in the depth however is not regarded 
when running the COP iteration. Since the properties 
of the formation water are solely dependent on depth 
the uncertainty in depth should also be integrated into 
the COP iteration routine. In actual fact, properties of 
the formation water as well as the tubing length are 
functions of reservoir depth. Consequently, 
uncertainty in reservoir depth has a dual impact on 
flow rate and capacity. This was realized by the 

developers of DoubletCalc and recently routines were 
adapted, honoring this fact. 
 
The Horner plot method used to correct temperature 
at depth is just one of several available methods to 
correct BHT measurements. Although more accurate 
methods might be available (Hermanrud 1990) the 
Horner plot method is widely used and generally 
accepted as a good method to approximate the 
temperature at depth. 
 
The dip of the layers in a geothermal reservoir is 
generally low (<10°) and only lateral horizontal 
extrapolation is sufficient when spatial extrapolating. 
However, when the dip of the layers is relatively 
large the difference between the lateral horizontal 
distance and the actual distance between the spatially 
extrapolated well and the project location becomes 
significant by geometry. For large dips a depth 
dimension is also required for spatial extrapolation. 
For extrapolation in the depth dimension a 3D 
structural model of the reservoir is needed. In reality 
these large dips are however rare when interpreting 
wells with respect to geothermal reservoirs. 

CONCLUSIONS 

The presented workflow delivers an elegant 
methodology to quantify uncertainties in the most 
relevant geological parameters when assessing the 
feasibility of a geothermal project in a sedimentary 
aquifer system. The methodology follows three major 
steps: 
- Step 1: 1st Monte Carlo simulation which 

determines the probability distributions of 
porosity, permeability and net-to-gross ratio of 
the reservoir in a borehole. 

- Step 2: 2nd Monte Carlo simulation that delivers 
the probability distributions of net reservoir 
thickness, transmissivity, temperature and 
reservoir depth for the projected subsurface 
location of the geothermal wells. 

- Step 3: A COP iteration resulting in the 
probability distribution of the thermal capacity 
and the flow rate of the geothermal system. 

 
Several topics need some additional work, the two 
most important being the development of a structural 
methodology for the qualitative spatial extrapolation 
and the integration of a methodology for the depth 
correction of the porosity. 
 
In the future the workflow might be expanded with 
input parameters from for example the results from 
applying acoustic impedance to the seismic data or 
the results from a basin analysis and/or other results 
from additional studies. 
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