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ABSTRACT 

In this study we investigate the use of the Ensemble 
Kalman Filter (EnKF) method for estimating model 
parameters and quantifying uncertainty of future 
performance predictions of reservoir models for 
liquid dominated geothermal reservoirs. Specifically 
we concentrate on the performance and accuracy of 
the method. We couple the Ensemble Kalman Filter 
with lumped parameter models (tank models) for 
testing the method. The lumped parameter models 
used in the study are capable of modeling the average 
pressure behavior of liquid dominated geothermal 
reservoirs. This is accomplished by solving the mass 
balance simultaneously on all tanks that represent the 
various components of a geothermal reservoir 
(components such as the aquifer or the reservoir 
itself). The model parameters that are used in the 
inversion process are mainly recharge indices 
between tanks, storage capacities and initial pressures 
of the tanks. 
 
Our main goal in this study is to have a clear 
understanding about the Ensemble Kalman Filter 
method and how it performs. We first present 
synthetic examples then use the method on real field 
data. The method seems to be very advantageous in 
terms of speed compared to other gradient-based 
history matching procedures (e.g., the Levenberg-
Marquart) even though the problem we are dealing 
with in this study is composed of only a few model 
parameters. 

INTRODUCTION 

The ultimate goal in any reservoir engineering study 
is to predict both the future performance predictions 
and to predict the uncertainty associated with the 
performance. This is necessary to determine the 
production/re-injection practices that will provide 
economical exploitation of the geothermal system in 
consideration. Uncertainty in future performance 

predictions is mainly caused by (i) measurement 
errors or noise in observed data, (ii) modeling errors. 
 
In this paper we study parameter estimation, 
performance predictions and the uncertainty in 
performance predictions by using the Ensemble 
Kalman Filter (EnKF) method. The method is 
stochastic in nature. The petroleum engineering 
literature available on EnKF is now quite extensive. 
Its application to petroleum reservoir history 
matching problems have been studied by many 
authors; Naevdal et al. (2005); Gao et al., (2005); 
Zafari and Reynolds, (2005); Evensen et al. (2007); 
Li and Reynolds, (2007); Aanonsen et al., (2009); Gu 
and Oliver, (2006); Li et al., (2009). 
 
In this work, we couple the EnKF with lumped 
parameter models for testing. Lumped parameter 
models are chosen because of their simplicity (only a 
few model parameters are involved) and their speed. 
The lumped parameter model used in this study 
solves the mass balance equation and hence is 
capable of modeling the average pressure behavior of 
geothermal reservoirs. These types of models have 
been used for modeling a number of geothermal 
systems in Iceland, Turkey, Philippines, China, 
Mexico and other countries. For instance, Axellson et 
al (2005), Sarak et al. (2005) and Tureyen et al. 
(2007) have presented several field applications of 
various lumped parameter models to low temperature 
systems. When lumped parameter models are used, 
model parameters are determined as a result of a 
history matching process to available production 
data. Once the model parameters are obtained, future 
performance predictions of average reservoir pressure 
(or water levels) can be made.  
 
The paper begins with a brief review of lumped 
parameter models considered in this study. Then the 
EnKF is explained followed by an application to a 
synthetic example where the performance of the 



method is analyzed. Finally an application to real 
field data is given followed by conclusions. 

LUMPED PARAMETER MODELING 

The lumped parameter model used in this study is 
based on the conservation of mass for a single-phase 
liquid water and rock system. The model is assumed 
to be composed of an arbitrary Nt number of tanks. 
The mass balance equations are then solved 
numerically for all tanks simultaneously. Fig. 1 
illustrates the properties of any tank i. 
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Figure 1: Properties of a representative tank (tank i) 

in the model. 
 
The tanks are composed of two components; water 
and rock. Tank i has a storage capacity κi and an 
initial pressure pi. The storage capacity defines the 
amount of production obtained from a unit pressure 
drop and is assumed to be constant. Any tank i can 
make an arbitrary number of connections with the 
other tanks. The total number of connections the tank 
i makes is represented by Nci. Note that Nci can vary 
from tank to tank because each tank in the model can 
make a different number of connections. Any 
connecting tank is represented by jl, for l=1,2,…,Nci. 
Both injection into and production from tank i is 
allowed. The injection is performed at a specified 
mass rate Winj,i and the production is at a specified 
mass rate of Wp,i. Our convention is that Winj,i is 
negative for injection (i.e., Winj,i < 0) and Wp,i is 
positive for production (i.e., Wp,i > 0). 
 
The mass flow rate between any tank jl and i is 
determined using the Schilthuis (1936) relation given 
in Eq. 1. 
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where αi,jl is the recharge index which represents the 
amount of mass flow rate per unit pressure drop and 
is assumed to be constant, Wi,jl is the mass flow rate 
between tank i and tank jl, and pjl is the pressure in 
tank jl. Under these assumptions the conservation of 
mass for a single-phase liquid water and rock system 
can be expressed as follows: 
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For i=1,…,Nt. Here t represents time. The first term 
on the LHS of Eq. 2 represents the mass 
accumulation, the second term represents the mass 
rate from connecting tanks and the third and fourth 
terms represent the production and injection mass 
rates respectively. 
 
The above formulation allows the modeling of 
average reservoir pressure for any configuration of 
tanks. Fig. 2 illustrates two alternative configurations 
of the. 
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(a) two-tank open lumped parameter model 
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(b) three-tank open lumped parameter model 

 
Figure 2: Two different configurations of .tanks in 

the lumped parameter models. 
 
The model shown in Fig. 1(a) represents a two-tank 
open lumped model, where the first tank, in which 
production/injection occurs, represents the innermost 
(or central) part of the geothermal system. The 
changes in pressure in this part are monitored and 
production/injection rates are recorded. In the second 
tank, representing the outer part of the reservoir that 
is connected to the recharge source, there is neither 
production nor injection and it recharges the central 
reservoir. Fluid production causes the pressure in the 



reservoir to decline, which results in water influx 
from the outer to the central part of the reservoir. The 
recharge source represents the outermost part of the 
geothermal system. 
 
When using the lumped-parameter models considered 
in this work (Fig. 1), the simulated model (output) 
response represents pressure or water level changes 
for an observation well for a given net production 
history (input). The number of model parameters 
increases as the number of tanks or the complexity of 
the lumped model increases. Eq. 2 has been used to 
solve for the pressures in this study, however 
analytical solutions to the above given configurations 
are also available in the literature, see Sarak et al. 
(2005) 

THE ENSEMBLE KALMAN FILTER (ENKF) 

Our implementation of the EnKF follows that of Li et 
al. (2009). We have applied their algorithmic 
approach to the lumped parameter models. 
Traditionally the Kalman filter has been used in the 
literature for estimating the state of any system which 
evolves with time. The system is represented with a 
state vector that is forecasted forward in time to the 
point where observed data are available. Then the 
state of the system is corrected to honor the observed 
data. When considering lumped parameter models, 
the state of the system are composed of all variables 
that are needed to run the model and those that are 
uncertain. We will denote the state vector as y, and it 
will mainly be composed of two components. The 
first component of the state vector contains the 
(unknown or uncertain) model parameters (the 
recharge indices and the storage capacities of the 
tanks). It is important to note that, in this study, the 
model parameters are treated independent of time. 
The second component of the state vector is 
composed of the dynamic variables (pressures of the 
tanks). The state vector for the lumped parameter 
models considered in this paper are given in Eq. 3. 
 

 3 
 
Here T represents the transpose, m represents the 
vector of model parameters, and p represents the 
dynamic variables. The state vector has a dimension 
of Ny=M+Np, where M represents the number of 
model parameters that are unknown or uncertain and 
Np represents the number of dynamic variables (for 
the lumped parameter applications it will be equal to 
the total number of tanks in the system). We should 
note that in many of the studies present in the 
literature, the state vector is composed of mainly 
three parts; model parameters, dynamic variables and 
theoretical data. In the application of the EnKF to the 
lumped parameter models, the theoretical data are the 

same as the dynamic variables since the data used for 
history matching are average pressure data. Hence we 
do not have the extra part (theoretical data) since it is 
the same as the dynamic variables. 
 
For a two-tank open system (as shown in Fig. 2a), if 
all model parameters were treated as unknown, the 
state vector would have the following form: 
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It is important to note that there exists the following 
relationship between the model parameters and the 
dynamic variables: 
 

 5 
 
Here the function f corresponds to the numerical 
solution of Eq. 2. It is however also possible to write 
an expression for p as follows (Gu and Oliver, 2006): 
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H is a matrix with only 0 and 1 as its components, 
H=[0|I] is used for extracting the dynamic variables 
from the state vector. Here 0 is a Np×M matrix with 0 
entries and I is an identity matrix with dimensions of 
Np×Np.  
 
Initially, at t=0, before any data are assimilated 
(history matched), a large number of state vectors are 
generated, y1, y2,…, yNe, from a prior model. Here Ne 
is the total number of state vectors which is also 
referred to as the number of ensembles. At this point 
only the model parameters in the state vectors are 
generated from a chosen prior distribution. Using 
these model parameters the model is advanced to the 
first point in time where data are observed (we will 
denote this time as tk). This is the forecast step where 
the dynamic variables are predicted at the time point 
where data are available. Once the forecast step is 
completed, all ensembles of the model parameters 
and the dynamic variables (in other words all 
ensembles of the state vector) are updated based on 
the difference between the observed data and the 
forecasted dynamic variables using the following 
relation (Gu and Oliver, 2006): 
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Here  represents the updated state vector,  

represents forecasted state vector and  
represents the forecasted dynamic variables. dj is an 
unconditional realization of the observed data and 
can be generated using the following equation: 
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where d represents the observed data at tk, CD is the 
Nd×Nd (where Nd represents the total number of 
available data at tk) covariance matrix of all available 
data at tk and zu is an Nd-dimensional vector of 
independent random normal deviates. In this work, 
we assume a diagonal data covariance matrix, and 
hence assume that noise in observed comes from an 
uncorrelated Gaussian distribution.  
 
Ke in Eq. 7 is called the Kalman gain matrix and can 
be determined using the following equation (Gu and 
Oliver 2006): 
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 is the covariance matrix of the state vector. The 

individual elements of  is determined from the 
ensemble of state vector. Specifically any element of 

 can be computed using the following relationship: 
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for m,l=1,…,Ny. The subscripts m and l refer to the 
mth and lth entries in the covariance matrix. xm,j and xl,j 
correspond to the mth and lth variables for the jth 
ensemble. and  are the means that are 
calculated across the ensembles. 
 
It is important to note that the update is performed on 
the entire state vector. In other words both the model 
parameters and the dynamic variables are updated at 
the same time. The reason behind updating the 
dynamic variables is to mimic the response of the 
lumped parameter model if the model was run with 
the updated model parameters from time zero. Hence 
by updating the dynamic variables, we avoid re-
running the model from time zero which may be time 
consuming. The procedure does not introduce any 
errors if the relationship between the model 
parameters and the dynamic variables (f in Eq. 5) is 
linear. In the case of a non-linear relationship, the 
results are only approximate. 
 
Once the entire state vector is updated, we again 
perform a forecast step to the point where the next 
time level (tk+1) where a new set of observed data is 
available. Then we repeat the above steps and 
perform another updating. This procedure is repeated 
until all observed data are assimilated. 

APPLICATIONS OF ENKF 

In this section we present synthetic and real field 
applications for better understanding of the EnKF 
method and its capabilities. We will first look at a 
simple linear problem. Then we will consider a 
synthetic example using the lumped parameter 
model, which constitutes an example of a nonlinear 
problem. Finally a real field application is performed 
on data obtained from the Balcova Narlidere field in 
Izmir, Turkey. The real field data is the same data 
used by Tureyen et al. (2007).  

Application to a Linear Model 
In this application of the EnKF we use a very simple 
linear model given by the following equation: 
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Here a and b are the model parameters and t is the 
independent variable. Note that h is linearly related to 
the model parameters.  
 
We first generate synthetic data to be used in the 
assimilation process. For this purpose the true values 
of the model parameters are taken as a=5.75 and 
b=11.23. By varying t from 1 to 100 with a uniform 
step size of 1, we generated 100 data points. Then a 
Gaussian noise with mean equal to zero and variance 
equal to 16 was added to the generated data points to 
mimic actual observed data (all are illustrated in Fig. 
3). 
 

0 10 20 30 40 50 60 70 80 90 100
t

0

100

200

300

400

500

600

h
(a

,b
,t)

True data
Observed data

 
Figure 3: True data and the observed data for the 

linear problem. 
 
We now apply the EnKF to assimilate the observed 
data given in Fig. 3 using 1000 ensembles for the 
model parameters. The initial ensembles of the model 
parameters have been sampled from normal 



distributions. The model parameter a has been 
sampled with a mean of 5.75 (the correct mean) and a 
variance of 100. The model parameter b has been 
sampled with a mean of 11.23 (the correct mean) and 
a variance of 100. The results obtained from the 
initial distribution of model parameters and the 
results after the implementation of the EnKF are 
given in Fig. 4. 
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Figure 4: Results before and after the application of 

the EnKF for the linear problem. 
 
The gray lines in Fig. 4 represent the results obtained 
using the initial distribution of the model parameters. 
The black lines on the other hand represent the results 
obtained with the model parameters after the 
application of the EnKF. It is clear that the EnKF 
performs very well in matching to the observed data. 
 
Table 1 presents the elements of the computed 
covariance (and the correlation coefficients which are 
given with the numbers in parentheses) matrix of the 
model parameters prior to applying the EnKF. As 
mentioned previously, both initial distributions of the 
model parameters have been sampled from a normal 
distribution with a variance of 100. The diagonal 
terms of the covariance matrix give a variance of 
almost 100 which is consistent with the input 
variance.  
 
Table 1: Covariance matrix for the model 

parameters prior to applying the EnKF 
(the numbers in parenthesis give the 
correlation coefficients). 

Parameters a b 

a 
99.99 
(1.0) 

0.7 
(7.14×10-3) 

b 
0.7 

(7.14×10-3) 
94.77 
(1.0) 

The off diagonal elements of Table 1 give the 
covariance and the correlation coefficient between 
the model parameters a and b. The low correlation 
coefficient between the model parameters represent 
very low linear correlation. Table 2 gives the 
posterior covariance matrix from the model 
parameters, computed analytically (from linear 
parameter estimation assuming Gaussian statistics for 
observed data and the model parameters) using the 
following relationship (Oliver et al., 2008): 
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Here Cmp is the posterior covariance matrix, Cm is the 
prior covariance matrix of the model parameters (for 
this problem this is given in Table 1), CD’ is the data 
covariance matrix (but in this case it is the covariance 
matrix of all data), and X is the transformation 
(design or sensitivity) matrix and, for the specific 
example considered here is given by: 
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The results of Table 2 show that when the observed 
data are matched, the variances of the model 
parameters, as expected, decrease significantly 
(compare diagonal elements of the matrices given in 
Tables 1 and 2). Note that there exists nearly no 
correlation in the initial sample distribution of the 
model parameters. However, once data are history 
matched, a correlation is introduced between the 
model parameters (compare off-diagonal elements of 
matrices given in Tables 1 and 2). 
 
Table 2: Analytically determined posterior 

covariance matrix for the model 
parameters (the numbers in parenthesis 
give the correlation coefficients). 

Parameters a b 

a 1.91×10-4 
(1.0) 

-9.63×10-3 
(-0.87) 

b -9.63×10-3 
(-0.87) 

0.65 
(1.0) 

 
Table 3: Covariance matrix for the model 

parameters obtained from the distribution 
of model parameters after EnKF (the 
numbers in parenthesis give the 
correlation coefficients). 

Parameters a b 

a 1.91×10-4 
(1.0) 

-9.81×10-3 
(-0.87) 

b -9.81×10-3 
(-0.87) 

0.66 
(1.0) 



Table 3 illustrates the covariance matrix obtained 
from the 1000 ensembles of model parameters after 
the EnKF. It is clear from the results of Table 3 that 
the EnKF manages to reproduce the statistics given 
by Table 2, which was computed by the use of the 
analytical formula given by Eq. 12. 
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Figure 5: Histogram of RMS based on observed 

data for the results of the prior model 
parameters. 
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Figure 6: Histogram of RMS based on observed 

data for the results of the posterior model 
parameters. 

 
Figs 5 and 6 give the histograms of the RMS (root 
mean squared error) for the results of the prior (gray 
lines in Fig 4) and posterior (black solid lines) 
distributions of the model parameters respectively. 

The RMS values are computed using the following 
equation: 
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Here Nd’ represents the total number of data, dobs,i 
represents the ith observed data and pj,i represents the 
ith computed pressure of the jth ensemble. 
 
The RMS values obtained from the model response 
using the prior distribution of model parameters are 
indeed very high. After the application of EnKF, the 
RMS values are considerably reduced. As mentioned 
earlier, the noise added to the true model response 
had a standard deviation of 4 (variance of 16). When 
Fig. 6 is inspected, it is clear that all RMS values are 
gathered around 4. This shows that the matches 
obtained by EnKF are indeed very good that they 
reproduce the noise initially added to the true data. 

Application to Lumped Parameter Models 
We will assume that the true model for the 
application on lumped parameter models is a two-
tank open model as shown in Fig. 2a. The true model 
response (in this application the average reservoir 
pressure) was corrupted by adding noise from a 
N(0,0.49) to mimic actual observed data. Hence the 
observed pressure change to be used in the 
application is now the corrupted pressure. We further 
assume that we know the level of noise associated 
with the data. The corrupted pressure data represent 
the observed data d and contain 193 data points. The 
observed pressure data are shown in Fig. 7 along with 
the production history of the field. 
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Figure 7: True and observed (noisy) pressure data 

and net production rate. 



The four unknown model parameters for this case are 
the storage capacities of the tanks and the recharge 
indices. Just as in the linear problem we again use 
1000 ensembles of the state vector. Table 4 
summarizes the true model parameters used to 
generate the true pressure response given in Fig. 7, 
the initial ensemble of realizations and the resulting 
distribution of model parameters from EnKF. The top 
rows of the entries given in the third and fourth 
columns represent the mean of the distributions while 
σ2 represents the variance of the distribution. In this 
example, the initial ensemble of both recharge indices 
have been sampled from a uniform distribution 
between 1 kg/(bar-s) and 50 kg/(bar-s). The natural 
logarithm of the storage capacities have been 
sampled from a uniform distribution between 16 and 
28. The storage capacities in this case have values 
ranging from 8.8×106 kg/bar to 1.44×1012 kg/bar. 
This covers a very wide range of both the recharge 
indices and storage capacities. The main idea behind 
using uniform initial distributions is that in actual 
applications, we may not have any prior knowledge 
about model parameters except perhaps a minimum 
and a maximum. Hence, all realizations of the model 
parameters between this minimum and maximum 
would be all equi-probable. A uniform distribution 
reflects this event. The fourth column of Table 4 
gives the means and statistical properties of the 
ensemble of model parameters after the EnKF has 
been applied.  
 
Table 4: Summary of the EnKF process. 

Model 
parameters 

True 
parameters 

Initial 
ensembles 

Resulting 
ensembles 

αr, kg/bar-s 30 
25.58 

σ2=193.2 
30.51 

σ2=3.46 

ln κr, kg/bar 18.304 
22.03 

σ2=11.8 
18.176 

σ2=0.011 

αa1, kg/bar-s 37 
25.09 

σ2=194.9 
30.14 

σ2=34.8 

ln κa1, kg/bar 23.121 
22.113 

σ2=11.3 
23.07 

σ2=0.31 

 
It is clear that the EnKF has managed to decrease the 
uncertainty (in this case represented by the variances 
denoted by σ2 in Table 4) considerably for all 
parameters. Furthermore the means of the ensemble 
of resulting model parameters are indeed very close 
to the true parameters. 
 
Fig. 8 illustrates how the EnKF performs in terms of 
matching the history. The gray lines represent the 
model response when the initial ensembles are used 
in the model. The solid black lines represent the 
model responses of the resulting ensemble of model 
parameters. The red solid line represents the true 
pressure data and the black dashed line represents the 
production rate. As it is clear from Fig. 8 the EnKF 

has managed to reduce the very wide band of the 
initial ensembles to better match the production data.  
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Figure 8: Results of the EnKF process. 
 
To quantitatively test the match of the 1000 
ensembles (the solid black lines given in Fig. 8) we 
compute the RMS based on the observed data. As 
mentioned earlier the observed data have been 
created by adding noise to the true pressure that has 
been sampled from a normal distribution that has a 
mean equal to 0 and a standard deviation equal to 0.7. 
Hence, if the matches are good, then the RMS based 
on the observed data should yield a value of 
approximately 0.7. Fig. 9 gives the histogram for the 
RMS values of all of the ensembles (black solid lines 
in Fig. 8). Not all ensembles have an RMS value of 
.0.7. Although the mode of the distribution is around 
0.7, there still exist many ensembles with higher 
RMS. 
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Figure 9: Histogram of the RMS based on observed 

data. 
 



Fig. 10 illustrates the behavior of the mean of the 
ensembles. The RMS between the mean of the 
ensembles of predicted pressures and the observed 
data is 0.728, which is very close to the input value of 
standard deviation of noise added to the true 
pressures. 
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Figure 10: Comparison of the mean of all ensembles 

and the true model response. 
 
In the linear problem given in the previous 
subsection, almost all RMS values of the model 
response based on the posterior ensemble of model 
parameters were very close to the noise added to the 
true data. In the application of EnKF on lumped 
parameter models an inspection of Fig. 9 shows that 
there are many model responses that give higher 
RMS values then the noise added to the true data.  
 
To investigate why this is so, we will use a very 
simple 1 tank open lumped parameter model. This 
model will have two model parameters, one recharge 
index and one storage capacity. The aim of this 
simple toy problem will be to see how the model 
response behaves with respect to each model 
parameter. We again take two cases where in the first 
case the storage capacity is kept constant at ln (κ)=18 
kg/bar and the recharge index is varied between 1 and 
50. In the second case we fix the recharge constant at 
α=10 kg/(bar-s) and vary ln (κ) between 16 and 28. In 
both cases we have used a net production rate of 100 
kg/s and we look at how the pressure at 100 days 
behaves with changing recharge index and storage 
capacity. Both cases are given in Figs. 11 and 12 
respectively. 
 
Figs 11 and 12 give the behavior of the model 
response with respect to the recharge constant and the 
storage capacity respectively. It is clear that in both 
cases the models behave non-linearly. We believe 
that this non-linear behavior causes the result of Fig. 

9 where many model responses have RMS values are 
higher then the noise added to the true data. 
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Figure 11:The variation of pressure with varying 

recharge indices. 
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Figure 12:The variation of pressure with varying 

storage capacities. 
 
We will now consider the prediction problem where 
we try to assess the uncertainty in future prediction of 
pressures. Fig. 13 illustrates the future predictions of 
all ensembles, mean of all ensembles and the true 
response for the two-tank open problem. For 
simplicity, the flow rate for the prediction period has 
been taken to be constant (equal to the final rate 
during the matching period). The true model response 
lies within the band of uncertainty during the 
prediction period. If one wants to asses the 
uncertainty at any time in the future, then the 
statistics regarding the uncertainty could be obtained 
simply from the ensembles. 
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Figure 13:Future predictions of the ensembles, the 

true model and the mean of all ensembles. 
 
Finally we look at the same example this time using a 
different prior distribution for studying the effects of 
the initial distribution of model ensembles on the 
pressure response. For this purpose we generate the 
initial ensembles from normal distributions with 
statistics given in the third column of Table 5. This 
time the means of the initial distribution is taken to be 
closer to the true model parameters. 
 
Table 5: Summary of the EnKF process with 

different initial distribution. 
Model 

parameters 
True 

parameters 
Initial 

ensembles 
Resulting 
ensembles 

αr, kg/bar-s 30 
30.96 

σ2=38.4 
30.33 

σ2=1.34 

ln κr, kg/bar 18.304 
18.0 

σ2=1.02 
18.17 

σ2=0.008 

αa1, kg/bar-s 37 
35.18 

σ2=34.8 
32.66 

σ2=8.35 

ln κa1, kg/bar 23.121 
22.05 

σ2=0.98 
23.21 

σ2=0.02 

 
The last column of Table 5 indicates the decrease in 
the standard deviation of the model parameters after 
the EnKF. More importantly we look at the impact of 
using such an initial distribution on the pressure 
matches. Fig. 14 illustrates the histogram of the RMS 
values. When compared with the histogram given in 
Fig. 9, there is considerable improvement. Now there 
are more ensembles that result with lower RMS. This 
is an expected result since the standard deviations of 
the initial distribution of the model parameters were 
lower and the means were close to the true means of 
the model parameters. This also causes a reduction in 
the uncertainty band of future predictions of pressure 
as shown in Fig. 15. 
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Figure 14: Histogram of the RMS based on observed 

data. 
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Figure 15:Future predictions of the ensembles, the 

true model and the mean of all ensembles. 

Real Field Example 
Here we extend the application of the EnKF to a real 
field. The field at study is the Balcova Narlidere 
Geothermal field. This field is known as the oldest 
geothermal system in Turkey and is situated 10 km 
west of Izmir. The geothermal water with a 
temperature ranging from 80 °C to 140 °C is 
produced from the wells with depths ranging from 
48.5 m to 1100m.  
 
The application of the EnKF is performed on the data 
collected from one of the wells in the field. The data 
consists of net rate (production rate – injection rate) 
information starting from 01/01/2000 and 
corresponding water level data starting from 
17/06/2001. All data had been collected until 



10/11/2005. Here it is important to note that the net 
history is obtained from the entire field whereas the 
water level data is collected only from a single well. 
Fig. 16 illustrates the collected data to be used in the 
EnKF application. 
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Figure 16:Net production history and water level 

data. 
 
We considered a two-tank open model to be used 
with EnKF. Table 6 summarizes the statistics of the 
initial distribution of the ensembles and the resulting 
ensembles. We have used uniform distributions for 
the initial distribution of the model parameters with 
varying intervals.  
 
Table 6: Summary of the EnKF process for the real 

field case. 
 
Model parameters Initial ensembles Resulting ensembles 

αr, kg/bar-s 
30.07 

σ2=131.6 
34.49 

σ2=0.21 

ln κr, kg/bar 
22.09 

σ2=11.5 
18.04 

σ2=0.0009 

αa1, kg/bar-s 
124.7 

σ2=210.2 
139.8 

σ2=11.8 

ln κa1, kg/bar 
21.97 

σ2=12.3 
21.37 

σ2=0.13 

 
Fig. 17 summarizes the results. The gray lines show 
the initial ensemble of model parameters, the black 
lines show the results of the EnKF and the blue line 
shows the mean of all resulting ensembles. The water 
levels obtained by using the prior ensemble of model 
parameters give many realizations that do not match 
the history. The application of EnKF results in 1000 
history matched water level responses, which fits the 
observed data quite well.  
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Figure 17:Results of the EnKF process for the real 

field case. 

CONCLUSIONS 

The following conclusions have been obtained from 
this study: 

• The Ensemble Kalman Filter method has 
been successfully used with lumped 
parameter models both with synthetic 
examples and real field data. 

• The EnKF coupled with lumped parameter 
models provides very fast history matching 
for geothermal reservoirs. For the lumped 
parameter models considered here, history 
matching of 1000 ensembles takes only on 
the order of seconds. 

• Due to the non-linear relationship between 
the model parameters and the model 
responses, when EnKF is performed with 
lumped parameter models, the RMS values 
can show a wider spread when compared 
with the application of EnKF with linear 
models.  

• The results of the EnKF seem to be sensitive 
to the initial distribution of model 
parameters. As we have observed, if the 
means of the initial ensembles are close to 
the truth and the variance is decreased, this 
seems to provide better matches as expected. 
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