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ABSTRACT 

To address the question of renewability of Enhanced 
Geothermal Systems (EGS) a conduction-dominated, 
model EGS reservoir was evaluated as a 
representative “worst case” to estimate heat 
extraction during production and thermal recovery 
following shut down. In the model system water is 
injected at specified rates and temperatures into a 
single rectangular fracture surrounded by an infinite 
amount of impermeable hot rock. During the 
extraction phase, water moves along the fracture 
extracting heat from the adjacent rock matrix leading 
to local cooling and thermal drawdown of the 
reservoir. When the water injection is stopped, 
conductive heat transfer from the surrounding hotter 
rock regions leads to thermal recovery of the cooler 
zones in the reservoir. The rate of recovery is 
controlled locally by the temperature gradient that is 
induced during the thermal drawdown. A two-
dimensional mathematical model was developed to 
describe heat transfer for both extraction and 
recovery. Regarding the recovery, an advanced 
analytical approach was developed that is capable of 
describing the temperature during recovery at every 
position along the fracture. Our approach leads to the 
same result for the temperature at the inlet position, 
as presented in earlier research using a different 
approach. In addition, numerical simulations were 
carried out using the TOUGH2 code to study the 
importance of the assumptions employed in the 
analytical description and to extend the applicability 
of the model by enabling simulation of operating 
cycles with alternating extraction and recovery times. 
The effect of neglecting heat conduction in the rock 
in the direction parallel to the flow in the fracture was 
analyzed by comparison of the analytical model to 
the TOUGH2 simulations. For a fixed fracture area, 
low flow rates can result in thermal drawdown 
localized around the fluid inlet with heat conduction 
in the parallel direction becoming significant. 

BACKGROUND AND MOTIVATION 

One important feature of any operating geothermal 
reservoir system has to do with its anticipated 
production sustainability over the long term. 
Although geothermal reservoirs can be depleted 
during production if recharge rates are insufficient to 
overcome local cooling of rock and losses of fluid 
pressure, with proper management hydrothermal 
reservoirs have been shown to be productive for long 
periods of time. In Engineered Geothermal Systems 
the situation is different with no record of long term 
field testing and as a result the renewability of EGS 
in general is often questioned.  
Axelsson et al. (2001) define the renewability of a 
geothermal source as the ability to maintain the 
installed capacity indefinitely. Thermally, the 
reservoir would be in steady-state condition, i.e. the 
rate of heat extraction by the working fluid and the 
recharge rate from the bulk rock are equal. However, 
the renewable capacity is frequently too small for 
commercial development due to economy of scale in 
infrastructure development and operation costs 
(Sanyal 2005). Therefore, considerations about the 
sustainability of geothermal systems must also 
include the recovery effect after a stop of heat 
extraction (Megel and Rybach 2000). Sanyal (2005) 
defines the sustainable capacity of a geothermal 
reservoir as the capacity, that can be economically 
maintained over the amortized life time of a power 
plant. According to his review of operating 
hydrothermal plants around the world, the sustainable 
capacity is 5 to 45 times the renewable capacity with 
the factor being most likely around 10. Although, 
exploiting the sustainable capacity eventually results 
in significant cooling of the reservoir and recovery 
times in the order of hundreds of years, there are 
good reasons to define such geothermal resource 
operation as sustainable.  
• Complete recovery of the thermal energy is 

eventually guaranteed and even with recovery time 



scales of hundreds of years the resource base is 
large enough to allow for long-term energy 
production (Tester, Anderson et al. 2006).  

• The possible displacement of fossil fuel 
consumption would reduce environmental 
pollution today and help to preserve these fuels for 
future generations – as raw material and for 
possibly cleaner and more efficient power 
applications (Sanyal 2005).  

• Geothermal resources can be considered 
renewable on time-scales of technological/societal 
systems, whereas fossil fuel reserves renew in 
geologic time scales only (Rybach, Megel et al. 
2000).  

Modeling the transient heat transfer in geothermal 
reservoirs allows studying different operating 
strategies with the overall goal to increase the 
sustainable capacity and make the best use of the heat 
flow from the surroundings that is induced by the 
extraction of heat.  
The objective of this work is to model both 
operational modes of geothermal reservoirs: 
extraction and recovery phase. During the extraction 
phase, liquid water1 is circulated through the 
reservoir under pressure to extract heat. During the 
recovery phase, the production flow is shut down and 
the heat flow from the surrounding rock recharges the 
reservoir. Both, a numerical and an analytical model 
to describe heat and mass transfer in the reservoir are 
developed. The results of both models are compared 
to each other for validation and to better understand 
the effect of some of the assumptions made in the 
analytical model. 

THEORY 

Analytical Model 
The mathematical approach to the heat transfer 
problem is based on the model reservoir geometry 
given in Figure 1. The model system used for a 
discretely fractured EGS reservoir was adapted from 
earlier works by Gringarten et al. (1975) and Wunder 
and Murphy (1978). Although realistic reservoirs 
consist of a network of fractures, a single fracture 
model adequately captures thermal recovery through 
heat conduction from the hot rock surrounding the 
reservoir. A single rectangular, vertical fracture of 
constant width 2b separates two blocks of 
homogeneous, isotropic, impermeable rock. A 
Cartesian coordinate system has been placed such 
that the x=0 plane coincides with the rock/fracture 
interface. 

                                                           
1 In this report, we assume water to be the geothermal 
working fluid. 

 
Figure 1: Mathematical model for single fracture in 

hot rock. (a) shows the three-dimensional 
model (3D), (b) shows the same model 
reduced to two dimensions (2D). The 
dashed line in the middle of the fracture 
indicates the symmetry in the x-direction. 

 
The rock is assumed to extend horizontally (x) to 
infinity. Rock and fracture extend to infinity in the y-
direction. Initially, ( 0t ≤ ) the whole system is at 
uniform temperature Tr,0. For the heat extraction 
phase, water is injected at x,z=0 at a constant 
temperature Tw,0 and at a constant mass flow rate m& . 
It is flowing upwards through the fracture to the 
outlet at x=0 and z=L. Furthermore, the following 
assumptions are made: 
• The temperature variation in the water in x-

direction is insignificant, as the aperture of the 
fracture is very small compared to the fracture 
length (b/L<<1), and is neglected. For all z, the 
water temperature is equal to the rock temperature 
at x=0. In other words, the heat transfer resistance 
at the rock/water interface is neglected, which is a 
reasonable assumption for any practical case 
(Wunder and Murphy 1978; Ogino, Yamamura et 
al. 1999). 

• Conduction in the vertical direction (z) in both the 
fracture and the rock formation is neglected, as 



well as radiative heat transfer in the fracture. 
Because the aperture (2b) of the fracture in x-
direction is small compared to the fracture extent 
in y-direction (H), such that 2b/H<<1, we can 
extend the y-axis to ∞±  and neglect heat transfer 
in y. This effectively reduces the mathematical 
heat transfer problem to two spatial dimensions. 
Heat transfer occurs only by conduction in the 
rock in x-direction and forced convection along the 
z-direction in the fracture (Gringarten, 
Witherspoon et al. 1975). 

• No heat flux occurs at the rock/fluid interface 
during recovery. The assumption is justified by the 
small volume, and hence, small heat capacity of 
the fracture compared to the volume/heat capacity 
of the rock that has been cooled during the 
preceding extraction phase. 

• The density and specific heat capacity of both rock 
and water, and the heat conductivity of the rock 
are constant. 

• The static fluid pressure in the fracture is set to 
exceed the vapor pressure of the water by a large 
enough margin to keep the fracture in single phase 
flow. 

First extraction phase 

The following derivation of a solution for the 
temperature field in a reservoir during the first 
extraction phase is based on the report of Wunder and 
Murphy (1978). A one-dimensional differential 
energy balance within the rock yields 
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where α is the rock thermal diffusivity, i.e. the ratio 
of thermal conductivity (kr) and the product of 
density (ρr) and specific heat capacity (cp,r) 
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and T=T(x,z,t) is the temperature. Following the 
assumptions of negligible heat transfer resistance at 
the rock/fluid interface and of negligible temperature 
variations in x-direction in the water, the temperature 
T(x=0,z,t) describes the rock temperature at the 
interface and also the water temperature over the 
entire fracture width at the respective z-position. The 
temperature dependence on z is introduced in the 
boundary condition for the rock/fluid interface  
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with U representing the flow velocity of the water, b 
the half-width of the fracture, and ρw and cp,w the 
density and specific heat capacity of the water. With 
the initial and bulk temperature of the rock specified 
as Tr,0 and the constant water temperature at the 

injection position taken as Tw,0 the additional 
boundary conditions are 
 0,),0,0( 0, >=== tTtzxT w  (4) 

 0,),,( rTtzxT =∞→  (5) 

and the initial condition is 
 0,)0,,( rTtzxT =≤  (6) 

The analytical solution is given in terms of the 
dimensionless, normalized temperature Θ and is 
based on the solution of a classical transient heat 
transfer problem as presented for example by 
Carslaw and Jaeger (1959) and Arpaci (1966) 
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First recovery phase 

An advanced approach was developed to describe the 
temperature in the single fracture model analytically. 
We consider a linear heat sink along the fracture, i.e. 
in z-direction at x=0. Because of our earlier 
simplification to two dimensions, the sink appears at 
all y from y=0 to y=H. The line sink represents the 
heat extraction by the flowing fluid in the fracture 
during the extraction phase. The energy balance 
including the heat sink becomes 
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where q(z,t) is the heat flux at the rock/water 
interface and )(xδ  is the Dirac delta function. The 

discrepancy to Eq. (1) in the right hand side of the 
equation is resolved by noting that the boundary 
condition in Eq. (3) handles the heat sink in the 
previous formulation. As mentioned before, the 
temperature T(x=0,z,t) is valid for both rock and 
water at the interface. The corresponding initial and 
boundary conditions of Eq. (9) are again Eq. (5) and 
Eq. (6). The heat flux q(z,t) takes account of the 
second boundary condition.  
During the extraction phase, heat flows from the hot 
regions of rock into the moving fluid in the fracture. 
The flux q(z,t) can be determined based on the 
temperature profile for the extraction in Eq. (7). No 
heat flux occurs at the rock/water interface during the 
recovery phase, according to the assumption listed 
above, and q(z,t) is then zero. With tex being the time 
at the end of the extraction phase and u0=Tw,0–Tr,0, we 
get 

 
⎪
⎩

⎪
⎨

⎧

>

≤<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

∂
∂−=

=
ex

ex
r

x
r

tt

tt
t

z

t

uk

x

T
k

tzq

,0

0,
4

)(
exp

2
2

),(

2
0

0 α
β

πα (10) 



Eq. (9) was solved using a variable transformation 
and the following Green’s function (Duffy 2001) 
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where H(t-t') is the Heaviside step function, which is 
equal to 1 for positive arguments and equal to 0 for 
negative arguments. For details on the derivation, see 
Appendix B. The solution in integral form is 
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  (12) 
Eq. (12) can be used for both extraction and recovery 
phase, i.e. for t∈[0,∞), if one extraction period with 
subsequent recovery is considered. For t < tex, the 
Heaviside step function H(t–t') effectively reduces 
the integration limits from [0,tex] to [0,t]. The 
temperature at time t = tex can be defined as the limit 
of Eq. (12) for  t→tex.  
The integral in Eq. (12) has a closed form solution 
when x,z=0. The recovery solution (t > tex) at x,z=0 in 
terms of Θ is 
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The same solution was reported by Wunder and 
Murphy (1978). They did not literally restrict the 
solution to the injection point at x,z=0 but assumed a 
“constant drawdown temperature” in their derivation. 
Nonetheless, in any practical situation the 
temperature during drawdown is constant only at the 
inlet position, where the fluid can be assumed to 
enter the system at a constant temperature.  
Using Taylor series expansion and term wise 
integration, the integral can be solved analytically for 
x=0 and ∈z [0,L], i.e. for all positions along the 
fracture. For the derivation see Appendix B. The 
finally resulting infinite series is 
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coefficient. Eq. (14) only applies for the recovery 
phase and along the fracture, i.e. for t > tex and x=0. 
Θ is minimal at the inlet and maximal at the outlet 
and the values can be used to obtain a range for the 
extent of the recovery of the geothermal reservoir. 
For example, when Θ =1 at the outlet, water could 

again be extracted at the initial rock temperature. If 
further time for recovery is specified, the z-position at 
which Θ =1 is reached, will retreat further towards 
the inlet, i.e. towards (x=0, z=0). When the recovery 
time becomes large compared to the extraction time, 
t >> tex, the heat sink due to the extraction fluid 
resembles an impulsive point source at t=0 and x=0. 
The first term of the infinite series in Eq. (14) is  
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The same term can be found for an impulsive point 
source of magnitude  
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at t=0 and x=0. 

Numerical Model  
The TOUGH2 numerical simulator (Pruess, 
Oldenburg et al. 1999) was used for numerical 
modeling of extraction and recovery periods in the 
single-fracture system. TOUGH2 is a general purpose 
numerical simulation program for multi-dimensional 
non-isothermal flows of multi-phase, multi-
component fluid mixtures in fractured and porous 
media. The code was developed at the Lawrence 
Berkeley National Laboratory and is written in 
standard FORTRAN77. It employs an integral finite 
difference method (IFDM) in discretizing the 
medium, which has the advantage of irregular 
discretization in multi-dimensions. Time is 
discretized fully implicitly as a first-order backward 
finite difference and fluxes are computed using 
upstream weighing (Pruess, Oldenburg et al. 1999). 
PetraSim (Thunderhead Engineering, Manhattan, KS) 
was used as pre- and post-processing software at the 
front end. PetraSim allows to interactively define the 
mesh and parameters for the model and then creates 
an input file for the TOUGH2 code. After running the 
TOUGH2 code PetraSim can be used to process the 
simulation results for graphical representation.  
Figure 2 shows a schematic view of the mesh applied 
for the numerical simulation in TOUGH2. Because of 
the symmetry along the y,z-plane in the middle of the 
fracture, only half of the basic model in Figure 1 was 
implemented. The simulated domain extends 300 m 
in x, 1 m in y, and 600 m in z. With a simple estimate 
for the penetration depth of the thermal cooling in the 

x-direction, tx α2=∆ , we find that 300 m will be 
reached after about 700 years only. The first column 
of gridblocks along the z-axis and at x=0 represents 
the fracture. The column of fracture cells and the first 
column of rock cells next to it are both 0.03 m wide. 
From there on, the mesh is logarithmically spaced 
into 18 more gridblocks in the x-direction. In the z-
direction, the mesh is equally partitioned into 0.5 m    



 
Figure 2: Mesh for TOUGH2 numerical simulation of a single fracture in hot rock. (b) shows the complete grid with 

dimensions and the positions of fluid injection and outlet. The model can be pictured as the right-hand 
half of the two dimensional system in Figure 1, Graph (a), including a two dimensional block of rock and 
half the fracture on its left-hand side. The lines indicating the mesh cause the model to appear 
homogeneously dark in this overall view. The detailed view in (a) shows the structure of the mesh around 
the injection position. The water flow occurs within the first column of cells which incorporate the 
0.03 m wide fracture as schematically indicated in (a). Note that the extra cell with the source of mass 
does not appear in the figure. 

 
blocks except near the inlet where the z-spacing was 
reduced to 0.25 m for the first ten meters from the 
injection point at x=0, z=0. The flow was assumed to 
be plug flow through the fracture; therefore, the mesh 
was not refined in the y-direction and consists of one 
layer of gridblocks in the x,z-plane. No heat and mass 
flow occurs at the boundaries at y=0 and y=1 m, and 
hence, no heat or mass flow can occur in the y-
direction, the same as in the analytical model. The 
fracture cell at z=600 m is set to “fixed state” and 
represents a mass sink for the water flow along the 
fracture during the extraction phase. The “fixed state” 
specification keeps the cell's properties constant at 
their initial value, irrespective of occurring heat and 
mass exchange. However, the cell that is considered 
as the production well position in the analysis, is the 
fracture cell at z=L=500 m. The 100 m distance 
between the two cells was introduced to avoid 
undesirable effects from the “fixed state” cell 
definition on the spatial domain of interest of 

∈z [0,L]. An extra cell was added below the fracture 
cell at x,z=0 for the injection of fluid into the fracture. 
The extra cell includes a constant source of mass set 
to m&  representing the water injection. Pressure and 
enthalpy of the injected water have been specified to 

be 2 MPa and 85.275 kJ/kg, respectively, which 
corresponds to a temperature of Tw,0 = 20°C. 
For the recovery phase, the mass source in the inlet 
cell is set to zero. The “fixed state” cell at the 
opposite end of the fracture at z=600 m is now 
enabled and set to the same initial temperature as the 
surrounding cells (“global initial conditions”). In 
order to limit the heat transfer from the surrounding 
rock to conduction, the porosity and permeability of 
the rock are set to 0. TOUGH2 includes only Darcy’s 
Law flow models for porous media, so to model fluid 
flow in an open fracture, the porosity of the fracture 
material is set to 1.0, and its permeability to 10-9 m2. 
While this is not a rigorous model of fluid flow in an 
open fracture and will not reproduce pressure drop 
accurately, the comparison with the theory which 
relies only on a specification of the flow rate in the 
crack will not be affected. A column of 0.001 m wide 
“fixed state” cells was added at the x=300 m 
boundary to achieve a constant temperature in the 
bulk rock. Pressure and temperature of this 21st 
column of cells in x are fixed at the initial conditions. 
All other boundaries of the mesh are inactive, i.e. no 
heat or mass flow occurs at the boundaries.  
As given by (Armstead and Tester 1987) the 
drawdown rate of single fracture geothermal 



reservoirs is determined by the parameter m& /A, the 
water mass flow rate m&  divided by the rock/water-
interface area, A=HL. All flow rates in the discussion 
are given as “area-normalized” mass flows m& /A, 
which is equivalent to the thermal extraction rate per 
unit fracture area when multiplied by the heat 
capacity and temperature of the water. The 
magnitude of m& /A scales directly with the rate of 
thermal drawdown. 

RESULTS AND DISCUSSION 

Figure 3 compares the results of the analytical 
extraction solution in Eq. (7) and the numerical 
simulation for the dimensionless, normalized 
temperature Θ at four different locations along the 
fracture. Analytical and numerical simulation results 
match closely for all positions. Generally, Θ 
decreases from its original value of 1 as heat is 
extracted from the system. At the inlet position 
(x,z=0) we see a sharp decline to 0=Θ , as required 
by the boundary condition in Eq. (4). For the 
reservoir and flow conditions specified (for a 
summary, see Appendix A), the temperature at the 
outlet (x=0, z=L=500 m) stays close to the initial 
temperature for the first 15 years. The penetration of 
the thermal cooling front along the fracture and into 
the rock in x-direction is discussed below.  

 
Figure 3: Comparison of the analytical solution for 

the extraction given in Eq. (7) and the 
TOUGH2 simulation result. The graphs 
show the normalized temperature Θ for a 
30 years extraction period with an area-
normalized water mass flow rate of 

6108 −×=Am& kg/(m2s) ( 41033.1 −×=U m/s) 

at four different locations along the 
fracture. 

 
In order to verify the infinite series solution for the 
recovery phase in Eq. (14) it is compared to a 
numerical solution of the integral in Eq. (12) in 
Figure 4. The two solutions match well, when enough 
terms of the infinite series are considered. The time 
axis in Figure 4 and in the following illustrations of 

recovery is normalized by the extraction time tex and 
ranges from 1, the start of the recovery, to 6, where 
the time for recovery would be five times the 
duration of the extraction phase. The numerical 
integration solution will be used to compare the 
results of the analytical model and the TOUGH2 
numerical model, because it allows to include 
positions in the rock matrix where 0≠x . 

 
Figure 4: Trend of normalized temperature Θ at the 

position x=0, z=20 m with time during the 
recovery phase. The time axis is 
normalized by the extraction time tex. The 
continuous black line shows the solution 
obtained from the numerical integral 
solution, the dashed lines show the result 
of the analytical expression in Eq. (14) 
with an increasing number of terms of the 
infinite series being considered. 

 
Figure 5 combines the results of the numerical 
integration solution and the TOUGH2 numerical 
simulation for the recovery phase at the four 
positions along the fracture introduced in Figure 3. 
The temperature in the TOUGH2 simulation exceeds 

 
Figure 5: Results of the TOUGH2 simulation and the 

numerical integration for the recovery 
phase at four different positions along 
the fracture, after 30 years of heat 
extraction at an area-normalized water 
mass flow rate of 6108 −×=Am& kg/(m2s) 

( 41033.1 −×=U m/s). 



the numerical integration solution for positions 
relatively close to the inlet, as can be seen for x = 0, 
z = 20 m in Figure 5. The absolute difference is 

044.0=∆Θ  at 6=extt . 

A possible reason for the divergence is the different 
treatment of conduction heat transfer in the z-
direction in the two models. The analytical solution is 
based on an energy balance that neglects conduction 
in z in the entire system, whereas the TOUGH2 
model does consider conduction in z. Interestingly, 
the TOUGH2 solution results in faster thermal 
recovery. In order to investigate the importance of 
heat conduction in z, we compared analytical and 
TOUGH2 simulation results for a situation where the 
temperature gradients in the z-direction become 
negligible. Therefore, the area-normalized fluid mass 
flow rate for the extraction phase was increased to an 
artificially high value of 3102 −×=Am&  kg/(m2s), 

resulting in a temperature drawdown almost uniform 
in z, as shown in Figure 6. 

 
Figure 6: Temperature field after 30 year extraction 

period with an artificially high area-
normalized water mass flow rate of 

3102 −×=Am& kg/(m2s) ( 21033.3 −×=U m/s). 

 
Indeed, the results of TOUGH2 and of the numerical 
integration solution match much closer for the 
thermal recovery from the temperature field with 
negligible gradients in the z-direction, as can be seen 
in Figure 7.  
 

 
Figure 7: Results of the TOUGH2 simulation and the 

analytical solution for the recovery phase 
after a 30 year heat extraction phase at an 
area-normalized water mass flow rate of 

3102 −×=Am& kg/(m2s) ( 21033.3 −×=U m/s) 

for the position x=0, z=20 m. 
 
The same qualitative result was obtained for positions 
in the rock matrix at different distances from the 
fracture in x-direction. Figure 8 gives an example for 
the location 25 m into the rock and at the same 
distance to the inlet position in z-direction of 20 m. 
The applicability of the assumption of negligible heat 
conduction in the direction of the flow commonly 
made for the derivation of analytical solutions 
(Bodvarsson 1969; Gringarten, Witherspoon et al. 
1975; Wunder and Murphy 1978; Bodvarsson and 
Tsang 1982; Cheng, Ghassemi et al. 2001) seems to 
be dependent on the flow rate of the extraction phase 
and the resulting temperature profile.  

 
Figure 8: Results of the TOUGH2 simulation and the 

analytical solution for the recovery 
phase after a 30 year heat extraction 
phase at area-normalized water mass 
flow rates of 6108 −×=Am&  kg/(m2s) and 

3102 −×=Am& kg/(m2s) for the position 

x=25 m, z=20 m. 
 

6108 −×=Am&  kg/(m2s) 

3102 −×=Am&  kg/(m2s) 



Conventional scaling analysis can be used to compare 
the order of magnitude of heat conduction in the two 
directions theoretically. The terms in the governing 
equation scale as 
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where T∆ , xδ , and zδ  are the appropriate 

characteristic quantities for temperature and length in 
x and z, respectively. Hence, we can define a 
dimensionless quantity  
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In order to determine the relative importance of heat 
conduction along each axis, the characteristic length 
scale in both the x- and z-direction must be 
determined. xδ  and zδ  can be considered to be the 

penetration depth of the thermal cooling front along 
the x- and z-axis, respectively. Defining the position 
of the thermal cooling front to be the value of x or z 
at which Θ equals an arbitrary value ϑ , it can be 
described as 
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with β as defined in Eq. (8). Hence, our 
dimensionless quantity scales as follows 
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The numerical values for the two flow rates 
mentioned in this article are 22

1 103 −×≅β  for the low 

flow rate and 72
2 105 −×≅β  for the high flow rate. In 

other words, for the high flow rate heat conduction in 
x exceeds heat conduction in z by six orders of 
magnitude, while for the low flow rate the two 
become more comparable. For 95.0=ϑ , the thermal 
penetration depths after the 30 year extraction phase 
at the lower flow rate corresponding to 1β  are 

86=xδ m and 497=zδ m, whereas for the high 

flow rate the theoretical penetration depth in z would 
be 333'124=zδ m. If we integrate thermal 

breakthrough to the fluid outlet position with its 
associated negative effects for the surface installation 
into our considerations, and thus restrict zδ  to L, we 

can conclude that the 1-D conduction model should 
be applied only for long fractures, where Lx /δ << 1.  

CONCLUSIONS AND OUTLOOK 

The thermal behavior of a model fractured 
geothermal reservoir during heat extraction and 
thermal recovery was considered in this work. Firstly, 
a mathematical model was developed and solved 
analytically; secondly, numerical simulations were 
carried out to investigate the importance of the 
assumptions made in the analytical model and to 
extend the applicability of the single-fracture model 
to enable the numerical simulation of operation in 
extraction/recovery cycles.  
The numerical model in combination with the 
analytical solutions was applied to investigate the 
importance of heat conduction in the rock matrix 
parallel to the fracture. The observed dependence on 
the area-normalized fluid flow rate could be 
confirmed quantitatively by a dimensionless 
parameter. Low area-normalized flow rates can result 
in thermal drawdown localized around the inlet 
position, and thus, create thermal gradients in the 
direction parallel to the fracture of comparable 
magnitude to the gradients in the direction orthogonal 
to the fracture. The most important specific findings 
are summarized below. 
• An advanced approach was developed to describe 

the system mathematically with a linear heat sink 
along the fracture length being used to realize the 
heat extraction from the hot rock by the water flow 
through the fracture.  

• A closed form analytical solution describing the 
temperature at the water inlet position during the 
recovery (and extraction) phase was derived. 
Although based on a different mathematical 
approach than used in an earlier study by Wunder 
and Murphy (1978), our solution for the recovery 
temperature at the inlet was consistent with that 
reported earlier. 

• In addition, we developed an analytical solution 
for thermal recovery describing the temperature at 
all positions along the fracture. This more general 
infinite series solution allows to determine the 
temperature during the recovery phase at the 
position of the water outlet, for example. The 
outlet temperature is crucial as it corresponds 
directly to the production temperature of the 
geothermal fluid that would be utilized at the 
surface for generating power and/or providing 
heat.  

• Using numerical integration, our analytical 
approach was successfully used to describe the 
transient thermal behavior of the entire spatial 
domain.  

• Numerical simulation results from the developed 
TOUGH2 model and the analytical solution 
correspond closely for the tested range of different 
operating conditions and positions in the reservoir. 
This finding gives us confidence in modeling 



drawdown and recovery scenarios for which 
analytical solutions are intractable. 

• The developed dimensionless parameter can be 
applied to estimate the significance of two-
dimensional conduction of heat. The one-
dimensional simplification represents a lower 
bound for the temperature recovery in geothermal 
systems, as the additional conduction in the second 
dimension leads to faster recovery.  

The model developed in the study can be used to 
evaluate strategies for the operation of geothermal 
reservoirs. Such strategies should aim at making the 
best use of the sustainable capacity of a given 
reservoir while guaranteeing the temperature 
requirements of the infrastructure at the surface. 
Among the operational scenarios to be tested are: 
• Reservoir operation with several cycles, each 

consisting of one extraction and one recovery 
phase. Megel and Rybach (2000) compared 
operation scenarios with varying cycle durations 
while the overall extraction time and the mass 
flow rate during extraction were kept constant. 
They found that the overall extracted thermal 
energy increases with shorter cycle periods. Our 
model shows qualitatively consistent results. 
These basic results should be investigated in detail 
including different water mass flow rates and 
reservoir properties such as thermal conductivity 
of the rock. Different to Megel and Rybach (2000) 
we want to compare the overall exergy of the 
extracted hot fluid instead of its enthalpy. 

• Graphical representations of the temperature in the 
modeled reservoir intuitively visualize how the 
reservoir implements a counter-current heat 
exchanger behavior when thermal breakthrough is 
reached. The temperature along the fracture 
gradually increases from Tw,0 at the fluid injection 
point to Tr,0 at the outlet. Before breakthrough is 
reached, the region close to the outlet position is 
inactive with respect to heat transfer from rock to 
water, because the water is already heated up to 
Tr,0 before it reaches the region. Contrary to the 
common notion that thermal breakthrough 
determines the termination of the reservoir usage, 
we want to explore ways how to use reservoirs 
that have seen breakthrough for preheating the 
geothermal fluid before it is transferred to a 
second reservoir. By this means one could make 
better use of the thermal energy in the first 
reservoir and simultaneously postpone 
breakthrough in the second reservoir, and hence, 
guarantee a constant production temperature of Tr,0 
for much longer time. 

• In order to increase the rock/water interface area, 
that is actively transferring heat to the fluid 
quickly, a higher flow rate at the beginning of the 
extraction phase could be advantageous. The flow 

rate should decrease later on to prevent early 
breakthrough. The effect on the total exergy that 
can be extracted from a reservoir needs to be 
investigated, along with strategies how to deal 
with the varying mass flow rate with respect to the 
surface installation.  
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APPENDIX 

A. Nomenclature and Applied Numeric Values 

500== HLA  m2 rock/fracture interface 
610023.1 −×=α  m2/s thermal diffusivity rock 

03.0=b  m  half-width of fracture 

Ubc
k

wpw

r

,ρβ =  (-) dimensionless parameter 

1050, =rpc  J/(kgK) specific heat capacity rock 

4184, =wpc  J/(kgK) specific heat capacity water 

zx δδ ,  (m) thermal penetration depth  

1=H  m 
length of the model in y 
(TOUGH2) 

500=L  m length of fracture in z 

2~ βΛ  (-) 
dim.less param. comparing 
conduction in x and z 

m&  (kg/s)  water mass flow rate 

Am&  (kg/(m2s)) area-normalized water mass 
flow rate 

9.2=rk  W/(mK) thermal conductivity rock 

6.0=wk  W/(mK) thermal conductivity water 
(TOUGH2) 

2700=rρ  kg/m3 density rock 

1000=wρ  kg/m3 density water 

CTw °= 200,  water injection temperature 

CTr °= 2000,  initial rock temperature 

0,0,

0,),,(
),,(

wr

w

TT

TtzxT
tzx

−
−

≡Θ
 

dimensionless temperature 

U  (m/s)  water flow velocity 

ex
r

t

z

α
βξ

2
=  similarity variable for x=0, 

t=tex 

B. Derivation for the Infinite Series Recovery 
Solution in Eq. (14) 

We define a new variable which results in 
homogeneous boundary conditions and simplifies 
problem solving 
 0,),,( rTtzxTu −≡  (23) 

Following the definition of Θ in Eq. (7) the relation 
of Θ and u is 
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with 0u  defined as u(x=0,z=0,t). The 

transformations of Eq. (9) and its boundary and initial 
conditions in Eq. (5) and Eq. (6) are 
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 0)0,,( =≤tzxu  (26) 

 0),,( =∞→ tzxu  (27) 

The appropriate Green’s function for the domain of 

ℜ∈x  and +ℜ∈ 0t  is shown in Eq. (11). Following 

the common approach for applying Green’s functions 
the solution to the PDE in Eq. (25) is the integral 
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The xd ′  integral can be evaluated applying the 
sifting property of the delta function. The upper 
integration boundary for t′  can be reduced from 

∞=′t  to extt =′ , the time at the end of the extraction 

phase, because the heat flux q(z,t) is assumed to be 0 
for the recovery phase (t > tex). The heat flux q(z,t) 
during the extraction phase can be determined 
applying the derivative of the temperature profile for 
the extraction in Eq. (7) as shown in Eq. (10). The 
result is  
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Substituting the Green’s function shown in Eq. (11) 
and the heat flux shown in Eq. (29) into Eq. (28) we 
get the general integral solution shown above in 
Eq. (12). 
For extt > , i.e. for the recovery period, Eq. (12) can 

be rewritten to be 
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Using the Taylor series expansion for the term 
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For 0=x , the integral in each term of the summation 
in Eq. (31) can be expressed as an incomplete gamma 
function 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

= +
+∞

=
∑ 212

0

2
1

0

,
2

11),,0( 2
1

r
n

r

n
ex

n

n
t

t

n

n

u

tzxu ξξ
π

  (32) 
with rξ  as defined below Eq. (14) and the 

incomplete gamma function defined as 

 ∫
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Applying the substitution 2x=τ  the incomplete 
gamma function can be evaluated using the following 
integral found in Gradshteyn and Ryzhik (2007) 
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and substituted in Eq. (32) to yield the infinite series 
solution given above in Eq. (14). 


