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ABSTRACT 

An alternative method, named to as direct synthesis, 
is proposed for interpreting pressure transient tests in 
naturally fractured reservoirs. This new method 
offers consistent results from pressure tests with or 
without all reservoir flow regimes observed during 
the test period. Direct synthesis utilizes the 
characteristic intersection points and slopes of 
various straight lines from a log-log plot of reservoir 
or well parameters for improve reserves estimation. 
The direct synthesis method (Tiab, 1989) offers the 
following advantages: (1) consistent results from 
using the exact, analytical equations to calculate 
reservoir parameters; (2) independent verification is 
frequently possible, (3) useful information is obtained 
when not all flow regimes are observed, as a direct 
result of the additional characteristic values 
developed by the method, and (4) determination of 
flow rate and cumulative production when It is 
shown that in deep and super deep wells the 
Temperature they are compared with a original 
volume it is generated the recuperation factor. 
Application of this technique is presented for single-
well pressure tests in a naturally fractured reservoir 
with transient interporosity flow with skin. Both the 
effect of wellbore storage and skin are included in the 
analysis. New analytical and empirical expressions 
were developed as a result of this work. These 
expressions are an integral part of the technique and 
provide the desired accuracy and versatility. 
Several field examples are given to clarify the 
technique and also illustrate the consistency acquired 
by the method. When possible, a comparative 
analysis with other methods is included. 

INTRODUCTION 
The basic equations for radial flow in naturally 
fractured reservoirs were originally formulated by 
Barebblatt et al. (1960). Using continuum mechanics, 
the medium and flow parameters of two media, 
fractures and matrix, are defined at each 
mathematical point. The transfer of fluid between the 
two media is maintained in a source function, where 

the flow is assumed to be pseudosteady state in the 
matrix system.  
Warren and Root (1963) used this approach to 
develop a solution to pressure drawdown or buildup 
tests in a naturally fractured reservoir. From their 
work several flow regimes could be identified from 
semilog analysis. In chronological order there exists 
an early period straight line representing fracture 
depletion only, a transition period when the matrix 
contribution to flow is dominant, and a late period, 
semilog straight line is parallel to the first straight 
line which corresponds to the time when the entire 
reservoir produces as an equivalent homogeneous 
reservoir (Warren and Root, 1963). Two key 
parameters were derived to characterize naturally 
fractured reservoirs the dimensionless storage 
coefficient (ω) that provides an estimate of the 
magnitude and distribution of matrix and fracture 
storage and the interporosity flow parameter (λ) 
which is a measure of the mass transfer rate from the 
matrix to the fracture network and therefore describes 
the matrix flow capacity available to the fractures.  
Further developments by Mavor and Cinco-Ley 
(1979) included wellbore storage and skin in the 
solution for naturally fractured reservoir 
pseudosteady-state interporosity flow. This was 
accomplished in Laplace space and numerically 
inverted using the Stehfest (1970) algorithm.  
As a direct consequence, type curves were developed 
by Bourdet and Gringarten (1980) which included 
both wellbore storage and skin in naturally fractured 
reservoirs. Subsequently, reservoir parameters could 
be estimated when wellbore storage dominated the 
early time pressure data.  
Cinco y Samaniego (1982) used the transfer of fluid 
between the two media is maintained in a source 
function, where the flow is assumed to be transient in 
the matrix system with a skin between two media, to 
develop a representative and applicable solution to 
pressure drawdown or buildup tests in a dual 
porosity, naturally fractured reservoir. From their 
work several flow regimes presented in a semilog 
graph. In chronological order there exists an early 
period straight line representing fracture depletion 
only, a transition period when the matrix contribution 
to flow is dominant, one half slope to the first straight 
line, a late period, semilog straight line is parallel to 



the first straight line which corresponds to the time 
when the entire reservoir produces as an equivalent 
homogeneous reservoir.   
Three key parameters were derived to characterize 
naturally fractured reservoirs the dimensionless 
storage coefficient (ω) that provides an estimate of 
the magnitude and distribution of matrix and fracture 
storage,  the dimensionless hydraulic diffusivity by 
area unit parameter ( )2/ DmaD Hη  which is a measure of 
the mass transfer rate from the matrix to the fracture 
network and therefore describes the matrix flow 
capacity available to the fractures referenced to size 
of matrix block and the new parameter 
dimensionless: interaction area for fluid transfer 
( )fbDA . Qualitatively verified, the effect of matrix 

block size on the transition response, via joint use of 
pressure and pressure derivative data. The pseudo 
steady state interporosity flow, also was found to 
have its merits. A damaged zone in the periphery of 
the matrix block retards the matrix contribution, 
resulting in a pseudo steady state type behavior. 
Continued advancement of naturally fractured type 
curves occurred with the addition of the derivative 
curve (Bourdet et al., 1983). The increased sensitivity 
of the derivative curve in naturally fractured 
reservoirs results in better accuracy of the type curve 
match. 
This method combines the characteristic points and 
slopes from a log-log plot of pressure and pressure 
derivative data with the exact, analytical solutions to 
obtain reservoir properties. It has been successfully 
applied to infinite conductivity vertical fracture 
models (Tiab, 1989), to homogeneous reservoirs with 
skin and wellbore storage (Tiab, 1995), to vertically 
fractured wells in closed systems (Tiab, 1994) and to 
NFR with pseudosteady-state interporosity flow 
(Engler and Tiab, 1996).  
This work extends the new method to naturally 
fractured reservoirs with transient interporosity flow, 
using the solution obtained by Pulido et. al (2006) for 
transient interporosity flow with skin. 

THEORY 

An actual naturally fractured formation is composed 
of a heterogeneous system of vugs, fractures and 
matrix which are random in nature. To model this 
system it is assumed that the reservoir consists of 
discrete matrix block elements separated by an 
orthogonal system of continuous uniform fractures.  
These fractures are oriented parallel to the principal 
axes of permeability. Two commonly assumed 
geometries, i.e. layers and cubes, are also shown in 
Fig. 1.  
 
 
 
 

Fig. 1.  Comparison of a random, heterogeneous 
reservoir with idealized models.  

 
The flow between the matrix and the fractures is 
governed by the transient condition, but it has been 
conceptualized that only the fractures feed the 
wellbore at a constant rate. The fluid is assumed to be 
single phase and slightly compressible.  
The wellbore pressure generalized solution in an 
infinite acting reservoir (Pulido et. al, 2006), is given 
by: 
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Dimensionless hydraulic diffusivity matrix-fracture: 
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Dimensionless hydraulic diffusivity matrix-fracture 
per exposed area size block matrix: 
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Interporosity flow skin: 
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Using the definition proposed by Cinco and 
Samaniego (1985):  
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Substituting the definition provided by Cinco-Ley et 
al (1985) into Pulido’s solution (2006), the solution is 
the same that obtained by Warren and Root (1963):                       

[ [ ] [ ] ] S
HS

tA
Ei

HS

tA
Eittp

DmfD

DfbDfbD

DmfD

DfbDfbD
DDDw +⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−−+=

ωω
η

ω
η

11
80908.0)ln(

2

1
)(

22

 (19) 
 
 
 
 
 

 

 

 

Fig. 2. Characteristic lines and prints of a Naturally 
Fractured Reservoir with pseudo-steady 
state interporosity flow 01.0=ω  and  

6101 −= xλ   neither wellbore nor skin.  
 
Applying the Leibnitz rule for the derivative: 
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The logarithmic derivative of Eq. 1 can readily be 
obtained as: 
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The derivative during these times is given by:  
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Substituting dimensionless variables and rearranging 
results in a simple and quick technique for 
determining bulk fracture permeability. 
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where: 
 rpt )'( ∆  is the pressure derivative at some convenient 

time, eiDD tt ωω < . 

CHARACTERISTIC POINTS AND LINES 

Dimensionless pressure and pressure logarithmic 
derivative versus time for a naturally fractured 
reservoir are illustrated in a log-log plot, which is 
shown in Fig. 2.  
In a pressure logarithmic derivative plot, the infinite-
acting radial flow periods are represented by a 
horizontal straight-line. The first segment 
corresponds to fracture depletion and the second to 
the equivalent homogeneous reservoir response.  
The characteristic trough on the pressure logarithmic 
derivative in a “v” shape indicates pseudo steady 
state interporosity flow in the transition period for 
naturally fractured reservoirs. The characteristic 
trough on the logarithmic derivative curve in a “u” 
shape indicates transient interporosity flow in the 

transition period for naturally fractured reservoirs. 
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Fig. 3. Effect of storage coefficient on the pressure 

response in an infinite-acting, naturally 
fractured  reservoir with pseudosteady-
state interporosity flow, 6100.1 −= xλ , no 
skin or wellbore storage. 

 
The depth of this trough is dependent on the 
dimensionless storage coefficient, but independent of 
the interporosity flow parameter (Fig. 3).  For a given 
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dimensionless storage coefficient, the minimum 
dimensionless pressure coordinate is independent of 
the interporosity flow parameter, while the minimum 
dimensionless time coordinate is a function of 
interporosity flow parameter λ, in Fig. 4. 
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Fig. 4. Effect of variable interporosity flow 

parameter on the pressure response in an 
infinite-acting naturally fractured 
reservoir with pseudosteady-state 
interporosity flow, ω=0.005, no skin or 
wellbore storage. 

Minimum point in a pressure logarithmic 
derivative. 
Taking the second derivative with respect to the time 
of Eq. 4 and setting the result equal to zero:  
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The second part is neglected:                                                                 
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Only the second term can be equal to zero:                  
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Subsequently, the minimum dimensionless time is 
given by: 
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Substituting the time in the first pressure logarithmic 
derivative: 
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Finally, 
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This method was originally proposed by Uldrich and 
Ershaghi (1979) to determine the interporosity flow 
parameter, using by Engler and Tiab (1995). 

Normalized minimum point in a pressure 
logarithmic derivative. 
To make this expression universal in real units, a 
normalized form was developed by dividing the 
minimum derivative point by the value of the 
infinite-acting, radial flow derivative line: 
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Fig. 5. Normalized correlation between storage 

coefficient  ( )ω  and pressure logarithmic 
derivatives ratio for pseudosteady-state or 
transient interporosity flow. 

 
Fig. 5. Illustrates the smooth relationship between the 
pressure logarithm derivatives ratio and ω. 
 
For convenience, a correlation was developed,  
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And is valid from 0 ≤ ω ≤ 0.10 with less than ± 1.5 % 
error.  
An alternative method to determine the 
dimensionless storage coefficient is shown in Fig. 2 
is possible from the pressure logarithmic derivative.  
These times include the end of the first horizontal 



straight line, Dweit ; the beginning of the second 

horizontal straight line, 2Dwbt , and the time 

corresponding to the minimum derivative, minDwt .  
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The following relationships, which is independent 
from the interporosity flow parameter, can be 
developed from the time ratios.  
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The dimensionless storage coefficient can be 
determined directly from the ratio of the end of the 
first straight line and the end of the first straight line.  
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Or from the ratio of the minimum time to the time of 
the beginning of the second straight line: 
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Figs. 6-7. Illustrate the behavior of these time 
relationships and shows the comparison of the 

correlation with the analytic results. 
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Fig. 6. Correlation between dimensionless storage 
coefficient and ratio of characteristics 
times, tmin/50tei. 

 

Correlations for ease of solving for Dimensionless 
storage coefficient 
Due to the time ratios with the minimum time 
coordinate are implicit functions, therefore 
correlations were developed for ease solving for 
dimensionless storage coefficient. 

The correlation for the ratio of the minimum time to 
the time to the end of the first straight line, valid for 
ω ≤ 0.2 with less than ± 2 % error, is:  
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Solving for storage: 

189.4

1

min

50
197.0

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

et

tω                           (38) 

The correlation for the ratio of the minimum time to 
the time of the beginning of the second straight line, 
valid for ω ≤ 0.2 with less than ± 5 % error is given 
by: 
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Fig. 7. Correlation between storage dimensionless 

coefficient and ratio of characteristics 
times, tmin/tb2. 

Dimensionless interporosity flow 
Method of determining λ can be achieved by 
observing a characteristic unit slope, straight line 
during the late transition period.  
Fig. 8 is a magnified view of the pressure derivative 
curve during the transition period for various ω 
values. Notice the smaller the dimensionless storage 
coefficient (deeper the trough) the more accurately 
the data fit the unit slope line. A ω less than 0.05 
results in an accurate estimate of  λ. For ω > 0.05, λ 
will be overestimated. 

A plot of 
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⎞
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ωD

wD
Dw dt

dp
t  vs. min)(log Dtλ  results in a 

straight line with unit slope.  
The corresponding equation is:   
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Fig.  8. Expanded view of the transition region 

illustrating the unit slope derivative line 
610−=λ ,  no wellbore storage or skin. 

 
Expressing Eq. 34 in real units and rearranging, 
provides a method for determining λ: 
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The analytic equation for this late transition time 
behavior is: 
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The intersection of the transition period unit slope 
line with the infinite-acting, radial flow pressure 
derivative line (shown in Fig. 8), develops a very 
simple expression to determine λ, 
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In real units,  
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In general, the interporosity flow parameter can be 
estimated from any of the characteristic time values 
by the following relationships,  
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  (46) 
Where β represents the inverse of the group of 
constants in parentheses in Eq. 38. 
 
For the unit slope intersection point, only an estimate 
of bulk fracture permeability is required, while for 
the remaining characteristic times the dimensionless 
storage coefficient must also be known.  
Fortunately, to determine λ from Eq. 17 only requires 
identification of the minimum coordinates and thus 
provides an advantage over other methods. 
The skin factor can be determined from the pressure 
and pressure derivative values at a convenient time 

during either infinite-acting, radial flow line 
segments.  
From the early time analytic equations, in real units, 
the skin factor is given by: 
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Where the subscript r1 denotes the early time 
straight line. Similarly, during the late time period 
an expression for skin factor can be developed; 
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Pressure response with wellbore storage 
As a direct consequence of wellbore storage, the 
early time, infinite-acting radial flow period is likely 
to be hidden. Therefore, the late time, infinite-acting 
radial flow line is essential for estimating the skin 
factor and bulk fracture permeability as discussed 
previously (eq. 21). 
Several direct methods are possible to determine the 
wellbore storage constant from the pressure and 
pressure derivative curves. The pressure curve has a 
unit slope during early time. This line corresponds to 
pure wellbore storage flow. The equation of this 
straight line is:  

D

D
wD C

t
p =  (49) 

Combining eqs. and gives: 

C
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fb
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000295.0
=  (50) 

The early time, unit slope pressure and pressure 
derivative lines are indicative of wellbore storage. In 
real unit, the pressure curve can be used to solve for 
the wellbore storage constant, 
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Time in hours, P∆  pressure drop between pipe full 
and the tubing is compressed. 
Similarly, from the unit slope pressure logarithmic 
derivative line,  
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An alternative is to use the intersection of the early 
time, unit slope pressure line with the infinite-acting, 
radial flow line. From this intersection point the C 
can be estimated. 

µ1695
ifbhtk

C =               (53) 

The influence of wellbore storage on the minimum 
coordinates is of major importance in the analysis.  
As shown in Fig. 8, the dilemma is whether the 
observed minimum point is the actual minimum or a 
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“pseudo-minimum” as a direct result of wellbore 
storage.  
Detailed investigations have shown the minimum 
point is unaffected by wellbore storage for all ω and 
λ, provided,  
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)( 0min, ≥
xD

D

t

t

ω

ω                                              (54) 

Subsequently, the procedures described previously 
are valid. 
When the minimum-to-peak time ratio is less than the 
limit defined by Eq 27, a “pseudo-minimum” occurs 
on the pressure derivative curve.  
An empirical correlation generated during this region 
provides a method of calculating the interporosity 
flow parameter: 
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An alternative method to determine λ is based on the 
ratio of the minimum pressure derivative coordinate 
to the peak pressure derivative coordinate. 
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This correlation is valid only when λDC  > 0.001.  
 
Details of wellbore storage effects on the pressure 
response in naturally fractured reservoirs can be 
found in Engler (1995). 
If a pseudo-minimum is observed the following 
method is recommended to determine ω .  
First, the wellbore storage constant, skin factor, and 
interporosity flow parameter must be known a priori 
to form the dimensionless group shown in Fig. 9.  
This group coupled with the minimum- to infinite-
acting radial flow pressure derivative ratio, provides 
a means of determining the storage coefficient. 
Tiab (1995) describes methods using the peak 
coordinates which provide alternatives to determining 
Skin, C and kfb when certain flow regimes are absent. 
These methods are applicable to naturally fractured 
reservoirs if a homogeneous reservoir pressure 
response is indicated or the true minimum coordinate 
is observed. If the pseudo-minimum coordinate is 
observed. If the pseudo-minimum is present, then the 
peak coordinates are influenced by λ  and ω , and 
results are in error.  

CONCLUSIONS 

A new method was used to analyze pressure data 
without type curve matching. It is applicable to the 
interpretation of buildup and drawdown tests. 
Unique characteristic points and lines have been 
identified from the pressure derivative curve, 
including the minimum derivative coordinates and 

the intersection point of the late transition unit slope 
line with the infinite-acting, radial flow line. These 
points and lines are coupled with the exact, analytical 
solution to produce accurate results. 
Correlations were developed to include the influence 
of wellbore storage on the pressure derivative curve. 
A systematic approach was shown applicable when 
the pressure response is dependent on ω, λ, Skin and 
CDω simultaneously. 
When a new model is built to represent the 
interaction of several types of porous media is 
necessary to model the transition between them in 
transient interporosity with skin due to the pseudo 
state is not adequate. And this allows improve 
reserves estimation in Naturally Fractured 
Reservoirs. 
Frequently, the results of the new technique are 
verifiable from an independent source, i.e. a separate 
characteristic point or line. Also, with the additional 
characteristic points or lines developed as an outcome 
of the method, not all flow regimes are required to be 
observed for the analysis. 
Field examples demonstrate the step-by-step 
procedures and accuracy of the direct synthesis 
technique. 

NOMENCLATURE 
Bo Formation volume factor (rb/stb) 
ctmb Total matrix compressibility (psi-

1) 
ctfb Total fracture compressibility (psi-

1) 
CD Dimensionless storage coefficient 
h Formation thickness (ft) 
kmb Bulk matrix permeability (mD) 
kfb Bulk fracture permeability (mD) 
 
pD 

Dimensionless wellbore pressure 

P´D Dimensionless wellbore pressure 
derivative 

∆p Pressure difference (psi) 
∆p’  Pressure difference  derivative (psi) 
q Surface flow rate (stb/d) 
rw Wellbore radius (ft) 
Sm Mechanical skin factor 
ST Total storage of the formation, = 

(φc)1+2(psi-1) 
t Test time (h) 
tD Dimensionless time  
α Shape factor (ft-2) 
β Group define by Eq. 20 
λ Interporosity flow parameter 
µ Viscosity (cP) 
Φ porosity 
ω Dimensionless storage coefficient 

SUBSCRIPTS 

1 Bulk matrix property 



2 Bulk fracture property 
b2 Beginning of second radial flow 

period 
D Dimensionless 
e1 End of first radial flow period 
f Intrinsic fracture property 
i WBS unit slope-radial flow line 

intersection point 
m Intrinsic matrix property 
min True minimum 
min,o Observed minimum  
r1 Early time, radial flow period 
r2 Late time, radial flow period 
us,i Unit slope intersection point 
x Maximum point or peak 
w Wellbore 
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