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ABSTRACT 

The optimal design of production in fractured 
geothermal reservoirs requires knowledge of the 
resource’s connectivity, therefore making fracture 
characterization highly important. This study aims to 
develop methodologies to use resistivity 
measurements to infer fracture properties in 
geothermal fields. The resistivity distribution in the 
field can be estimated by measuring potential 
differences between various points and the data can 
then be used to infer fracture properties due to the 
contrast in resistivity between water and rock. 
 
In this project, a two-dimensional model has been 
developed to calculate a potential field due to point 
sources of excitation. The model takes into account 
heterogeneity by solving the potential field for 
inhomogeneous resistivity, therefore enabling 
fractures to be modeled with different resistivity from 
the rock. In order to enhance the difference in 
resistivity between fractures and rock, flow 
simulations have been performed of a conductive 
fluid injected into a reservoir and the potential 
difference has been calculated between two wells at 
different times as the fluid flows through the fracture 
network. These results, i.e. the graphs of voltage 
differences vs. time, correspond to the fracture 
networks and therefore have shown promising 
possibilities in indicating fracture locations. 
 
Future work will include further study of the 
relationship between fracture networks and the 
change in potential differences as conductive tracer is 
injected into the reservoir. Another future goal is to 
study the possibility of using the potential differences 
with inverse modeling to characterize fractures 
patterns. 

INTRODUCTION 

Drilling and construction of wells are expensive and 
the energy content from a well depends highly on the 
fractures it intersects. In an EGS application, the 

configuration of the fractures is central to the 
performance of the system.  Fracture characterization 
is therefore important to design the recovery strategy 
appropriately and thereby the optimize the overall 
efficiency of geothermal energy recovery.  
 
The goal of this study is to find ways to use Electrical 
Resistivity Tomography (ERT) to characterize 
fractures in geothermal reservoirs. ERT is a 
technique for imaging the resistivity of a subsurface 
from electrical measurements. Pritchett (2004) 
concluded based on a theoretical study that hidden 
geothermal resources can be explored by electrical 
resistivity surveys because geothermal reservoirs are 
usually characterized by substantially reduced 
electrical resistivity relative to their surroundings. 
Electrical current moving through the reservoir 
passes mainly through fluid-filled fractures and pore 
spaces because the rock itself is normally a good 
insulator. In these surveys, a direct current is sent into 
the ground through electrodes and the voltage 
differences between them are recorded. The input 
current and measured voltage difference give 
information about the subsurface resistivity, which 
can then be used to infer fracture locations. 
 
Resistivity measurements have been used in the 
medical industry to image the internal conductivity of 
the human body, for example to monitor epilepsy, 
strokes and lung functions as discussed by Holder 
(2004). In Iceland, ERT methods have been used to 
map geothermal reservoirs. Arnarson (2001) 
describes how different resistivity measurements 
have been used effectively to locate high temperature 
fields by using electrodes located on the ground's 
surface. Stacey et al. (2006) investigated the 
feasibility of using resistivity to measure saturation in 
a rock core. A direct current pulse was applied 
through electrodes attached in rings around a 
sandstone core and it resulted in data that could be 
used to infer the resistivity distribution and thereby 
the saturation distribution in the core. It was also 
concluded by Wang and Horne (2000) that resistivity 
data have high resolution power in the depth 



direction and is capable of sensing the areal 
heterogeneity.  
 
In the approach considered in this project so far, 
electrodes would be placed inside two geothermal 
wells (future work will involve studying different 
electrode arrangements with a greater number of 
wells) and the potential differences studied between 
them to locate fractures and infer their properties. 
Due to the limited of measurement points, the study 
is investigating ways to enhance the process of 
characterizing fractures from sparse resistivity data. 
For example, in order to enhance the contrast in 
resistivity between the rock and fracture zones, a 
conductive tracer would be injected into the reservoir 
and the time-dependent voltage difference measured 
as the tracer distributes through the fracture network.  
 
Slater et al. (2000) have shown a possible way of 
using Electrical Resistivity Tomography (ERT) with 
a tracer injection by observing tracer migration 
through a sand/clay sequence in an experimental 10 × 
10 × 3 m tank with cross-borehole electrical imaging. 
Singha and Gorelick (2005) also used cross-well 
electrical imaging to monitor migration of a saline 
tracer in a 10 × 14 × 35 m tank. In previous work, 
usually many electrodes were used to obtain the 
resistivity distribution for the whole field at each time 
step. The resistivity distribution was then compared 
to the background distribution (without any tracer) to 
see resistivity changes in each block visually, to 
locate the saline tracer and thereby the fractures. 
Using this method for a whole reservoir would 
require a gigantic parameter space, and the inverse 
problem would not likely be solvable, except at very 
low resolution. However, in the method considered in 
this study, the potential difference between the wells 
woud be measured and plotted as a function of time 
while the conductive tracer flows through the fracture 
network. Future work will involve using that graph, 
i.e. potential difference vs. time, in an inverse 
modeling process to characterize the fracture pattern. 
 
In this paper, first the theory behind the resistivity 
model is defined. Then, flow simulations are 
described in which the potential differences were 
calculated for two cases while a conductive fluid was 
injected into the reservoir. Finally, future work is 
outlined. 

RESISTIVITY MODEL 

A two-dimensional numerical model has been 
developed to calculate the potential field due to point 
sources of excitation. The model takes into account 
heterogeneity by solving the potential field for 
inhomogeneous resistivity. Fractures are modeled as 
areas with resistivity different from the rock, to 
investigate the changes in the potential field around 
them. The grid is rectangular and nonuniform so the 

fracture elements can be modeled smaller than the 
elements for the rest of the reservoir to decrease the 
total number of elements. 
 
One of the main problems in resistivity modeling is 
to solve the Poisson equation that describes the 
potential field. That governing equation can be 
derived from basic electrical relationships as 
described by Dey and Morrison (1979). Ohm’s Law 
defines the relationship between current density, J, 
conductivity of the medium, σ, and the electric field, 
E, as: 

EJ σ=                          (1) 
The stationary electric fields are conservative, so the 
electric field at a point is equal to the negative 
gradient of the electric potential there, i.e.: 

ϕ−∇=E                         (2) 
where φ is the scalar field representing the electric 
potential at the given point. Hence, 

ϕσ∇−=J                        (3) 
Current density is the movement of charge density, so 
according to the continuity equation, the divergence 
of the current density is equal to the rate of change of 
charge density, 
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where q is the current density in amp m-3. Combining 
Equations 3 and 4 gives Poisson’s equation which 
describes the potential distribution due to a point 
source of excitation, 

[ ] ),,( zyxq−=∇∇ ϕσ             (5) 
The conductivity σ is in mhos m-1 and the electric 
potential is in volts. This partial differential equation 
can then be solved numerically for the resistivity 
problem. 

Finite Difference Equations in Two Dimensions 
The finite difference method is used to approximate 
the solution to the partial differential equation 
(Equation 5) using a point-discretization of the 
subsurface (Mufti, 1976). The computational domain 
is discretized into Nx×Ny blocks and the distance 
between two adjacent points on each block is h in the 
x-direction and l in the y-direction, as shown in 
Figure 1. 

 
Figure 1: Computational domain, discretized into 

blocks.  



 
Taylor series expansion is used to approximate the 
derivatives of Equation 5 about a point (j,k) on the 
grid. Solving for the electric potential φ at that point 
gives, 
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The parameters ci represent the conductivity averaged 
between two adjacent blocks and I [amp] is the 
current injected at point (j,k). 

Iteration method 
In order to solve Equation 6 numerically and obtain 
the results for electrical potential φ at each point on 
the grid, the iteration method called Successive Over-
Relaxation was used (Spencer and Ware, 2009). At 
first, a guess is made for φ(j,k) across the whole grid, 
and that guess is then used to calculate the right hand 
side (Rhs) of Equation 6  for each point and then a 
new set of values for φ(j,k) are calculated using the 
following iteration scheme, 

nn Rhs ϕωωϕ )1(1 −+=+                 (7) 
The multiplier ω is used to shift the eigenvalues so 
the iteration converges better than simple relaxation. 
The number ω is between 1 and 2, and when the 
computing region is rectangular the following 
equation can be used to get a reasonable good value 
for ω, 
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The natural Neumann boundary condition is used on 

the outer boundaries in this project, i.e. 
0=

∂
∂

n

φ
. 

Results 
The resistivity model was first tested for a 160 × 160 
m field with homogeneous resistivity as 1 Ωm. A 
current is set equal to 1 A at a point in the upper left 
corner, and as -1 A at the lower right corner. The 
potential distribution can be seen in Figure 2. 
 

 
Figure 2: Potential distribution [V] for a 

homogeneous resistivity field. 
 
The result for the homogeneous field is the same as 
given by the Partial Differential Equation (PDE) 
ToolboxTM in Matlab for this field.  This toolbox in 
Matlab contains tools to preprocess, solve and 
postprocess partial differential equations in two 
dimensions (The MathWorks, 2003). However, the 
built in application for conductive media DC does not 
solve a potential field for inhomogeneous resistivity. 
In order to use the potential differences to distinguish 
between the rock and fractures, the model calculating 
the potential field must be able to take into account 
heterogeneity, as the model in this project does. 
Figure 3 shows the potential field where points on a 
line between the current injection points have 
resistivity 10,000 Ωm, while the rest of the field has 
resistivity 1 Ωm. The field is 160× 160 m as before, 
and a current equal to 1 A is injected in the upper left 
corner and -1 A in the lower right corner.  
 

 
Figure 3: Potential distribution for an 

inhomogeneous resistivity field. 
 
The potential field is higher than for a field with 
homogeneous resistivity (see Figure 2) and the 
electric field is higher at the high resistivity zone, as 
expected. 



CHANGES IN POTENTIAL DIFFERENCE AS 
CONDUCTIVE FLUID IS INJECTED 

Two different cases were explored in order to 
investigate the potential of using the resistivity model 
with conductive fluid to characterize fractures. In the 
first case, a very simple fracture network is modeled 
to explore how the potential field changes as the 
conductive fluid distributes through the network. In 
the second case, fractured rock is modeled in one 
corner of a reservoir and then later modeled in the 
opposite corner, in order to study the difference in 
potential field between those two cases and to further 
understand the relationship between the fracture 
networks and the voltage differences. 

Case 1 
A flow simulation was performed using the 
TOUGH2 reservoir simulator to see how a tracer, 
which increases the conductivity of the fluid, 
distributes after being injected into a reservoir. The 
simulation was carried out on a two dimensional grid 
with dimensions 1000 × 1000 × 10 m3. The fracture 
network can be seen in Figure 4, where the green 
blocks represent the fractures and wells are located at 
the upper left and lower right corner of the network. 
 

 
Figure 4: A simple fracture network. 
 
The fracture blocks were given a porosity value of 
0.65 and permeability value of 5×1011 md (5×10-4 
m2) and the rest of the blocks were set to porosity 0.1 
and permeability 1 md (10-15 m2). Closed or no-flow 
boundary conditions were used and one injector at 
upper left corner was modeled to inject water at 100 
kg/s with enthalpy 100 kJ/kg, and a tracer at 0.01 
kg/s with the same enthalpy. One production well at 
lower right corner was configured to produce at 100 
kg/s. 
 

The initial pressure was set to 10.13 MPa (100.13 
bar), temperature to 150°C and initial tracer mass 
fraction was set to 10-9, because the simulator could 
not solve the problem with zero initial tracer mass 
fraction. Figure 5 illustrates how the tracer transfers 
through the fractures from the injector to the 
producer. After four days the tracer has distributed 
through the whole fracture network. 
 

 
Figure 5: Tracer concentration after injecting for 

two days. 
 
The results from the flow simulation were read into 
the resistivity model, so that the right conductivity 
values could be assigned for the reservoir. The 
conductivity value of each block depends on the 
tracer concentration in that block, and it is assumed 
that the tracer decreases the conductivity, for 
example a saline tracer. Table 1 shows how the 
conductivity values were assigned to different tracer 
concentration, X2. 
 
Table 1: Tracer concentration and corresponding 

conductivity values. 
Tracer concentration Conductivity 

[mohs-m-1] 
X2 <=1·10-9 2.4 
1·10-9 <X2<=1·10-8 15 
1·10-8 <X2<=1·10-7 20 
1·10-7 <X2<=1·10-6 25 
1·10-6 <X2<=1·10-5 30 
X2>=1·10-5 35 

 
In the flow simulation the tracer concentration is 
calculated at different time steps and for each step the 
potential field is calculated using the resistivity 
model. Figure 6 shows the potential field for the 
same time step as shown in Figure 5, i.e. after 
injecting conductive fluid for two days.   
 



 
Figure 6: Potential field after injecting conductive 

fluid for two days. 
 
After injecting conductive fluid for two days, the 
tracer has already gone through the middle fracture, 
which decreases the potential difference enormously. 
The potential difference between the injection well 
and the production well at each time step is shown in 
Figure 7. 
 

 
Figure 7: Potential difference between injection and 

production wells at different time steps. 
 
The potential difference between the injection well 
and the production well decreases as more of the 
conductive tracer is being injected into the reservoir. 
The difference changes dramatically between 0.94 
days and 1.11 days, but at 1.11 days the whole 
middle fracture has reached a tracer concentration of 
more than 10-9 (which was the initial tracer 
concentration of the entire field). Another jump can 
be seen in the potential difference after 
approximately two days, but at that time the whole 
fracture network has reached a tracer concentration of 
more than 10-9. The graph of the potential differences 
corresponds in that way to the fracture network, so by 
measuring the potential differences between two 
wells while injecting conductive tracer, some 
information about the network can be gained.  

Case 2 
In the second case, flow simulations were performed 
for a 1000 × 1000 × 10 m3 reservoir with fractured 
rock modeled as a squared area, first in the lower 
right corner as shown in Figure 8, and then in the 
upper left corner as shown in Figure 9.  
 

 
Figure 8: Fractured rock (green blocks) modeled in 

the lower right corner of the reservoir. 
 

 
Figure 9: Fractured rock (green blocks) modeled in 

the upper left corner of the reservoir. 
 

The goal was to study the difference in potential field 
between these two cases as conductive fluid is 
injected into the reservoir. The reservoir is modeled 
with porosity 0.4 and permeability 105 md (10-10 m2) 
while the fractured rock has porosity 0.65 and 
permeability 5×1010 md (5×10 -5 m2). 
 
No-flow boundary conditions were used as before, 
and 100 kg/s of water was injected in the upper left 
corner with enthalpy 100 kJ/kg, and 0.1 kg/s of tracer 
with enthalpy 100 kJ/kg. The production well was set 
to produce at a constant pressure, 8 bar. The initial 
pressure was set to 9.6 bar, temperature to 150°C and 
initial tracer mass fraction to 10-9 as before.  
 



This time, the following equation was used to 
calculate the electrical conductivity, 1/ρw, of a NaCl 
water solution (Crain, 2010),  
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in order to define conductivity values in the 
resistivity model as NaCl tracer flows through the 
reservoir. T is the formation temperature (assumed to 
be 150°C) and Ws is the water salinity [ppm NaCl].  
 
The resistivity for the rock before fluid had been 
injected was set as 100 Ωm for the fractured area 
(assuming fractures were filled with water) and as 
2000 Ωm for the rest of the reservoir. Figures 10 and 
11 show how the potential difference between the 
injector and the producer changes with time for the 
reservoirs shown in Figure 8 and 9. 

 
Figure 10: Potential difference between injection and 

production wells for reservoir in Figure 8. 

 
Figure 11: Potential difference between injection and 

production wells for reservoir in Figure 9. 
 

The potential difference in the graph in Figure 10 
drops very fast for the first 10 days, but then 
decreases more slowly when the tracer front has 
reached the fractured area. In the Figure 11, the 
potential difference drops slower, as the conductive 
fluid first fills up the fractured rock, modeled with 
much higher porosity then the rest of the reservoir. 
More cases need to be studied, and probably run for a 
longer time period, in order to understand the 
correspondence between the changes in potential 
differences and fracture networks. But these 
preliminary results indicate that different fracture 
properties give different potential differences 
between two wells, and could therefore be used to 
indicate fracture characteristics. 

FUTURE WORK 

The previous results have shown that the resistivity 
model has promising possibilities for fracture 
characterization, especially when used with a flow 
simulation of a conductive tracer. Future work will 
include solving the potential differences for more 
realistic fracture patterns. The main goal is to use the 
resistivity model and flow simulations with inverse 
modeling to estimate the dimensions and topology of 
a fracture network based on potential differences 
measured between wells. The objective is to develop 
a method that can be used to find where the fractures 
are located as well as the extent of their connectivity.  
 
In inverse modeling the results of actual observations 
are used to infer the values of the parameters 
characterizing the system under investigation. In this 
study, the output parameters are the potential 
difference between wells as a function of time and 
the input parameters will include the dimensions and 
orientations of the fractures between the wells. The 
objective function measures the difference between 
the model calculation (the calculated voltage 
difference between the wells) and the observed data 
(measured potential field between actual wells), as 
illustrated in Figure 12, and a minimization algorithm 
proposes new parameter sets that iteratively improve 
the match. 
 
After the inverse problem has been solved assuming 
the potential difference is known between wells all 
around the fractured area, the possibility of using 
fewer wells and different well arrangements will be 
studied to estimate the minimum number of wells 
necessary to solve the problem. 
 



 
Figure 12: The inverse problem; the calculated potential difference is compared to the measured potential 

difference and the inverse problem solved to characterize fracture patterns. 
 

REFERENCES 

Arnason, K.: Viðnámsmælingar í Jarðhita-
rannsóknum á Íslandi, Orkustofnun, Orkuþing 
(2001). 

Crain, E.R.: Crain’s Petrophysical Handbook. Web 
17 November 2010. www.spec2000.net 

Dey, A. and Morrison, H.F.: Resistivity Modelling 
for Arbitararily Shaped Two-Dimensional 
Structures, Geophysical Prospecting 27, I06-I36, 
University of California, Berkeley, CA (1979). 

Holder, D.S.: Electrical Impedance Tomography: 
Methods, History and Applications, IOP, UK 
(2004). 

Mufti, I.R.: Finite-Difference Resistivity Modeling 
for Arbitrarily Shaped Two-Dimensional 
Structures, Geophysics, 41, (1976), 62-78. 

Pritchett, J.W.: Finding Hidden Geothermal 
Resources in the Basin and Range Using 
Electrical Survey Techniques. A Computational 
Feasibility Study, report INEEL/EXT-04-02539 
(2004). 

Singha, K. and Gorelick, S.M. Saline Tracer 
Visualized with Three-dimensional Electrical 

Resistivity Tomography: Field-scale Spatial 
Moment Analysis. Water Resources 
Research, 41 (2005), W05023. 

Slater, L., Binley, A.M., Daily, W. and Johnson, R. 
Cross-hole Electrical Imaging of a Controlled 
Saline Tracer Injection. Journal of Applied 
Geophysics, 44, (2000), 85-102. 

Spencer, R.L. and Ware, M.: Computational Physics 
430, Partial Differential Equations, Department 
of Physics and Astronomy, Brigham Young 
University (2009). 

Stacey, R.W., Li, K. and Horne, R.N.: Electrical 
Impedance Tomography (EIT) Method for 
Saturation Determination, Proceedings, 31st 
Workshop on Geothermal Reservoir 
Engineering, Stanford University, Stanford, CA 
(2006). 

The MathWorks: Partial Differential Equation 
Toolbox 1, The MathWorksTM, Inc. (2003). 

Wang, P. and Horne, R.N.: Integrating Resistivity 
Data with Production Data for Improved 
Reservoir Modelling, SPE 59425, SPE Asia 
Pacific Conference, Yokohama, Japan (2000). 


