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ABSTRACT 

Information on the distribution of permeability at 
depth is of primary concern in geothermal reservoir 
engineering. Based on a tracer circulation test 
performed at the European Enhanced Geothermal 
System (EGS) test site at Soultz-sous-Forêts, France, 
three different inversion methods are applied and 
studied with respect to their potential for estimating 
the permeability distribution: A fully physical, 
gradient-based Bayesian inversion, a massive Monte 
Carlo (MC) approach with geostatistical analysis, and 
an Ensemble-Kalman-Filter (EnKF) assimilation. A 
limited, high permeability zone is a common feature 
of all models. It is the main flow conduit for most of 
the tracer flow and assumed to be associated with a 
primary fault zone bypassing two of the boreholes. A 
common finding of all approaches is that 
permeability in most of the reservoir is on the order 
of 10-15 m2; between GPK2 and GPK3 there is a good 
connection with a mean permeability on the order of 
10-13 m2, while a barrier exists to GPK4. The 
Bayesian Inversion returns rock properties yielding 
the best fit to the observed tracer concentration at 
GPK3, but shows that permeability and porosity 
cannot be retrieved independently. The MC approach 
identifies various alternative flow paths 
corresponding to tracer concentrations almost fitting 
the observations at GPK3 equally well. Although the 
permeability field obtained by the EnKF has a poor 
spatial resolution, which is a consequence of only 
three monitoring wells, it is the only method fitting 
simultaneously the observations at both GPK2 and 
GPK4.  

INTRODUCTION 

The use of geothermal energy for an economical 
generation of electrical energy requires temperatures 
of 150° C – 200° C and flow rates on the order of 50 
L s-1 (e. g. Clauser, 2006). For regions outside natural 
steam systems and enhanced surface heat flow (for 
example Iceland, Turkey, Indonesia, etc.) these 

conditions can only be met at  depths below 3 km and 
with engineered heat exchanger surfaces for the flow 
systems, i.e. Hot Dry Rock (HDR) or Enhanced 
Geothermal Systems (EGS). In these techniques, a 
heat exchanger surface of the host rock is engineered 
or enhanced by hydraulic or chemical stimulation. 
The first method requires water to be injected under 
high pressure to create irreversible shearing and 
opening of fractures, the second one uses acid to 
dissolve minerals and to increase permeability. While 
both methods have proven successful for enhancing 
permeability at depth, it is still a challenge to plan 
and control the stimulation process.  
 

 
Figure 1: Location of the European EGS test site at 

Soultz-sous-Forêts, France. Inset: 
Temperature depth profile at the EGS test 
site. 

 
However, reliable information on the response of the 
host rock to stimulation and the uncertainty of the 
engineered permeability field is vital for the 



development and acceptance of the EGS technique 
and for estimating the technical and economic risk of 
geothermal projects (Manzella, 2010). Information on 
the distribution of enhanced permeability at depth can 
be obtained from interpretation of micro earthquake 
clouds observed during stimulation (e.g. Shapiro, 
2000; Delépine et al., 2003) and from pumping and 
tracer tests. 
In order to study the performance of an EGS 
reservoir, a European EGS test site was set up in 
1987 at Soultz-sous-Forêts, France, located in the 
Lower Rhine Graben (Figure 1). The Rhine Graben is 
part of the European Cenozoic Rift System and 
developed during the Tertiary concomitant to the 
European Alpine collision that formed the Alps along 
pre-existing Permian troughs. It has a pronounced 
Graben structure characterized by normal faults 
which can be followed in seismic sections down to 
4000 m. Faulting is listric in character displacing the 
Cretaceous sediments and can be traced into the 
granitic basement where it shallows out (Cloetingh et 
al., 2006). The Quaternary fluviatile sediments of the 
river Rhine cover the older faulted sediments.  
The decision for this site was based on the high 
surface heat flow and a very promising thermal 
gradient observed in shallow drill holes of previous 
oil exploration (Gérard and Kappelmeyer, 1989; see 
Figure 1). Although the thermal gradient declines 
below 1000 m depth, the temperature still reaches 
about 200º C at 5 km. At Soultz, three wells were 
drilled in the granitic bedrock down to 4 km - 5 km 
and were hydraulically stimulated to enhance the 
hydraulic connectivity between the wells. An 
overview of the project in general is given by Gérard 
et al. (2006) and on the brine-rock-interaction during 
stimulation by Bächler and Kohl (2005).  
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Figure 2: Tracer concentration in GPK2 and GPK4 

in response to injection in GPK3. 
 
A tracer test was performed in July 2005 (Sanjuan et 
al., 2006) in order for estimating the changes of the 
hydraulic properties between the injection borehole 
GPK3 and the two production boreholes GPK2 and 
GPK4,. The outcome of this experiment, the tracer 

concentration at GPK2 and GPK4 versus time is 
shown in Figure 2. The experiment showed that 
GPK2 and GPK3 are well connected. Former studies 
(e.g. Gessner et al., 2009) proposed a dominant fluid 
flow through a pre-existing natural fault system 
already detected by seismic investigation (Cloetingh 
et al., 2006). The inclined conductive fault is 
intersected by two of the boreholes but missed by 
GPK4 which ends above the fault, as indicated in 
Figure 3.  

 
Figure 3: Sketch of the borehole configuration in 

Soultz-sous-Forêts 2005 adopted from 
Gessner et al. (2009). The fault is shown 
in dark blue where it is intersected by the 
boreholes GPK2 and GPK3, the light blue 
area illustrates the possible continuation 
in the direction of GPK4, but GPK4 ends 
above the fault. The green, red and yellow 
dots outline the zones affected by the 
hydraulic stimulation of the boreholes.  

 
Based on the observed tracer concentrations (Figure 
2) we used three inversion methods in combination 
with a numerical simulator of porous flow 
(Shemat_suite; Clauser, 2003; Rath et al., 2006) to 
reveal the permeability distribution in the Soultz 
reservoir and to compare the advantages and 
disadvantages of the different inversion methods. 

THE SOULTZ-SOUS-FORÊTS 2005 TRACER 
EXPERIMENT 

A long-term tracer circulation test was performed 
between the boreholes GPK2, GPK3, and GPK4 for 
characterizing the effects of hydraulic stimulation on 
the reservoir at a depth of 5000 m,. From July 2005 
to December 2005, a fluid volume of about 209 000 
m3 was injected into GPK3 and 165 000 m3 and 40 
000 m3 were produced from GPK2 and GPK4, 
respectively (Sanjuan et al., 2006), yielding a nearly 
even mass balance. A mass of 150 kg of 85 % pure 
fluorescein was used as a tracer. The fluorescein was 



dissolved in 0.95 m3 of fresh water which results in a 
concentration of 0.389 mmol L-1. This fluid was 
injected into GPK3 over 24 hours, as geochemical 
fluid monitoring started at GPK2 and GPK4. Figure 2 
shows the observed concentration in GPK2 and 
GPK4 versus time. Fluorescein was first detected in 
GPK2, 4 days after the injection into GPK3. In 
GPK4, fluorescein was detected only 24 days after 
the injection. The average pumping rates were 11.9 L 
s-1 in GPK2, 15 L s-1 in GPK3, and 3.1 L s-1 in GPK4, 
already indicating a reduced water supply to GPK4. 
In combination with the tracer arrival times this 
shows that the hydraulic connection is very 
heterogeneous. The maximum tracer concentration 
measured in the produced fluid was 2 mmol m-3 in 
GPK2 and appeared 9 days to 16 days after the 
injection (Figure 2). It dropped to approximately 0.2 
mmol m-3 after 5 months. No clear maximum tracer 
concentration could be detected in GPK4 even after 5 
months of production. The final measured value was 
approximately 0.09 mmol m-3. The relative 
uncertainty of the measured tracer concentration was 
estimated to be on the order of 10 % to 15 %. During 
the entire time of the experiment only 23.5 % of the 
tracer was recovered (Sanjuan et al., 2006).  
A first interpretation of the 2005-tracer experiment 
was given by Sanjuan et al. (2006) using a simple 
analytical model which could explain the first 20 
days of the measurement. Better results were 
obtained by Blumenthal et al. (2007) with a 2D 
numerical model. They revealed the mutual 
dependence of porosity and permeability inside the 
reservoir by varying the peak concentration. 
Nevertheless, the 2D model did not fit the tracer 
curve over time due to the restriction of the flow in a 
plane. A 3D model by Kosack (2009), based on a 
deterministic Bayesian inversion, discriminated only 
between two flow zones and obtained a nearly perfect 
fit of the tracer curve between GPK2 and GPK3 (we 
will discuss this model in the present paper). Even 
though the tracer concentration fit was optimal, this 
study showed that different geometrical models were 
able to fit the tracer curve equally well and only 
products of parameters (for example porosity and 
permeability) could be resolved due to their high 
spatial correlation. Gentier et al. (2010) provided an 
approach based on a manual fit of permeabilities of 
an underlying fracture network. The fit quality was 
not as perfect as the results of Kosack (2009). 
However, both the GPK2 and the GPK4 tracer curves 
were matched by a combined model. 
Beside these studies a deeper insight into possible 
flow paths and fracture networks and their statistical 
significance is required. We therefore used two 
additional stochastic approaches to characterize 
fracture networks able to fit the tracer curves: A 
Monte Carlo (MC) approach assuming a 
heterogeneous permeability field derived from a 
characteristic permeability distribution based on lab 
measurements on rock samples and log observations, 

and an assimilation filter method (Ensemble Kalman 
Filter) minimizing successively the error between 
observed and numerically predicted tracer 
concentration by adjusting the permeability 
distribution according to calculated error statistics. 

SIMULATION CODE AND MODEL SET-UP 

In our study the geothermal system is simulated by 
the code Shemat_suite (Clauser, 2003; Rath et al., 
2006) which solves the coupled transient equations 
for groundwater flow, heat transport, and transport of 
chemical tracers in a porous rock. Assuming mass 
conservation, the flow equation in terms of the 
constant density hydraulic head h0 is  
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where S is the specific storage coefficient, 
0
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is relative density and ρ0 is constant reference 
density, K is hydraulic conductivity, and Qf a source 
or sink term, ( )zhKv r∇+∇−= ρ0  is the Darcy 

velocity with kK
f
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µ
ρ=  where ρf and µf are the 

density and viscosity of the fluid, g is gravity and k is 
the permeability, which is physically a tensor but 
treated here as an isotropic space variable k(x). The 
temperature T is determined assuming conservation 
of energy by the transient heat transport equation 
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where λ is the bulk thermal conductivity, (ρc)  is the 
thermal capacity with the indices r for the rock 
skeleton and f for the fluid; �  is porosity, and Qh the 
heat source term. Tracer transport is modeled by a 
diffusion-advection equation for concentration c 
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where D the dispersion coefficient and Qc is the 
source term for the dissolved tracer. The dispersion 
coefficient is physically a tensor and defined by the 
transversal and longitudinal dispersion length and the 
molecular diffusion. To keep our approach simple we 
regard D as a scalar and do not discern between 
transversal and longitudinal dispersion lengths, and 
neglect molecular diffusion which is a very slow 
process. Thus, the dispersion coefficient is given 
by vD Dα= , where αD is the dispersion length. 

Equations (1) to (3) are expressed in a finite volume 
notation for rectangular non-equidistant grids and  
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Figure 4: a) Model set up for the Bayesian Inversion; only GPK2 and GPK3 are modeled, located at the 

intersections of the shown grid planes; b) correlation matrix for the porosity �, permeability k, and 
dispersion length αD; c) fit to the observed tracer concentration at GPK3; d) Sensitivities versus time for 
the various parameters (for the first days a lower data error was assumed). 

 
solved with a Picard iteration method for transient 
problems. 
The injection and production of fluid in the drill holes 
are implemented by an internal Neumann boundary 
condition with prescribed flow at the four corner 
nodes of the rectangular cell. 

INVERSION METHODS AND RESULTS 

As mentioned above we tested three different 
inversion methods with their different advantages and 
disadvantages to infer the permeability distribution at 
depth. 

Bayesian Inversion 
A fit to the tracer observation is obtained by 
minimizing both the quadratic error between data and 
modeled data, and the distance between the fitting 
parameter and an a priori parameter. Thus, the 
objective function is given by (Tarantola, 2004) 
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p is the vector of system parameters, g(p) the 
predicted system response (generally non-linear) and, 

d is the data vector. Cd and Cp are the data and 
parameter a priori covariance matrices, respectively, 
given beforehand. Linearization and differentiation of 
the objective function yields an iteration scheme 
(with k as the iteration index) for the parameter 
vector p 
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The Jacobian 
j
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∂= )(   is the derivative of the 

model prediction with respect to the various 
parameters and is determined in our code by 
automatic differentiation (AD-method; Bischof et al., 
2008).  
Based on the Jacobian and the a-posteriori covariance 

matrix 
1

1)()(
~

2
1

2
1 −

−−−
⎟
⎠
⎞

⎜
⎝
⎛ += pd

T
dp CJCJCC , a number 

of resolution matrices can be defined, to study the 
reliability of the inverted parameters. 
Our Bayesian inversion model has a physical 
dimension of approximately 814 m × 1490 m × 814 
m and is discretized into 29 × 36 × 29 orthogonal 
cells in x, y, and z direction respectively, and refined 
in the center which is assumed to be the fault zone 



(Figure 4a). We consider the flow between GPK3 and 
GPK2 only, thus, the same injection and production 
rates are used for GPK3 and GPK2. The boreholes 
are represented by cells in the fault zone. This 
appears to be an adequate approach for an inclined 
conductive fault that is intersected by two boreholes. 
In reality, the main inflow will occur where the 
boreholes intersect the fault zone. However, since 
reliable information of the hydraulic connection 
between fault zone and boreholes is not available, we 
model the injection directly in the fault plane. 
The hydraulic boundary condition for the top cells of 
the model is a constant hydraulic head of 4600 m. 
Constant temperatures of 185 °C and 215 °C are 
specified at the top and bottom of the model. The 
tracer can be reasonably well modelled with 2000 
time steps, for the 160 days of the experiment. 
During the circulation test, the produced fluid was 
cooled in a heat exchanger prior to re-injection into 
GPK3. The injection temperature, varying with time, 
is implemented as a time-dependent boundary 
condition. At the injection well a concentration of 
0.389 mmol L-1 of fluorescein is assumed during the 
first day and injected constantly; later the produced 
water is re-injected. 
Observation data is the tracer concentration with time 
at GPK2. The inverted parameters are porosity, 
permeability, and dispersion length in the fault region 
and the surrounding. This very simple model already 
yields a nearly perfect fit to the observations (Figure 
4c). However, the model parameters (rock properties) 
cannot be resolved independently. A measure for the 
mutual dependence is the normalized a-posteriori 
covariance matrix, i.e. the correlation matrix (Figure 
4b), which clearly indicates high correlation and anti-
correlation between the various parameters, in 
particular porosity and permeability. The Jacobian, 
weighted by the data and parameter errors, is a direct 
measure for the sensitivity of the resolved parameter 
on the observed data. One can study the spatial 
distribution of the sensitivity to obtain information on 
areas of high and low resolution or one can study the 
sensitivity variation for various parameters with time 
at a particular point (Figure 4d). For the tracer 
experiment at Soultz, the sensitivity is high for all 
parameters only during the first 20 to 40 days which 
provide a maximum of information. 
The values which we obtained for porosity and 
permeability are 0.0015 and 3.5 10-14 m2 for the fault 
zone, and for the host rock 0.007 and 3.16 10-17 m2, 
respectively. Diffusivity is about one order of 
magnitude higher in the fault zone relative to the host 
rock. However, the values vary slightly depending on 
the a-priori assumptions. 

Geostatistic MC Modelling 
In contrast to the Bayesian approach which is limited 
to a homogeneous permeability field in each involved 
zone, we used a stochastic approach and applied a 

Monte Carlo (MC) method. We assumed a 
heterogeneous permeability field for characterizing 
an equivalent fracture network which causes fluid 
flow fitting the tracer curves. The different 
permeability distributions for the MC realizations are 
created following the Sequential Gaussian Simulation 
method (SGSim) (Deutsch & Journel, 1998). This 
method is based on a probability density distribution 
for the rock property, in our case permeability 
(Figure 5a).  The histogram follows two combined 
Gaussian distributions. The left peak represents the 
combined effect of background permeability on grain 
size scale and low fracture density of the solid rock. 
The smaller peak on the right corresponds to the 
fractured cells of the reservoir. Using this approach it 
is possible to capture fractures of very different 
scales: from major fracture zones cutting through the 
granite to intra-crystalline micro-fractures inducing 
weakness in the rock matrix. 
 
Table 1: Model parameters for the geostatistic and 

EnKF  modelling 
Parameter Value 
Porosity  5 ⋅10-4  
Background permeability  10-17 m2  
Rock compressibility  10-8 Pa-1  
Dispersion length  5 m  
Thermal conductivity  2.5 W m-1 K-1  
Heat capacity  2.06 106 J kg-1 K-1  
Radiogenetic heat generation   10-10 W m-3  
Hydraulic head  at top 4600 m  
Temperature at top 185 °C  
Specific heat flow at bottom 80 mW m-2  
 
The permeability fields for the MC realizations are 
created in the following way: (1) The geometrical 
structure of the reservoir model is discretized on a 
specific grid. (2) The rock property distribution is 
transformed into a Gaussian shape, with zero mean 
and unit variance. (3) The algorithm follows a 
random path through the model. (4) For each grid 
node, nearby data and already simulated nodes are 
used for a Kriging interpolation of the target 
property. (5) A property value drawn randomly from 
the distribution defined by Kriging mean and 
variance is assigned to the node. (6) A realization is 
completed after property values have been assigned 
to all nodes of the model. (7) The rock property 
distribution assigned to the model is transformed 
back from a Gaussian distribution into the original 
space. (8) More realizations are created by following 
other random paths, each of them equally likely. 
Additionally, the permeability was set to 10-12 m2 in 
the grid cells directly adjacent to the boreholes 
corresponding to the highly stimulated region around 
the wells. The smoothness of the permeability field is 
controlled by the correlation length, which in 
geostatistical modelling is a measure for the distance  
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Figure 5: a) Log permeability distribution for the stimulated zone; b) Fit to the tracer concentration curve of the 25 

best models; c) 3D view of three typical models for alternative flow paths (direct path, wide path, 
multiple paths). Indicated are the 10-13 m2 (red) and 10-14 m2 (light grey) permeability isoplanes and the 
streamlines; along the streamlines the Darcy velocity is color-coded. The locations of GPK3 and GPK4 
are also indicated. 

 
within two simulated or observed data points are 
considered as similar. 
To evaluate a reliable value for the correlation length, 
we used the induced micro seismicity around GPK3 
during a hydraulic stimulation. According to 
Delépine et al. (2003), the total number of micro-
seismic events drops to e-1 of the original value at a 
distance of 350 m. This distance is supposed to be a 
minimum correlation length in all directions.  
Two geometrical models were set up: One with a 
good connectivity between GPK2 and GPK3, and 
one for the entire reservoir including also GPK4. The 
reservoir is considered at a depth range between 4500 
m and 5500 m. The corresponding models comprise 
21 × 36 × 21 and 21 × 48 × 21 grid cells, 
respectively, on regular grids with a side length of 50 
m in each dimension. The values for all other 
parameters are given in the Table 1. 
In this study, we identified groups of realizations 
with similar permeability distributions yielding 

optimal fits of the tracer data and reveal different 
possible pathways. We calculated 5000 forward 
models and picked the hundred best fitting ones 
according to a combination of a root mean square 
error and a Kolmogorow-Smirnow-criterion (Frank 
and Massey, 1951), which considers the fit of the 
overall shape of the curve. The tracer concentration 
curves of the 50 best fitting models are shown in 
Figure 5b. All fitting models can be grouped in three 
possible reservoir scenarios as shown in Figure 5c. 
Further inspection of these groups suggests the 
following conclusions: (1) A fit of the tracer curves 
requires the boreholes to be connected through a 
main path with permeabilities of at least 10-14 m2. If 
the permeability exceeds about 10-13 m2, however, the 
tracer arrives too early, with too large an amplitude 
or without distinct tailing. (2) If the connection zone 
between the two boreholes is not wide enough, water 
of the surrounding of GPK2 is also produced, 
corresponding to a high permeable zone with k ≥ 3 



10-12 m2 around GPK2. This has no influence on the 
tracer curve however. It merely shows that also pre-
existing water may be produced, which was also 
found in other studies (Sanjuan et al., 2006). (3) In all 
simulations parts of the tracer is stored in dead end of 
flow paths. Thus, some tracer is not retrieved during 
the circulation test. (4) The periphery of the model in 
500 m distance of the main flow path has little 
influence on the tracer curve and the rock 
permeability cannot be resolved. The same applies 
for high-permeability zones unconnected with the 
boreholes. (5) The tracer is transported on pathways 
with no larger lateral extent than 300 m, which is 
additional evidence that the flow does not pass 
through the entire stimulated area. 
As mentioned before, none of the MC realizations 
could fit the tracer curves at GPK2 and GPK4 
simultaneously. We explain this deficiency by a still 
insufficient number of MC realisations. Considering 
that permeability values are randomly assigned to 
about 2 104 grid points, the probability to match the 
observations at GPK2 and GPK4 simultaneously is 
small.   

EnKF Data Assimilation 
I Sequential data assimilation methods such as the 
Ensemble Kalman Filter (EnKF; Evenson, 1994; 
2007) provide an alternative to the numerically 
demanding MC simulations if monitoring data is 
available. The Kalman Filter is essentially a 
sequential assimilation of observation data into a 
numerical simulation of a transient system with 
Gaussian error statistics. An error estimate is 
calculated from measured data whenever it becomes 
available for improving the prediction about the state 
of the system, i.e. the information on observed data is 
propagated in the numerical simulation by the 
dynamic of the system. 
The state of the system is described by a state vector 
Ψ which may comprise various kinds of state 
variables and parameters. The transient behaviour is 
described by a generally non-linear transition 
function F which in our case is the Shemat_suite 
forward simulator. The propagated system is then 
given simply by  
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where k is the time step number. Independent of the 
type of transition function, the Kalman Filter is a 
two-step procedure where the first step is a forecast 
or prediction (denoted by the superscript f) and the 
second step is the assimilation or update step 
(indicated be superscript a); εs is the system noise. At 
the same instant in time observation data dk might be 
available which can be represented by 
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where H is a measurement operator linking data d to 
the system state vector Ψ and εr is the measurement 
error. The basic idea in Kalman Filter is that the 
improved state of the system is given by the state 
vector forecast and a weighted difference between the 
measured data d and the predicted data HΨ  
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where the matrix K, the Kalman Gain, determines the 
weights for the new observations as they are 
incorporated into the updated state vector. Since we 
assume a stochastic system, the state vector is given 
by a probability density which in turn is conditioned 
by the available observations. Since we assume a 
Gaussian distribution, the probability density is 
characterized by a covariance matrix Cp,k. The 
expression for the Kalman gain K is found by 
minimizing this error covariance matrix after the 
assimilation step 
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Cd,k is the data error covariance and Cp,k is the system 
error covariance obtained from the variance of an 
ensemble of system realizations which converges 
during repeated data assimilation steps. 
The EnKF method has been proven to recover the 
permeability field if observations of chemical tracer 
concentration are available (Marquart et al., 2010). 
Here we used the same model set-up as for the MC 
realisations and prescribed the initial permeability 
fields for 250 realisations by the Sequential Gaussian 
Simulation method. The permeability field was then 
assimilated inside an ellipsoid comprising all three 
wells and held constant at 10-17 m2 outside. For the 
assimilation, we used the concentration data recorded 
at both production wells, GPK2 and GPK4, at 40 
equally spaced points in time of the 100 first days of 
the experiment. When the assimilation was 
completed, we re-run the entire ensemble as well as 
the ensemble mean to study the resulting tracer 
concentration curves at GPK2 and GPK4 (shown in 
Figure 6c and d). While the tracer curve of the 
ensemble mean fits well the observation (Figure 6c), 
this approach also predicts the tracer concentration at 
GPK4 within the observed range (Figure 6d). 
Concerning the permeability field, the EnKF method, 
though still preliminary, confirms our previous 
results. The permeability in most of the reservoir is 
on the order of 10-15 m2. There exists a good 
connection between GPK2 and GPK3 with a mean 
permeability on the order of 10-13 m2. In contrast 
there is a flow barrier towards GPK4 (Figure 6a).  
In EnKF, the standard deviation of the ensemble can 
be used to define the quality of the estimated 
property. For the borehole configuration at Soultz the 



uncertainty of the permeability estimate is within a 
factor of 3 in between the wells, increasing to about a 
factor of 20 towards the periphery.  
 

a

b

c

(m
m

o
l/m

3 )
(m

m
o

l/m
3 )

 
Figure 6: Simulation of the 2005 tracer experiment 

in Soultz sous Forêts using EnKF: a) 
Estimated permeability distribution in an 
ellipsoid containing the wells GPK2, 
GPK3, and GPK4; b) chemical 
concentration at GPK2; c) chemical 
concentration at GPK4; the green line 
shows observed data, the black line is the 
ensemble mean, and grey and blue dashed 
lines denote the ensemble members. 

DISCUSSION 

All three methods tested for estimating the 
permeability field in the EGS geothermal reservoir at 

Soultz-sous-Forêts have proven successful, while 
each method has advantages and disadvantages.   
With the Bayesian Inversion we estimated a 
parameter set consisting of porosity, permeability, 
and dispersivity which fitted the measured tracer 
concentration at GPK3 nearly perfectly. The 
underlying reservoir geometry is extremely 
simplified, consisting of a nearly vertical high-
permeability fault connecting GPK3 and GPK2, in 
line with Occam′s razor that a model should not be 
more complicated than necessary. As a by-product of 
the non-linear inversion, optimal a-posteriori 
parameter estimates are complemented by an analysis 
of parameter interdependence and uncertainty. 
However, the implementation of the Bayesian 
inversion is numerically demanding, uses 
considerable computation time, and the obtained 
results are sensitive to a-priori information and 
inversion parameters.  
Both ensemble methods, MC and EnKF yield a 
discrete cell-by-cell variation of permeability and a-
priori information is only necessary to define bounds 
or histograms for permeability. Massive Monte Carlo 
is simple in implementation but very demanding in 
computation time since the vast majority of the 
models predict tracer concentrations far outside the 
range of observation. However, since a large volume 
of the parameter space is studied, a number of 
alternative models can be discriminated which fit the 
observed data nearly equally well.  
The EnKF can only be applied to monitoring data 
recorded over time. Both the numerical 
implementation and the computational effort are on a 
moderate scale. As for Massive Monte Carlo only 
very coarse a-priori information is required and the 
standard deviation of the ensemble is a measure for 
the quality of the estimate. However, for very few 
monitoring locations as in case of Soultz, the spatial 
resolution of the resolved permeability is poor and 
the convergence of the ensemble during assimilation 
is slow. However, the EnKF was the only model 
approach which fitted the tracer concentration at 
GPK2 and GPK4 simultaneously.  
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