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ABSTRACT 

Lumped parameter models provide an attractive 
alternative to numerical modeling of geothermal 
reservoirs with the distinct advantage of having to 
deal with fewer modeling parameters. Hence when 
such models are used, the aim of the modeling work 
is then to determine the parameters that best describe 
the system often through history matching. Once the 
parameters of the model are determined, we proceed 
to make future predictions under given production 
scenarios. However, throughout the modeling work, 
it is very important to asses the uncertainty that arises 
from (i) “measurement” errors or noise in observed 
data, (ii) modeling errors, (iii) nonlinear relationship 
between model parameters and observed response 
and (iv) non-uniqueness of the problem. Furthermore, 
it is crucial that this uncertainty be reflected to the 
future predictions. Hence instead of dealing with a 
single deterministic response, one can analyze 
various possible outcomes of the future predictions. 
 
In this work, we first introduce briefly two methods 
that can be used for predicting the uncertainty in 
future flow behavior predicted by lumped-parameter 
models; The Randomized Maximum Likelihood 
(RML) and the Ensemble Kalman Filter (EnKF). A 
synthetic application is given for comparing both 
methods. Then the RML is used to analyze the 
uncertainty regarding the future predictions of a 
lumped parameter model on a real field example. The 
field at study is the Balcova-Narlidere, a low 
temperature geothermal field located at the west coast 
of Turkey. 

INTRODUCTION 

 
Lumped-parameter models have been used for 
history matching and predicting pressure (or water 
level) changes in low-temperature geothermal 
systems in Iceland, Turkey, The Philippines, China, 
Mexico and other countries. Axellson et al. (2005) 
and Sarak et al. (2005) have presented several field 

applications of various lumped-parameter models to 
low-temperature geothermal systems. When lumped-
parameter models are used, model parameters can be 
obtained by applying nonlinear least-squares 
estimation techniques in which measured field 
pressure (or water level) data are history matched to 
the corresponding model response (Axelsson, 1989, 
and Sarak et al., 2005). Then, by using history-
matched models, the future performance (in terms of 
pressure changes or water levels) of the reservoir can 
be predicted for different production/re-injection 
scenarios to optimize the management of a given 
low-temperature geothermal system.  
 
The ultimate goal in any geothermal reservoir study 
is to predict future performance and even more 
important to predict the uncertainty in future 
predictions under different management options. This 
is necessary to determine the production/re-injection 
practices that will provide sustainable exploitation of 
the geothermal system in consideration. Uncertainty 
in all future predictions of pressure changes is 
inherent due to (i) measurement errors or noise in 
observed data, (ii) modeling errors, (iii) span of the 
available observed data (pressure change data and 
production history), and (iv) nonlinear relationship 
between model parameters and observed response.  
 
In this paper we discuss the uncertainty in 
performance predictions and provide a real field 
example. This is accomplished with a stochastic 
method of modeling that incorporates uncertainties 
both in the model and observed data to future 
performance predictions, the RML method. This 
method has been shown to be quite efficient for the 
assessment of uncertainty in performance predictions 
for nonlinear problems (Kitanidis et al., 1995; Oliver 
et al., 1996; Liu and Oliver, 2003; Gao et al., 2005). 
Onur and Tureyen (2006) have shown its detailed 
application regarding lumped-parameter modeling on 
synthetic examples. 
 
The paper begins with a brief review of lumped-
parameter models considered in this study. Then, 
history matching and performance prediction 



problems are discussed. We mainly focus on two 
methods; the RML and the EnKF. We have compared 
the two methods on a synthetic example provided by 
Onur and Tureyen (2006). Finally we apply the RML 
on a real field example. 

LUMPED PARAMETER MODELING 

The lumped-parameter modeling considered here is 
very similar in concept to the one presented 
originally by Axelsson (1989) and identical to the 
one presented later by Sarak et al. (2003a, 2003b, and 
2005). As in these works, our lumped-parameter 
models are based on the conservation of mass only 
and hence are valid for low-temperature liquid 
reservoirs under the assumption that variations in 
temperature within the system can be neglected (i.e. 
the simulated systems are assumed to be isothermal).  
 
Lumped-parameter modeling can be regarded as a 
highly simplified form of numerical modeling. In 
numerical models, a geothermal system is 
represented by many (>100 to 106) gridblocks. On the 
other hand, in lumped-parameter modeling, a 
geothermal system is represented by only a few 
homogeneous tanks and is visualized as consisting of 
mainly three parts: (1) the central part of the 
reservoir; (2) outer parts of the reservoir, and (3) the 
recharge source. The first two are treated as series of 
homogeneous tanks with average properties. The 
recharge (or constant pressure) source can be 
connected to the other parts of the reservoir or 
directly to the central part of the reservoir and is 
treated as a “point source” that recharges the system. 
If there is no connection to the recharge source, the 
model would be closed, otherwise would be open. 
Two different open lumped-parameter models are 
depicted in Fig. 1. 
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(a) two-tank open lumped-parameter model 
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(b) three-tank open lumped-parameter model 
 
Figure 1. Two different lumped-parameter models. 
 
The model shown in Fig. 1(a) represents a two-tank 
open lumped model, where the first tank, in which 

production/injection occurs, represents the innermost 
(or central) part of the geothermal system. The 
changes in pressure in this part are monitored and 
production/injection rates are recorded. In the second 
tank, representing the outer part of the reservoir that 
is connected to the recharge source, there is neither 
production nor injection and it recharges the central 
reservoir. Fluid production causes the pressure in the 
reservoir to decline, which results in water influx 
from the outer to the central part of the reservoir. The 
recharge source represents the outermost part of the 
geothermal system.  
 
When using the lumped-parameter models considered 
in this work (Fig. 1), the simulated model (output) 
response represents pressure or water level changes 
for an observation well for a given net production 
history (input). The number of model parameters 
increases as the number of tanks or the complexity of 
the lumped model increases.  
 
Here and throughout, α represents the recharge 
constant between the tanks in kg/(bar-s), κ represents 
the storage capacity (or coefficient) of a tank in 
kg/bar, and pi represents the initial pressure of the 
recharge source in bar. The geothermal system is 
assumed to be in hydrodynamic equilibrium initially; 
i.e., the initial pressure, pi, is uniform in the system. 
Further details about the lumped-parameter models 
used in this study can be found in Sarak et al. (2003a, 
b, and 2005). 

HISTORY-MATCHING PROBLEM 

After a period of production from a geothermal 
reservoir, and based on the production/injection rate 
history given, a lumped-parameter model can be 
matched to the observed pressure (or water level) 
data to obtain the parameters of that particular model. 
Different methods for matching the observed data 
exist in the literature. In this paper we look at the 
RML method and the EnKF method and provide a 
brief comparison. 

The Randomized Maximum Likelihood (RML) 
Method 
Here and throughout, dobs refers to the vector of 
measured or observed pressure change or water level 
data, and contains all Nd measurements that will be 
used for estimating the model parameters through 
nonlinear regression. We let CD be the NdxNd 
symmetric positive-definite covariance matrix for 
pressure change measurement errors, and assume that 
measurement errors for pressure data are Gaussian 
with mean zero (vector) and covariance matrix CD 
[i.e., N(0, CD)]. N(0, CD) represents a normal 
distribution with mean zero and covariance matrix 
CD. Throughout, a boldface capital letter denotes a 



matrix, while a boldface lower case letter denotes a 
column vector. 
 
Letting e  denote the Nd-dimensional vector of errors 
for observed data and 1 2( , , , )T

Mm m m= Lm denote the 
vector of unknown model parameters that are 
estimated, it follows that 

emfdobs += )(  (1) 

Here f  refers to the Nd-dimensional vector of 
computed pressure change or water level data from a 
considered lumped model, for a given m . M 
represents the total number of unknown model 
parameters. 
 
As noted above, e  is N(0, CD). Thus, the likelihood 
function for the model conditional to observed data is 
given by (Bard, 1974) 
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 (2) 
where the superscripts “T” and “-1” represent 
transpose of a vector and inverse of a matrix, 
respectively. The maximum likelihood estimate of m, 
which honors measured pressure data, is obtained by 
maximizing Eq. 2, or equivalently, minimizing the 
objective function O(m) given by 

[ ] [ ]1( ) ( ) ( )
T

obs D obsO −= − −m d f m C d f m  (3) 

The lumped-parameter model responses are nonlinear 
with respect to the model parameters. Thus, Eq. 3 
calls for nonlinear minimization techniques. Over the 
past, we have found that the gradient based 
algorithms such as the Levenberg-Marquardt method 
based on a restricted procedure described by Fletcher 
(1987) is quite efficient to minimize Eq. 3. 
 
In the RML sampling procedure of Eq. 2, a 
conditional realization of model parameters to 
observed data can be generated as follows: (i) 
provide an initial guess of the model parameter 
vector m, (ii) add noise to the observed data (i.e., a 
realization of observed data) by 1/ 2

uc obs D u= +d d C z , 
where zu is an Nd-dimensional vector of independent 
standard random normal deviates. In the applications 
considered in this paper, 1/ 2

DC is a diagonal matrix 
with entries equal to the square roots of the 
corresponding diagonal entries of CD; (iii) generate a 
conditional realization of the model parameter vector 

*
rm  by minimizing Eq. 3 with dobs replaced by duc; 

(iv) check to see if the estimated model parameter 
vector *

rm  gives an acceptable match of the data. 
 
To generate n conditional realizations, we repeat the 
procedure described by items (i) through (iv) n times. 

After n acceptable realizations of the model 
parameter vector, *

rm , for r=1,2,…,n, are generated, 
we can predict n realizations of the future response 
using these n *

rm  realizations in the lumped-
parameter model considered for a given future 
production scenario. Then, we can characterize the 
uncertainty in the predicted response by constructing 
the histogram and/or cumulative frequency based on 
these n realizations of the predicted responses at any 
given prediction time ti such that 

di Nt t> .  

 
The detailed application of the RML method specific 
to the lumped parameter models can be found in 
Onur and Tureyen (2006). 

The Ensemble Kalman Filter (EnKF) Method 
The EnKF method specific to history matching 
observed data from oil and gas fields can be found in 
the literature (Zafari and Reynolds, 2005; Gu and 
Oliver, 2006). In this study we have applied their 
algorithmic approach to the lumped parameter 
models. Hence we explain the EnKF method specific 
to lumped parameter models. 
 
In the EnKF method, we start off with constructing a 
state vector y at any given time tk as shown in Eq. 4. 

[ ]TTT dmy =  (4) 

Here the state vector is composed of both the model 
parameters (m) and the model response (d=f(m)). The 
dimension of the state vector y is Ny=M+Nd. It is also 
possible to write d using Eq. 5. 

Hyd =  (5) 

H is a matrix with only 0 and 1 as its components, 
H=[0|I]. Here 0 is a Nd×M matrix with 0 entries and I 
is an identity matrix with dimensions of Nd× Nd. The 
only purpose of using the matrix H is to extract d out 
of the state vector y. 
 
A state vector specific to a two tank open model 
would be: 

[ ]Toorroorr dy ),,,(,,,, 1111 κακακακα=
 (6) 

Initially, at t=0, before any data is assimilated, a large 
number of state vectors is generated, y1, y2, …, yNe, 
from some prior model where Ne is the total number 
of state vectors which is also referred to as the 
number of ensembles. At this point only the model 
parameters in the state vectors are generated from 
some prior distribution. The corresponding d’s are 
then computed (using the model parameters for each 
ensemble) at the time where the first data is observed. 
Then an updating is performed from time level k to 
k+1 using the following equation: 
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Here, the superscript k indicates the time level, j 
indicates the jth ensemble, dj

obs,uc is an unconditional 
realization of the observed data vector for the jth 
ensemble. This unconditional realization is generated 
by adding noise to dobs. A different noise is added for 
each ensemble through the following relationship: 

edd obs
ucobs

j +=,  (8) 

Ke is the Kalman gain and is computed as: 
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The CY,e corresponds to the covariance matrix of the 
state vector y. The CY,e covariance matrix can be 
computed using the ensembles. Any component of 
the state vector covariance matrix is determined 
from: 

( )( )
( )y

N

j

ljlmjm
e

lm

Nlm

xxxx
N

c
e

,...,2,1,

1
1

1
,,,

=

−−
−

= ∑
=  (10) 

The subscripts m and l refer to the mth and lth entries 
in the covariance matrix. xm,j and xl,j correspond to the 

mth and lth variables for the jth ensemble. mx  and lx  
are the means that are calculated across the 
ensembles. 
 
The updating is repeated until all data available are 
assimilated. 

Application of the EnKF method on a synthetic 
example 
To demonstrate the EnKF method on lumped- 
parameter models, we use the same synthetic 
example given by Onur and Tureyen (2006). The true 
field in their example was represented by a 2-tank 
open model. The true model response (in this 
application, the pressure change) was corrupted by 
adding noise from a N(0,0.49) to simulate a real case. 
Hence the observed pressure change to be used in the 
application is now the corrupted pressure change. We 
further assume that we know the level of noise (the 
variance=0.49 bar2). The corrupted pressure change 
data represent our observed data (dobs) and contain 
193 data points. The observed pressure data are 
shown in Fig. 2 by solid blue circular data points, 
whereas the true pressure change data are shown by a 
solid blue curve. The net production rate history is 
shown as the black solid curve in Fig. 2 and is 
assumed to contain no errors. 
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Figure 2. True and observed (noisy) pressure change 

data and net production rate history. 
 
In their application of RML, Onur and Tureyen 
(2006) have used three types of lumped models; 2-
tank closed, 2-tank open and a 3-tank closed model. 
In this study, in order to make a comparison between 
RML and EnKF, the same lumped parameter models 
are used.  
 
For 2-tank closed, 2-tank open and 3-tank closed 
models, the state vectors to be used in the EnKF 
method can be given as: 
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respectively. 
 
In this synthetic application of the EnKF, we consider 
1000 ensembles. The initial α’s have been generated 
from N(50,225) and the κ’s from N(1×1010,9×1018). 
These represent the prior models used in this 
example. The updating of the state vector is 
performed for all 193 data points. For the 1000 
ensembles, we generate 1000 different dobs,uc by 
adding uncorrelated noise to dobs from N(0,0.49). 
 
As mentioned in the previous section, the EnKF 
works by assimilating one data at a time. Each time a 
new data point is assimilated, the forward model is 
run from tk to tk+1 where tk represents the present time 
and tk+1 represents the time of next data assimilation. 
However, in our case we can not perform the forward 
run from tk to tk+1 because of the variable rate history. 
The lumped parameter models that are used in this 
study are based on the analytical solutions using the 
Duhamel’s principle to handle the variable-rate 
history. Hence, each time a data point is assimilated, 



instead of running the model from tk to tk+1 we run the 
model from t0 to tk+1 where t0 represents t=0. 
 
Figs. 3-5 represent the match to the observed data 
obtained from the first 20 years and future 
predictions until 45 years. Once again we have used 
the same rate scenario as of Onur and Tureyen (2006) 
for the future predictions. 
 

 
Figure 3. Predicted pressure change by EnKF, 2-tank 

closed model. 
 

 
Figure 4. Predicted pressure change by EnKF, 2-tank 

open model. 
 
The results of Fig. 3 indicates that the performance 
predicted with the 2-tank closed model is biased; all 
ensembles result in pressure changes greater than the 
truth. Fig. 4 represents the results of the 2-tank open 
model (which is the correct model). In this case, the 
truth lies within the band of predictions. Finally Fig. 
5 represents the results of the 3-tank closed model. 
Just as in the case with the 2-tank closed model, the 
prediction band fails to contain the truth. 
 

 
Figure 5. Predicted pressure change by EnKF, 3-tank 

closed model. 
 
We make a comparison on the model parameters 
obtained by the RML (Onur and Tureyen, 2006) and 
the EnKF methods. The results of RML application 
can be summarized in Table 1. The mean of the 
model parameters obtained from the 1000 ensembles 
in EnKF is given in Table 2. Both in Tables 1 and 2, 
the numbers in parentheses indicate the 95% 
confidence intervals for the specific model 
parameters. 
 
Table 1. Estimated model parameters by history-

matching of observed data with three 
different lumped-parameter models using 
the RML method (Onur and Tureyen, 
2006). 

Estimated parameters for lumped-
models 

Model 
Parameters 

True 
parameter 

values (2-tank 
open) 2-tank 

closed 
2-tank 
open 

3-tank 
closed 

κr (kg/bar) 8.9x107 
9.5x107 

(±1.2x107) 
8.9x107 

(±1.3x107) 
8.9x107 

(±1.3x107) 

αr (kg/bar-s) 30 
27.9 

(±1.0) 
30.6 

(±1.7) 
30.6 

(±2.1) 

κo1 (kg/bar) 1.1x1010 
2.4x1010 

(±2.1x109) 

1.2x1010 

(±3.1x109) 

1.2x1010 

(±6.5x109) 

αo1 (kg/bar-s) 37 - 
31.0 

(±6.1) 

31.0 

(±43) 

κo2 (kg/bar) - - - 
2.9 x1013 

(±1.3x1017) 

 
Comparing Tables 1 and 2, shows that the results for 
the 2-tank closed and the 3-tank closed system are 
rather different. Although not shown here, the future 
predictions of the RML are also different from Figs. 
3 and 5.  
 
 
 
 
 



Table 2. The mean of the model parameters obtained 
by EnKF for with three different lumped-
parameter models. 

Estimated parameters for lumped-
models 

Model 
Parameters 

True 
parameter 

values (2-tank 
open) 2-tank 

closed 
2-tank 
open 

3-tank 
closed 

κr (kg/bar) 8.9x107 
3.34x107 

(±2.4 x107) 

7.9x107 

(±2.12x107) 

7.55x107 

(±2.18x107) 

αr (kg/bar-s) 30 
32.72 

(±2.72) 
30.36 

(±2.52) 
30.88 
(±2.5) 

κo1 (kg/bar) 1.1x1010 
1.6x1010 

(±2 x109) 
1.2x1010 

(±3.4x109) 
1.12x1010 
(±3x109) 

αo1 (kg/bar-s) 37 - 
33.57 

(±8.42) 
57.02 

(±27.62) 

κo2 (kg/bar) - - - 
1.4 x1010 

(±4.6 x109) 

 
Furthermore, Fig. 5, displays an unexpected 
behavior. Even though the number of model 
parameters has increased, the band of uncertainty 
seems to have decreased when we compare with the 
predictions of the 2-tank open model (Fig. 4). The 
RML, on the other hand, shows (Onur and Tureyen, 
2006) an increase in the uncertainty band, which 
would be expected. This may be caused because of 
the difference in the parameter κo2, where the EnKF 
provides a much lower value, with a much lower 
confidence interval. Because of this, in Fig. 5 we 
observe much higher pressure drops, high enough not 
to include the true model.  
 
On the other hand, the EnKF 2-tank open model 
results seem to be consistent with that of RML, 
except the confidence intervals seem to be slightly 
higher in the EnKF method. Also the band of 
uncertainty seems to be a little larger than the RML 
as well. 
 
At this point, if there exists no mistake with our 
implementation of the EnKF, it is not clear to us, why 
the EnKF, provides, different results than RML. 
However, it is worthwhile to mention one of the 
sensitivities that we have performed. We once again 
work with the 3-tank closed model, however, this 
time we provide a different prior model. In this case 
for each parameter, we use a uniform distribution 
with means equal to the results of the RML method 
provided in Table 1. Fig. 6 displays the future 
predictions. Now the results are very similar to the 
RML results. As expected, the uncertainty band has 
increased and contains the truth.  
 

 
Figure 6. Predicted pressure change by EnKF, 3-tank 

closed model with different prior model. 
 
Table 3 illustrates a comparison between the model 
parameters obtained by different prior models using 
the EnKF and the RML. As it is clear, in this case, 
the results are very similar to that of RML. 
 
Table 3. A comparison of model parameters obtained 

by RML, EnKF and EnKF with different 
prior model for the 3-tank closed model. 

3-tank closed 

Model 
Parameters 

RML EnKF  
EnKF with 
different 

prior model 

κr (kg/bar) 
8.9x107 

(±1.3x107) 

7.55x107 

(±2.18x107) 

8.99x107 

(±1.44x107) 

αr (kg/bar-s) 
30.6 

(±2.1) 
30.88 
(±2.5) 

30.37 
(±2.04) 

κo1 (kg/bar) 
1.2x1010 

(±6.5x109) 
1.12x1010 
(±3x109) 

1.31x1010 
(±4.0x109) 

αo1 (kg/bar-s) 
31.0 

(±43) 

57.02 

(±27.62) 

28.51 

(±9.26) 

κo2 (kg/bar) 
2.9 x1013 

(±1.3x1017) 

1.4 x1010 

(±4.6 x109) 

3.03 x1013 

(±3.2x1013) 

 
Many more sensitivities have been performed (not 
shown here) regarding the effects of the prior model. 
We have seen that the results are quite sensitive to 
which prior model we use. The EnKF for some prior 
models, seems to get stuck in some local minima. At 
this point we can not explain why this is so. More 
research needs to be conducted on this subject. We 
are continuing with our research regarding this topic. 
However, as a general conclusion so far, we can state 
that the RML is a very robust technique suitable for 
history matching lumped parameter models. Hence in 
the real field application we present in the next 
section we use the RML method for determining 
model parameters. 



FIELD APPLICATION 

The application of the RML method on synthetic 
examples of lumped parameter models for 
geothermal reservoirs have been successfully 
performed by Onur and Tureyen (2006) Here, we 
extend the application of RML method to a real field. 
The field at study is the Balcova-Narlidere 
Geothermal Field. This field is known as the oldest 
geothermal system in Turkey and is situated 10km 
west of Izmir. The geothermal water with a 
temperature ranging from 80°C to 140°C is produced 
from the wells with depths ranging from 48.5m to 
1100m. 
 
The application of RML will be performed on the 
data collected from one of the wells in the field. The 
data consists of net rate (production rate – injection 
rate) information starting from 01/01/2000 and 
corresponding water level data starting from 
17/06/2001. All data have been collected until 
10/11/2005. Here it is important to note that the net 
rate history is obtained from the entire field whereas 
the water level data is collected only from a single 
well. Fig. 7 illustrates the collected data to be used in 
the RML application. 
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Figure 7. Observed rate and water level data. 
 
The RML method has been performed on the above 
data for 5 different lumped parameter models (1 tank 
open model, 2 tank open/closed models and 3 tank 
open/closed models). For each model 100 realizations 
of matched responses are generated and the results 
are compared. 
 
During the application, the water levels have been 
converted to pressure changes. Hence all 
computations are performed on the pressure changes, 
but results in the graphs are given in terms of water 
levels. The realizations of the observed data is 
obtained by adding random noise from a N(0,0.8125) 

distribution. The pressure change data is treated 
stationary and hence the variance of the noise is 
obtained as the deviation from the overall mean. In 
other words, first the mean of the pressure change 
signal is computed. Then the variance of the entire 
signal is determined based on this mean. 
 
Once the history matching is complete we make 
future predictions with the optimal model parameters. 
The rate history for the future 10 years is obtained by 
taking the rates of the last year of the matching 
period and increasing them by %20 each year.  
 
Figs 8-12 illustrate the history matching period and 
the future 10 year predictions for the 1 tank open 
model, 2 tank closed/open models and 3 tank 
closed/open models respectively. The blue circled 
points in the figures represent the observed water 
level data, the solid red lines represent the results of 
100 simulations and finally the solid black line 
represents the net flow rate. 
 

 
Figure 8. Realizations of predicted pressure change 

generated by RML, 1-tank open model. 
 

 
Figure 9. Realizations of predicted pressure change 

generated by RML, 2-tank closed model. 



 

 
Figure 10. Realizations of predicted pressure change 

generated by RML, 2-tank open model. 
 

 
Figure 11. Realizations of predicted pressure change 

generated by RML, 3-tank closed model. 
 

 
Figure 12. Realizations of predicted pressure change 

generated by RML, 3-tank open model. 

 
Based on the results provided by the Figs 8-12, we 
can conclude that the band of the predictions (or the 
uncertainty in predictions) is narrowest for the 1 
tank-open model and widest for the 2 tank open 
model. 
 
Table 4 summarizes the history matched parameters 
and various statistics (95% confidence intervals and 
RMS). All these parameters and their statistics have 
been obtained by averaging the results of 100 
realizations. An inspection of the RMS values 
indicate that they are all almost the same and can be 
considered close to the actual noise that was added to 
the observed data for generating realizations of the 
data. The confidence intervals in this case will 
probably be the discriminating measure for the best 
model that represents the actual system. κo1 and α o1 
for the 2-tank open model, κo1, α o1 and κo2 for the 3-
tank closed model and α o1, κo2 and α o2 for the 3-tank 
open model are unacceptable due to their high 
confidence intervals (Here our definition is that an 
estimate of a parameter is acceptable if its confidence 
interval range is less than 95% of the estimated value 
itself). Hence they can immediately be ruled out as 
candidates for describing the Balcova-Narlidere 
geothermal field. 
 

Table 4. Estimated model parameters by history-
matching of observed data with five 
different lumped-parameter models. 

Estimated parameters for lumped-models 

M
o

d
el

 
P

ar
am

et
er

s 

1-tank 
open 

2-tank 
closed 

2-tank 
open 

3-tank 
closed 

3-tank 
closed 

κr 
(kg/bar) 

8.4×107  

(±1.2x107) 

7.4×107  

(±1.2x107) 

8.0×107  

(±1.3x107) 

7.7×107  

(±1.4x107) 

7.6×107  

(±1.8x107) 

αr 
(kg/bar-

s) 

44.2 

(±2.43) 

47.2 

(±2.74) 

46.2 

(±2.91) 

46.2 

(±12.9) 

46.4 

(±4.55) 

κo1 
(kg/bar) 

-- 
1.5×1010  

(±3.7x109) 

1.8×1012  

(±1.8x1014) 

2.1×1010  

(±6.6x1010) 

2.2×1010  

(±1.2x1010) 

αo1 
(kg/bar-

s) 
-- -- 

10.6 

(±1.1x106) 

2.9 

(±2.9x105) 

0.823 

(±823.0) 

κo2 
(kg/bar) 

-- -- -- 
3.0×1013  

(±9.0x1019) 

8.5×1013  

(±3.4x1017) 

αo2 
(kg/bar-

s) 
-- -- -- -- 

622.5 

(±1.2x107) 

RMS 
(bar) 0.99 0.97 0.98 0.97 0.97 

 
The reason for obtaining such wide confidence 
intervals for the above mentioned model parameters 
can be explained as follows: The observed data do 
not show significant sensitivity to these parameters. 
Hence the uncertainty regarding these parameters are 
large. 
 
Based on the above observations, since the RMS 
values are relatively close to each other, we compare 
the confidence intervals for the parameters of the 1-
tank open model and the 2-tank closed model. The 1-



tank open model in this case seems to best represent 
the real field due to the lower confidence intervals of 
the model parameters. 
 
To better represent the response differences of the 
different models, Fig. 13 illustrates the box and 
whisker plot of the responses at 5750 days. The 
highest water level is reached with the 2-tank closed 
model. This is expected since, the system is closed. 
The largest band of uncertainty on the other hand is 
provided by the 2-tank open model. It is interesting to 
see that the model chosen to represent the real field 
has the narrowest band of uncertainty and provides 
the smallest water level at the same time.  
 

40

50

60

70

80

90

100

110

120

130

140

W
at

er
 le

ve
l, 

m

1-
ta

nk(
open

)

2-
ta

nk(
clo

se
d)

2-
ta

nk(
open

)

3-
ta

nk(
clo

se
d)

3-
ta

nk(
open

)

Model type  
Figure 13. Box and whisker plot of water levels for 

five different models at 5750 days. 
 
All the production wells in Balcova-Narlidere field 
are operated by pumps set in the wellbores. The 
pumps in the wells are installed at an average depth 
of 150 m from the surface. For safe and efficient 
operation of the wellbore pumps to avoid a possible 
cavitation a minimum liquid level above the pump 
must be maintained. This minimum liquid level is 
recommended to be 30 m in wells above the pumps. 
Therefore, the water level is allowed to drop to 120 m 
in wells unless the installation depths of the pumps 
are changed. Thus the pump depths are limiting 
constraints in operation of the field. The water level 
should not drop below 120 m in wells. Otherwise the 
pumps at the present installation depths will not be 
functional. Based on this, according to the model that 
we believe best represents the system (1-tank open 
model), the wells will be operational until around 
4400 days based on the rate scenario that is provided 
in Fig. 8. 

CONCLUSIONS 

On the basis of this study, the following specific 
conclusions can be stated: 
 
(i) The EnKF method has been implemented for 

history matching lumped parameter models and 
is compared with the RML. 

 
(ii) The EnKF method seems to be sensitive for 

different prior models. We need to investigate 
further into knowing why. 

 
(iii) Preliminary results show that RML is a more 

robust method for lumped parameter models. 
 
(iv) The RML method has successfully been 

implemented to real field data. 
 
(v) Based on the RML results, the authors believe 

that the Balcova-Narlidere geothermal system 
can best be represented by a 1-tank open model. 

 
(vi) The uncertainty analysis shows that the 

uncertainty band in the predictions is also 
lowest with the 1-tank open model. 

 
(vii) Based on the 1-tank open model, if the flow 

rates are increased by 20% each year, the pump 
facilities can manage the field for about 6 more 
years. 
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