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ABSTRACT 

In the southern coast of the Gulf of Mexico some 
deep geothermal aquifers are associated to 
hydrocarbon reservoirs. Some of their wells are 
invaded by geothermal brine, producing a variable 
mixture of hot water and oil. This water, at 
temperatures of 150°C and having a density of 1150 
kg/m3; flows vertically through a fault from the 
aquifer located 6000 m depth. The non isothermal 
conditions affect the effective saturations and the 
relative permeabilities of the immiscible phases. The 
relative permeability of oil is increased by the 
increase of temperature produced by the geothermal 
water. This effect reduces the residual saturation of 
heavy oils. At the same time the dynamic viscosities 
of water and oil are diminished, affecting the 
displacement of both fluids. Although the oil is 
extracted in wells finished upper the aquifer, the total 
volume of produced water, in some cases, equals or 
exceeds the oil production. The handling of this extra 
hot water becomes a practical serious problem. We 
introduce a numerical original model able to predict 
the critical oil rate for which the wells can be totally 
invaded by geothermal brine.  
 
For the construction of the model we apply classic 
laws and equations. We use standard published 
formulas for both relative permeabilities and 
capillary pressure. We obtain a single non - linear 
partial differential equation (PDE) which depends 
only on water saturation, space and time. This PDE is 
a 3D generalization of the classical 1D Buckley-
Leverett model. To solve the new PDE we use non 
linear finite elements. The numeric simulation could 
reproduce the effect of water invasion: After some 
time elapsed, the original oil volume diminishes 
abruptly, displacing the boundary of the water-oil 
contact and the transition zone in the vertical 
direction. Our objective is to estimate the optimum 
mass rate for producing wells in order to minimize 
the production of water or to achieve a mixture oil-
water extraction where oil always prevails.  

INTRODUCTION 

The production of petroleum together with connate 
water is a common phenomenon in oil and gas 
reservoirs. This water is unusable, although its 
operation is, in general, quite expensive. The 
magazine Oilfield Review (Arnold, 2004) reported 
that only in the USA there are extracted 10 barrels 
(1.6 m3) of water for each barrel of oil. In the whole 
world three barrels of water for each one of oil are 
produced. The cost of this water disposal is between 
5 and 10 thousand million dollars in the USA and 
approximately of 40 thousand million dollars in the 
whole world. Even using the most advanced 
disposition techniques, water can represent 90% of 
the total volume of liquids at field’s surface, 
impacting seriously the commercial feasibility of the 
field. Due to its null commercial utility, this water 
should be reinjected into the formation to maintain 
reservoir pressure. Another possible future use is its 
treatment to make it potable and usable in the 
hydraulic nets of cities close to the oil field. 

GEOTHERMAL AQUIFERS AND OIL FIELDS 

Geothermal areas related to hydrocarbons reservoirs 
also exist in different parts of the world. The 
presence of interstitial hot water in the pores alters 
several parameters of the reservoir. The non 
isothermal conditions affect the effective saturations 
and the relative permeabilities of both immiscible 
phases. The relative permeability of oil is increased 
by the increase of temperature originated by 
geothermal water. At the same time the dynamic 
viscosities of water and oil diminish, affecting the 
displacement of both fluids. The Bellota-Jujo 
hydrocarbon complex, located in the southern coast 
of the Gulf of Mexico (Fig. 7), is a remarkable 
example of this type of coupled processes. The Port 
Ceiba reservoir, which is part of this system, is 
associated to an aquifer located 6000 meters under 
the surface of the field. For this reason it contains 
brine and hydrocarbons. The water in this reservoir 



flows vertically toward the production wells, through 
conductive faults, which connect the oil zone with the 
deep aquifer. 
 
The water of the aquifer is geothermal brine at 
150°C, having a density of 1150 kg/m3. Port Ceiba’s 
wells are oil producers, but some of them are invaded 
by brine, producing a variable mixture of water and 
oil. Although the oil is extracted at the upper zone of 
the oil- water contact (COW), the total volume of 
produced water equals or exceeds the oil production. 
The effect of water invasion, together with oil 
extraction, produces a gradual decrease of the 
original volume of oil and a vertical displacement of 
the COW. In this way the well receives more and 
more water until it becomes completely invaded. The 
handling of this water in the formation is a serious 
practical problem costing millions of pesos to the 
company every year. 
 
The main goal of this research is the understanding of 
the water invasion mechanism and the estimation of 
the critical volumetric rate in oil wells for which the 
invasion begins to happen. The model should allow 
predicting with precision this critical rate and, 
consequently, to be able to reduce the extraction rates 
in wells just on time, maximizing its productive life. 
In this work a numerical original model is developed, 
able to perform this task. 

GENERAL DESCRIPTION OF THE PROBLEM 

Hypothesis and Qualitative Information Available 
The brine in the formation has different physical 
behavior compared to hydrocarbons. Water conducts 
as a substance having a molecular weight larger than 
18. This behavior is due to the fact that intra-
molecular forces of water are more intense than those 
of petroleum (Pedersen and Christensen, 2006). Due 
to superficial tensions, a great amount of oil is caught 
into the pores, in such a way that the mobility of the 
invasion water prevails. For heavier and more 
viscous oils, the mobility of water will dominate in 
the immiscible mixture of both fluids.  
 
This phenomenon is described by the total mixture 
rate q = qw + qo and by the quotient qw /qo = λw /λo  > 
1; λj  = κj /µj is the phase mobility, κj  its permeability 
and µj its dynamic viscosity (j = water, oil). If the 
volumetric rate of the well is very high, the produced 
fluid would be predominantly water. We call Bw = 
ρwS /ρwR the volume factor of water in the formation 
(density of water at standard conditions divided by 
density of water at reservoir conditions). This factor 
represents the expansion of the volume of water 
between the formation and the surface of the field. 
Assuming this expansion small, we will take the 
value Bw ≈ 1. The following information is available: 

• Geothermal water invades the oil reservoir 
through a fault that penetrates an aquifer at 
6000 m of depth and 150°C of temperature. 

• The geothermal aquifer and the oil reservoir 
form a geologic unit system, delimited at 
their boundaries by impermeable rocks 
forming a profound closed and isothermal 
volume. 

• Water flows from the deep aquifer to the 
reservoir because of pressure variations at 
the COW. 

• Darcy’s Law and Continuity equation are 
valid in both phases. 

• Relative permeabilities and capillary 
pressure only depend on saturations. 

• The following parameters are constants: 
Rock permeability, viscosities and densities 
of both phases. 

FIELD DATA 

Available numerical data are summarized in Table 1 
(Suarez & Samaniego, 2006). 
 

Average pressure pa = 940  kg/cm2 
Bottom flowing pressure pwf = 700  kg/cm2 
Volumetric rate q0 = 11000 Bce/D 
Oil Density ρo = 770  kg/m3 
Water Density ρw = 1145  kg/m3 
Pressure difference ∆ pw pa-pwf = 240  kg/cm2 
Vertical distance between 
The well and the COW 

 
∆H = 375 m. 

Temperature of brine 150°C 
Capillary pressure Pc (Sw ) = po - pw 
Saturations Sw + So = 1 

 
Table 1.- Numerical information from well PC-115 of 
the Puerto Ceiba Reservoir (PEMEX – PEP, 2004). 
 
A fundamental formula relating capillary pressure 
and capillary height is:  
 
     2( ) , , 9.8 /c w c w oP S h g g m sρ ρ ρ ρ= ∆ ∆ = − =        (1) 

Where hc is the height over the plane of capillary 
pressure pc = 0. This surface is the boundary of the 
oil-water contact (COW) where Sw ~ 1, So ~ 0. The 
transition area is the place where both phases coexist. 
The residual saturation of water Swi is reached at the 
point of the reservoir where So ~ 1. 

Relative Permeabilities and Capillary pressure 
For the capillary pressure the experimental values 
reported by Aziz (1999) were used, together with 
equation (1). The relative permeabilities for water 
and oil we used are the correlations proposed by 
Brooks and Corey in 1964 and verified 
experimentally in a recent publication (Cunha et al., 



1999). The analytic expression of these correlations 
are as follows:  
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The numbers inside the parentheses and the 
exponents were measured experimentally, while the 
values outside the parentheses were obtained by least 
squares fitting. 

A GENERAL 3D MODEL 

In this problem we considered the simultaneous flow 
of two immiscible fluids, oil and water, in a porous 
medium in three dimensions. For the deduction of the 
final differential equation we assumed that: 
 

 There is no transfer of mass between fluids. 
 The law of Darcy is applicable.  
 The system is hot but isothermal. 
 Rock permeability K, densities ρw, ρo and 

viscosities µw, µo, are constants. 

Tridimensional Flow of Oil and Water 
Using a traditional Cartesian reference system, the 
immiscible flow of oil and water takes place in a 
plane formed by an inclined fault, forming an angle 
θ, between 0 and π/2 radians, with the vertical 
direction. The fluids enter the fault from the 
formation and from the aquifer at initial constant 
velocity. For practical reasons and to simplify the 
writing of equations we define the following 
variables:  
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Using the continuity equations for both phases:  
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The last equation results from both, the continuity 
and the fact that the initial total velocity is constant. 
We assume that the rock permeability tensor is the 
constant matrix:  
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The Darcy’s Law for each phase is:  
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From these vectorial equations pressure gradients are 
deduced:  
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Next, we define the fractional velocities as follows:  
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The capillary pressure gradient is the matrix:  
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After doing some algebraic manipulations:  
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We define the following auxiliary functions:  
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The fractional velocities can be expressed as:  
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Using these components in the equation of continuity 
for water (4), we deduce a final partial differential 
equation for water saturation:  
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The auxiliary coefficients are of tensorial nature and 
are expressed as follows:  
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The 1D Buckley-Leverett model 
Using the functions definided in (14) and the general 
equation (13) in one dimension, let’s say the vertical 
direction OZ, we obtain by direct substitution:  
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This equation is a some heavier form of the classic 
Buckely – Leverett equation with non-stationary 
solutions for the displacement of oil by water, when 
the action of capillary forces is neglected (see for 
example Marle, 1981). 

Formulation and Numerical Solution using the 
Finite Element Method 
The model represented by equation (13) is a non 
linear one, but it only depends on water saturation. 
We can formulate this model using finite elements 
(Zienkiewicz and Taylor, 1991; Reddy and Gartling, 
2001). Multiplying both sides of equation (13) by a 
test function wj defined over Ω ⊂ ⎥3, the solution 
domain and integrating:  
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Application of the general Green Theorem to eq. (16) 
and the definition of an interpolation function of the 
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After solving this system by classical techniques 
(Reddy and Gartling, 2001), we obtain an 
approximate numerical solution of model (13). 

2D NUMERICAL SIMULATION OF BRINE 
INVASION  

We proceed to make numeric simulations in two 
dimensions of an extraction oil zone presenting brine 
invasion. We used data from well PC-115 (table 1) 
located in Port Ceiba reservoir (Fig. 7). We assume 
the fault as a porous medium of very high 
permeability (~103 Darcy), located at the center of 
the production region. The lateral boundaries are at 
constant pressure and zero flow. The changes only 
occur in the vertical direction. To represent in a 
simple form the geometry of the area of interest, of 
dimensions (6000 m) x (800 m), a non-structured 
mesh (Fig. 1) of 552 triangular elements and 2640 
grades of freedom was constructed. The interpolants 
are quadratic Lagrange polynomials.  

CONCLUSIONS  

The zone is subjected to several production rates in 
the interval (3000, 8000) Bce/Day until the brine 
invasion is observed. Finally we could obtain a 
critical constant volumetric rate equal to 7057 Bce/D 
for which the brine invasion is massive. Figure 2 
shows the evolution of oil saturation in some most 
illustrative points. The coordinates of the point are 
indicated in the figure. Figures 3, 4, 5 and 6 are two-
dimensional surfaces of the simulated area, 
illustrating the evolution of both distributions So and 
Sw in the whole region. For the critical oil rate of 
7057 Bce/D, an abrupt oil depression of 80% is 
obtained in a lapse of 6 days (Figure 2), after 52 days 
of continuous production. 
 
The presence of water in hydrocarbon reservoirs is a 
practical serious problem. The estimate of the current 
cost of brine handling oscillates between 5 and 50 
cents of dollar per barrel of water and it ascends to $4 
US per barrel of petroleum in wells producing oil 
with 80% of water content. The worldwide cost of 
managing this water is about $40000 million dollars. 

We developed a 3D mathematical model to simulate 
the displacement of both phases. The model allows 
representing the brine invasion in wells producing 
oil. We presented applications with data of a well in 
the Gulf of Mexico 

REFERENCES 

 
Arnold, R., D. Burnett, J. Elphick, T. Feeley, M. 
Galbrun, M. Hightower, Z. Jiang, M. Khan, M. 
Lavery, F. Luffey and P. Verbeek, (2004, Summer), 
“Managing Water – From Waste to Resource”. 
Oilfield Review, 16, No. 2, 26-41, Schlumberger. 
 
Aziz, K. (1999), “Notes for Petroleum Reservoir 
Simulation”, Course of the Petroleum Engineering 
Department, PE 223, Stanford University, Winter 
(1998 - 1999). 
 
Birks, J. (1963), “Coning theory and its use in 
predicting allowable producing rates in a fissured 
limestone reservoir”, Iranian Petroleum Institute 
Bulletin, 12, December.  
 
Buckley, S.E. and Leverett, M.C. (1942), 
“Mechanism of fluid flow in sands”, Trans. AIME, 
146, 107-116. 
 
Cunha, C., Bonet, E.J. and Corrêa, A.C., (1999), 
“Water Alternating Gas Injection: Laboratory 
Measurements and Comparison with Analytical 
Calculation”. Journal of Porous Media, Begell 
House, 2/2, 143-151. 
 
Marle, C.M. (1981), Multiphase Flow in Porous 
Media. Editions Technip, Institut Français du Pétrole. 
 
Passmore, M.J. and Archer, J.S. (1985), “Thermal 
properties of reservoir rocks and fluids”. 
Developments in Petroleum Engineering–1, 265-290, 
Elsevier. 
 
Pedersen, K.S.  and Christensen, P.L., (2006). “Phase 
Behavior of Petroleum Reservoir Fluids”, CRC-
Taylor & Francis Group. 
 
Reddy, J.N.  and Gartling, D.K., (2001). The Finite 
Element Method in Heat Transfer and Fluid 
Dynamics, 2nd Edition, CRC-Press, LLC. 
 
Suárez, M.C., Samaniego, F. y Pacheco, R. (2006). 
“Ingeniería del Activo Bellota-Jujo”, Reporte de 
Avance No. 2, (unpublished). Diseño de Explotación, 
PEMEX-Exploración-Producción, Comalcalco, Tab. 
 
Zienkiewicz, O.C. and Taylor, R.L., (1991). The 
finite element method, McGraw Hill, Vol. I., Vol. II. 
5-2099. 
 



FIGURES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 1. Non structured mesh of the simulated 
porous medium, with 552 finite elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 2. Oil saturation affected by brine invasion at 
the point (150, 5500) m, after 52 days of production. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 3. Oil and brine saturation 23.3 hours after a 
transition zone (green) was established.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 4. Oil and brine saturation 10.4 days after 
the transitional zone was established. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 5. Oil and brine saturation 20 days after the 
transitional zone was established. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 6. Oil and brine saturation 46.3 days after 
the transitional zone was established. 
 



Figure. 7. Geographical location of the Bellota – Jujo system. 
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