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ABSTRACT 

A new method of the temperature estimation in the 
earth's interior is developed, which is based on using 
the measurements of magnetotelluric (MT) field at 
the ground. Basing on the neuronet analysis of MT 
and temperature data measured at the Bishkek 
geodynamical testing site in the northern Tien Shan, a 
feasibility of indirect electromagnetic 
geothermometer is substantiated. An optimal 
technique for MT measurements and involvement of 
temperature logs available is developed. It provides a 
reduction of the remote temperature estimation errors 
down to their minimum level. It is shown that the use 
of 6-8 temperature logs for calibration of 
electromagnetic data results in 12% relative error of 
the temperature estimation, whereas availability of 
prior geological information about the region under 
study makes it possible to decrease this error 
furthermore. Practical application of this method will 
enable one, first, to refine the temperature estimates 
in cases when the amount of temperature logs 
available is insufficient; second, to perform more 
precise temperature prediction in extrapolation mode; 
third, to monitor the well temperature basing on 
surface observations of MT field and, at last, to carry 
out contactless remote temperature estimation in 
wells with extreme conditions (in particular, typical 
for supercritical geothermal reservoirs) unsuitable for 
traditional geothermometers. 

INTRODUCTION 

Temperature estimation in the Earth's interior is 
usually based on the borehole temperature logs or on 
the heat flow data. Meanwhile, both approaches are 
not free of their own limitations. For example, in the 
first case a spatial interpolation is required based on 
the  temperature  logs  that  are  usually  measured  in 
a few wells irregularly distributed over the surface, 
which often leads to considerable estimation errors.  
 
 

 
In the second case, construction of temperature 
model is based on an assumption about a steady state 
of heat flows at lateral boundaries of the studied 
domain and as well on prior knowledge of the heat 
flow (temperature) at the upper and lower boundaries 
of the area. Since these values (particularly at the 
lower boundary) are given, as a rule, only very 
roughly, construction of temperature distribution 
models on this basis can also be fraught of 
considerable errors.        
 
Indirect estimates of the sub-surface temperature 
distribution are often based on geological (Harvey 
and Browne, 2000; Jansson, Reyr, 2006) or 
geochemical (Maturgo et al., 2000; Caprai et al., 
2006) data. However, these geothermometers often 
yield erroneous estimates due to using empirical or 
semi-empirical laws. In the case of using chemical 
geothermometers the mixing of the deep geothermal 
fluids with surface waters or their cooling and the 
associated precipitation/dissolution processes during 
their rising to the surface are often responsible of the 
temperature estimation errors (Sanjuan et al., 2006).     
 
It seems most natural to use for these purposes the 
information about electrical conductivity of rocks 
because of its direct temperature dependency 
(Oelsner, 1998). At the same time, complex 
inhomogeneous structure of the Earth interiors and 
the lack of information about their properties enables 
construction of only very coarse temperature models 
based on the data of global electromagnetic sounding 
and assumptions as to the conductance mechanisms 
(Dmitriev et al., 1988).    
 
If several wells with known temperature profiles in 
the region under study are available, one can suggest 
an essentially different approach to the estimation of 
the temperature spatial distribution. This approach is 
based on the measurements of magnetotelluric (MT) 
field on the Earth's surface, constructing conductivity 
profiles from these data and use of neuronet approach 



for temperature estimation with artificial artificial 
neural network trained on the correspondence of 
measured temperature data to calculated conductivity 
values (Spichak et al., 2006). The purpose of the 
present work was to verify this approach against the 
real data and to develop methodological guidelines 
for its application.      

RESEARCH METHODOLOGY 

The region of Bishkek geodynamic testing area 
(BGT) where the measurements were carried out is 
located in the north of Tien Shan in Chuiskaya 
depression (Figure 1). In the work, MT data are used 
measured within a frequency range from 5 x 10-4 to 
300 Hz in BGT region in the vicinity of 13 wells with 
known temperature profiles (Duchkov et al., 2001; 
Schwartzman, 1992). 

 

Vertical conductivity profiles at each site were 
revealed from dependence of the apparent 
conductivity determinant on the apparent depth. 
Figure 2 demonstrates the temperature well logs and 
resulting conductivity profiles beneath adjacent MT 
sites. 

Figure. 1. Location scheme of MT sites and wells for 
which temperature data are available. 

 

 
Figure. 2. The temperature well logs (blue lines) and conductivity profiles beneath adjacent MT sites (red lines). 



To study the possibility of temperature estimation in 
the Earth's crust from MT sounding data, a neuronet 
approach was applied which had been successfully 
used earlier for the evaluation of the target macro-
parameters based on MT data (Spichak and Popova, 
2000) and temperature distribution in the Earth's crust 
from the temperature well logs (Spichak, 2006). The 
study was performed in three steps: first of all, we 
estimated the influence of the data volume used for 
neuronet training on the predicted temperature 
accuracy; then, influence of training strategy was 
studied and, finally, the effect of local geological 
features of the medium was evaluated.    

DATA VOLUME EFFECT 

To estimate the influence of the training set volume, 
the neuronets were taught sequentially at 2, 4, 6, 8, 
10 and 12 pairs of profiles of temperature and 
electrical conductivity (hereinafter "T-MT") selected 
randomly from a whole data volume, and tested on 
the data obtained at MT sites closest to the wells for 
which temperature logs were available.   

Figure. 3. Average relative error ε  (in %) of 
temperature estimations  based on the 
data electricalal conductivity (blue line) 
and temperature logs (red line) as a 
function of the number of pairs (N) of 
temperature and electricalal conductivity 
profiles (or temperature logs only) 
involved in neuronet training 

 
Figure 3 displays relative rms errors of the 
temperature estimation in the well for the case of 
only temperature data used (red line) and for the case 
of joint use of electromagnetic data together with 
temperature logs (blue line). Comparing the plots, 
one can see that, with an increase in the volume of 
the training set, if not only the temperature logs but 
also electromagnetic data are used for temperature 
estimation, the relative error decreases faster than in 
the case of only temperature logs used. Besides, yet 
at a set of 6 T-MT pairs the error becomes practically 
minimal whereas the estimate based on temperature 
logs reaches this level when data from 8-10 wells are 

used. From this we can draw an important conclusion 
that given a limited number of borehole temperature 
measurements, an error of its estimate can be 
considerably (almost in half) reduced if one uses not 
only temperature but magnetotelluric data measured 
on the Earth's surface as well. 

EFFECT OF NEURONET EDUCATION 
STRATEGY 

Two strategies were applied to study the influence of 
local structural features of the Earth's crust between 
the well MT site, on the error of well temperature 
estimation based on electromagnetic data. In the first 
way, the neuronets were trained on five sets of 
randomly selected 12 T-MT pairs with subsequent 
forecasting the temperature in three wells (not 
involved in the training procedure) from the data 
about electricalal conductivity at closest MT sites. 
Here, when forecasting the temperature in wells T5 
and T6, two variants were considered: (i) using 
conductivity profiles from sites 627 and 618 and (ii) 
same from sites 620 and 550. On the other hand, also 
electromagnetic data at MT sites 618 and 550 were 
analyzed together with temperature logs measured 
not only in wells T6 and T1 but also in wells T11 and 
T14, respectively. 
 
Within the second strategy the neuronet was trained 
“blindfold” on the whole set of MT data available; 
then, based on this, electrical conductivity was 
estimated at depths where the well temperatures were 
measured and, finally, the neuronet taught on the 
correspondence between electrical conductivity and 
temperature in 14 T-MT pairs was used for predicting 
temperature in the well not involved in training. 
 
In order to compare the results of the temperature 
estimating based on electromagnetic and temperature 
data with those obtained with neuronets taught only 
on temperature data, we trained the neuronets on the 
same temperature logs that were used as described 
above (and only on these) and carried out the 
temperature estimations for the same wells.      
 
The results are shown in Table 1 and Figure 4. Errors 
of temperature estimation based on the first technique 
(utilizing electrical conductivity data from the closest 
MT site) are presented in Table 1 in column marked 
"1"; estimation errors obtained with the second 
technique ("blind" use of the whole set of MT data 
available) are given in column "2" and, lastly, errors 
of predictions derived from temperature logs only are 
shown in column "3". 
 
Average relative error of temperature estimation 
constructed in accordance with the first technique is 
11.9%, which turned out an unexpectedly good result 
for the  region of interest, since it  shows rather 



Table. 1.  Errors of well temperature estimation depending on the strategy of neuronet training and on the presence 
of geological peculiarities in the medium. Estimation errors obtained with the first technique  (selective 
use of MT data) are shown in column labeled "1"; those obtained with the second technique ("blind" use 
of the whole MT data set available) are shown in column "2", and those obtained from temperature logs 
alone are shown in column "3". 

 
 
 
 
 
 
 
 
 

 
Relative errors of temperature estimates (%) 

 

 
No. of wells and MT 

sites 
1 2 3 

 
Local features in the 
Earth's crust between 
the well and MT site  

 

Т1-МТ550 24.3 31.3 24.9 Thrust 

Т4-МТ625 12.5 26.1 5.9 No 

Т5-МТ620 7.7 12.4 16.7 Thrust 

Т5-МТ627 0.7 23.8 16.7 No 

Т6-МТ549 8.8 3.9 14.9 No 

Т6-МТ618 16.0 10.5 14.9 No 

Т7-МТ613 0.7 8.9 17.2 No 

Т8-МТ617 1.0 24.4 13.2 No 

Т9-МТ621 8.9 48.1 14.8 No 

Т10-МТ614 1.4 16.1 5.9 No 

Т11-МТ618 29.1 31.7 16.5 No 

Т12-МТ571 9.0 15.6 17.9 No 

Т13-МТ529 9.6 32.1 135.2 Cold meteoritic water 
flows 

Т14-МТ550 10.2 26.5 27.0 No 

Т16-МТ543 26.9 136.8 101.2 Deep fault 

Average error  11.9±2.3 29.9±8.1 29.5±9.2  

Average error, no 
anomalous zones 

regarded  

8.9±2.5 21.0±3.6 15.0±1.7  



Figure. 4. Measured and modeled distributions of temperature in wells. Black line – measured temperature, red line 
– temperature model based on the temperature data only, blue  line  – temperature model based on MT 
data.



complex geological structure and wide spread of 
temperature distribution. Average relative error of 
estimation based on the second approach was 29.9% 
whereas for the estimation involving sets of 
temperature logs only it amounted to 29.5%. 
 
Despite the fact that the prediction errors obtained 
with the second and third training strategies in three 
cases were lower than those in case of the first 
technique used, the first approach, on the whole, 
showed better results in 80% cases. In other words, 
the best prediction results are provided by conscious 
reasonable choice of MT sites location closest to the 
points for which the temperature estimation is carried 
out. 
 
At the same time, the distance between the T-MT 
pair used for estimation and MT sites and other wells 
utilized in neuronet training is not of determinative 
significance. This is clear from comparison of 
prediction results in cases of extrapolation observed 
in wells T7, T9 and T16 located in a marginal part of 
the studied region. From Table 1 one can see that for 
the well T16 this error is more than twice as big than 
the average error, whereas for wells T17 and T9 it is 
considerably less than the average one. This speaks 
for the fact that geographical factor plays only 
secondary part in temperature estimation, which 
confirms the earlier conclusion made in (Spichak, 
2006). 

INFLUENCE OF LOCAL GEOLOGICAL 
IRREGULARITIES 

From Table 1 it is apparent that the estimation 
accuracy is strongly affected by the presence or 
absence of local geological irregularities between the 
site where the temperature prediction is made and 
MT site providing the data for such estimation. 
Indeed, in case of a well and MT site situated on 
different sides of a tectonic disjunction (Т1-МТ550, 
Т5-МТ620, Т16-МТ543), the error of well 
temperature estimation increased by several times. 
Similar increase in the prediction error occurred in 
the presence of local area with thick (about 200 m) 
Earth's crust layer whereto cool flows penetrate 
producing anomalous negative temperature gradient 
with depth (Т13-МТ529). 
 
In this connection of interest is to compare the 
estimation results for pairs Т1-МТ550 and Т14-
МТ550. In the first pair having a thrust between the 
sites, the distance between the well and the MT site is 
2.17 km, and in the second pair the distance is 4.97 
km; however, the temperature estimation error here is 
inversely proportional to the distance. The same 
effect is observed for pairs Т5-МТ620 (a thrust is 
present) and Т5-627. It is significant that in both 
cases the errors of estimation based on the second 
technique when the data are used "blindfold" show no 

correlation neither with the spacing within a T-MT 
pair nor with an absence or presence of geological 
peculiarities. Prediction for wells located within 
"special" regions carried out using neuronets trained 
on temperature data only, also provides large errors, 
which is clearly seen from the graphs for pairs Т13-
МТ529 and Т16-МТ543 (Figure 4).  
 
From this one can conclude that the estimation error 
depends on the presence of specific geological 
features in the medium (like thrusts when disjunctive 
breaks are extending up to the Earth's surface) 
between the point of temperature estimation and MT 
site providing the input data for that (although much 
weaker than in case of second technique applied). 
Prior knowledge of geological specificity of the 
region under study can help to find a suitable location 
of MT observation site with respect to the point 
where the temperature prediction is carried out and, 
thus, to reduce significantly the error. 
 
Elimination of the estimates for those T-MT pairs 
where the Earth's crust contains some geological 
irregularities reduces the average relative error from 
11.9% to 8.9%. Thus, 6-8 temperature logs used for 
calibration of electromagnetic data turn to be quite 
sufficient to provide 12% accuracy of the temperature 
estimate, and in case of prior geological information 
about the region under study available, 9% accuracy 
can be attained. 

CONCLUSIONS 

The studies carried out allow us to make an important 
conclusion about a possibility of estimating the 
temperature in the Earth's interior from 
electromagnetic (magnetotelluric) data measured at 
the Earth's surface at a set of frequencies. Practical 
application of this indirect electromagnetic 
geothermometer will enable one, first, to refine the 
temperature estimates in cases when the amount of 
temperature logs available is insufficient; second, to 
perform more precise temperature prediction in 
extrapolation mode; third, to monitor the well 
temperature basing on surface observations of MT 
field and, at last, to carry out contactless remote 
temperature estimation in wells with extreme 
conditions (in particular, typical for supercritical 
geothermal reservoirs) unsuitable for traditional 
geothermometers.  
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