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ABSTRACT

Constant flow rate solutions are presented for a triple
porosity model-dual permeability using the transient
interporosity flow and a skin between two media in
mention for to generate a pseudosteady interporosity
flow. Transient interporosity flow is modeled in a
convolution form, considering matrix, microfractures,
vugs and fractures flow. New solutions are presented
for two cases, where there is no primary flow through
the microfractures and where the compressive and
distensive  strength process has created an
interconnected system of microfractures. In both
cases there is an interaction between matrix,
microfractures, and fracture systems.

Due to the total diffusivity hydraulic depends on
fracture pressure is modeled in a convolution form in
combination with a partial derivative of fracture
pressure with respect to dimensionless time for to
incorporate the geometry changes in fractures
during the production and depletion.

The numerical inversion was carried out with
Stehfest’s algorithm. In addition, approximate
analytical solution for short and long dimensionless
time are obtained and compared with the solution
calculated by numerical inversion, providing
satisfactory results. The values of the numerical
inversion were used to generate the results, presented
in terms of the dimensionless groups derived from
the approximate analytical solution.

Introduction

In areas without cores, open-hole wireline logs may
be used to help identify vugs zones; however, vugs
are not always recognized by conventional logs
because of their limited vertical resolution. Vugs
porosity is common in many reservoirs and its
importance in the petrophysical and productive
characteristics of a rock has been recognized in
several works. Vugs porosity can be subdivided into
small and large types. Vugs effect on permeability is
related to their connectivity’. One purpose of our
work is to present a technique to identify high
secondary porosity, mainly vugs porosity.

When dealing with NFR, it is important to study
its origin and main characteristics, such as the
regularity of their distribution, and morphology,
aperture, width, etc. Figs. 1 and 2 presents
photographs of whole cores taken in highly
productive naturally fractured carbonate vuggy and
fractured formations. Fig. 1.a shows two fracture
system, one being vertical and the other inclined,
connected through vugs. Fig. 1.b illustrates a
fracture system that has a main vertical direction. Fig.
l.c shows a system of vertical and conjugate
fractures; some vugs can be observed and an open
fracture of aperture of about 3mm.

Fig. 2 shows three additional images of carbonate
whole cores. Fig. 2.a illustrates the case of fractures
filled by calcite. Fig 2.b presents the important
physical condition of fracture planes affected by
dissolution, which increases both secondary porosity
and bulk permeability. Finally, Fig. 2.c exhibits
vertical fractures, enhanced by dissolution vugs,
which improve the formation bulk conductivity.

It has been observed in the literature that vugs
zones strongly influence production performance® *.

Recently two papers have discussed results
strictly related to the presents study. Camacho etal'.
developed a new way to model the secondary
porosity of naturally reservoirs (NFR), mainly vuggy
porosity the authors derived solutions for two cases,
one where there is no primary flow through the vugs
(which is an improvement of the Warren and Root
model), and second in which the dissolution process
of the pore volume has resulted in an interconnected
system of vugs and caves. Thus, this is a triple-
porosity / dual permeability model.

Rodriguez et al > developed a nested — triple —
porosity single — permeability model for the pressure
transient behavior of a well producing in a NFR,
there porosity systems, acting at different scales, are
assumed to coexist in these reservoirs: matrix, small
scale and large scale secondary porosity media, flow
in series among these media is considered; the matrix
exchanges fluids whit the small - scale secondary
porosity, which in turn feeds the large — scale
secondary porosity. The first two media are assumed
to have a local effect on fluid flow, and are
considered as discontinuous, while the third, the large
— scale secondary porosity medium, is considered to



affect fluid flow at the reservoir scale and it is
consequently continuous.

The present paper addresses the problem of
modeling vugs in naturally fractured reservoirs,
allowing the possibility of primary flow through
vugs, and develops a method to identify vugs in
reservoirs through well test and decline curves
analysis evaluating porosity associated with vugs and
fractures, and determining vugs connectivity.

Results

This section is divided in two parts. The first part
presents the formulation of the model. The second
part presents the pressure behavior during the
transient period, for both dual and single-
permeability models.

Model Formulation

In this work, a triple porosity model-dual
permeability is proposed wusing the transient
interporosity flow approximation and a skin between
the two media in mention for to generate a
pseudosteady interporosity flow. In this model is
necessary the geometry and form of the matrix and
vugs. The pseudosteady fluid transfer between
matrix, vugs, and fractures systems is directly
proportional to the difference in the volume average
macroscopic matrix, vugs, and fractures pressure. A
free interaction between matrix, vugs, and fractures
systems is allowed when the skin is zero between two
media and changes in properties with time of
fractures hydraulic diffusivity. This is different from
the model proposed in Abdassah and Esshaghi®, and
for this reason the triple porosity model proposed in
this work is unique.

Radial flow in the large scale secondary porosity
media with two source term in convolution form is
described in dimensionless variables, and changes in
properties with time of fractures hydraulic
diffusivity is modeled in a convolution form for the
triple porosity-dual permeability model, is given as
follows:

Considering a cylindrical symmetry, the
differential equation for the fractures (large scale),
using dimensionless variables, for the triple porosity—
dual permeability model, is given as follows:

2P (rpsty) | 1 9 puy(rpitp)

K 2
ar, rp ar,

9pFD(rD,tD)* Fop@pstp)

— @, (15)C

at, L+ S F o (Mgt
o (t )C ] &pFD(rD’tD)* Fm["(anstl)
- D mFbD &ID 1+ SmF FmF (nml)

9pm(rp,r)dr

=.[a),‘(tl,—z') g7

Where F, . (7,,)and F . (7,,) are the source

functions for matrix and vugs.

Source functions for matrix and vugs.
Transient matrix-fracture linear flow:
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Transient vugs-fractures spherical flow:
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Initial condition:
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Internal boundary condition: constant flow rate:
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External boundary condition: Infinite reservoir
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Radial flow in the small scale secondary porosity
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Initial condition:
p fD (r D 90) = O
Internal boundary condition: constant flow rate:
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External boundary condition: Infinite reservoir
lim pg, (rD,tD)z 0
Ip —o0

The porosities are defined by:
Small scale porosity (vugs):

Vv

f
¢) —_
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Large scale secondary porosity (fractures):
14 F
Pry, = .
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Matrix porosity when uses the reference bulk
rock:

Total porosity:

¢r = ¢mb +¢Fb + ¢ﬂ7

Matrix area exposed to large scale secondary
porosity (fractures):
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Matrix area exposed to small scale secondary
porosity (vugs):

Vugs area exposed to large scale secondary
porosity (fractures):
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Interporosity flow shape factor between medium i
and medium j.
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Example, for for cubic matrix and vugs:
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Where the dimensionless variables are given by
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The storativity ratios, for matrix, fractures and
vugs are functions of time:
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Using the porosities can be demonstrated that:
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(21)  Note that in the definitions of 4,, and4,,, we

have used k,, because in the absence of capillary
forces we expect that under production conditions
fluid goes from matrix to vugs and fracture networks.

For the case of the triple porosity-single
permeability model, i.e. when there is only primary
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flow through the fractures or through the wvugs
network, the vugs and fractures permeability,
respectively, in the above definitions is set equal to
zero except in the numerator of A, . For these cases
k=1 and 0, respectively.

Thus, the parameter x takes values between zero and
one.

K= ka
kg, + kﬂ, +k,

Dimensionless matrix area exposed to large scale
secondary porosity:
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Dimensionless matrix area exposed to small scale
secondary porosity:
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Dimensionless vugs area exposed to large scale
secondary porosity:
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The complete solution in real time is:
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Petrophysical characterization show that several

functions are pseudolinear:
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Appendix A presents details of the solution in

Laplace space for the triple porosity-single

(35)permeability model, considering constant flow rate
and an infinite reservoir.

If all secondary porosity (vugs, microfractures
and fractures) are lumped, Eq. 41 can written as:
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Using in Eq. 42 the definition of the interporosity
flow coefficient A

as definited by Cinco and

(38)Samanieg0:
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the well known Warren and Root Solution is
obtained:
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Transient Well Test Behavior

It is shown that this solution, given by Egs. (A-16) or
(A-17), extends the typical Warren and Root (1963)
solution’. Figures 3-5 present analytical results
obtained by applying Stehfest algorithm to Eq. (A-

16) for different values of the parameters: A,,, 4
y lmf ?

storage and skin are zero. In all cases the solution of
Cinco and Samaniego with S, - =710 is represented

fF
o, , and O, considering that wellbore

by the continuous line without symbols. At early
times a semilog straight line can be observed. The
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presence of an early semilogarthmic straight line
indicates the fractures-controlled flow period.

At late times, a straight line parallel to the early-

time line represents the homogenous flow period of
the fractures, vugs, and matrix blocks, where pressure
in fractures, vugs, and matrix, is the same (see Fig.
4).
In a most curves presented in Figs. 3-5, there are
anomalous slope changes during the transition period
caused by the presence of vugs. In some cases,
another intermediate straight line, parallel to the
above straight line, is present during this transition
period.

This behavior is different in the double-porosity
response. Before and after this intermediate straight
line there are transition periods, whose slopes may be
different from the characteristic constant pressure
drop period of Warren and Root shown by the
solution. During these transition periods, apparent
straight lines may be fitted, with slope ratios that
could be 2:1 for the early, intermediate, or late-time
segments, which could be interpreted as a transient
interaction between matrix and fractures, especially if
one of the three parallel straight lines is missing
because of wellbore storage effects or because of the
short duration of the test.

The duration of the anomalous slope changes
during the transition period is a function of

Agl Ay and 4,14, .

mf

Figure 6 presents a comparison of fractures and
vugs pressure profiles at different times.

As expected before the homogeneous flow period,
vugs pressure drop profiles around the wellbore are
lower than fracture profiles. The matrix profiles, not
shown in this figure, before the homogeneous period
is very small. During the homogeneous flow period,
fracture, vugs, and matrix pressure profiles agree.
Although profiles computed with the complete
analytical solution, given by eq. A-25 are not
presented in this figure, they are very close to the
numerical inversion profiles.

Using the analytical solution, given by eq. (A-16),
short, intermediate, and long time approximations are
obtained.

Fig. 7 presents results in term of both the pressure
and derivate function.

The number of variables to be defined, three
interporosity flow parameters, three interporosity
flow parameters, two storativity ratios, wellbore
storage constant, and skin factor, makes the use of a
type curve matching procedure necessary.

Figures 8 and 9 show two type curves for un
connected vugs, with /lmf = 107, W, = 10°, and

considering no wellbore storage and skin effects.

Fig. 8, pressure and pressure derivative curves for
different values of A, and @,, keeping fixed 4,

in 107, are presented.

This solution, that also includes a skin in both
vugs and fractures, extends the single permeability
solution.

The inclusion of vugs skin factor is important
because well-connected, large vugs are usually
invaded by drilling mud only in a vecinity of the
well, never reach the pseudosteady transfer between
vugs and fractures.

Figure 10 shows a comparison of production
decline results for transient condition with no skin
fracture and also for two different skin values,

S,,r =0.6 and 10; the later results closely correspond

to the pseudosteady state flow condition.

Even the type curve matching procedure may be
difficult and not unique, it represents an attractive
possibility to obtain the distribution of porosity
between fractures, vugs, and matrix, and their
interaction. This is important because core data
underestimate the permeability of vugs zones, and
vugs are not always recognized by conventional logs.

Conclusions

The main purpose of this work has been to present a

more general transient test analysis for NFR based on

the transient interporosity flow, including the matrix
and microfracture skin effect.

From the results of this study, the following
conclusions can be established:

e The model permits an easy change of the matrix
block geometry or vugs.

e Approximate analytical solutions for short and
long times are presented; others previously
presented solutions are particular cases.

e For decline curve analysis, the use of the Warren
and Root Model for the decline analysis of
multiple porosity systems can be justified by
using a matrix- fracture flow restriction.

e The matrix-fracture and vug-fracture skins can be
confirmed by other sources, such as that from thin
section of cores.

e The bulk fracture parameters of permeability and
the storativity and the outer radius can be
estimated through the methodology of this study.

e The estimated flow rate considering transient
matrix to fractures transfer and transient
microfracture to fracture transient obtained in this
work is higher than the value of pseudosteady
state given by Rodriguez de la Garza et al.*®

e It is shown that by using flow tests a better
characterization of the naturally fractured
reservoir can be achieved.

e The flow rate give the adequate interporosity
(fracture) skin, exposed area transfer and
spacing between fractures for modeling the
imbibition, for forecasting and develop fields.



References

1. Camacho V. R., Vasquez C. M. , Castrején
A. R. and Arana O. V.: “Pressure-Transient
an Declined-Curve Behavior in Naturally
Fractured Vuggy carbonate Reservoirs”,
SPE Reservoir Evaluation & Eng. (April
2005) 95-111.

2. Rodriguez F.,Arana-Ortiz V. and Cinco Ley
H., 2005: “Well Test Characterization of
Small-and Large-Scale Secondary Porosity
in Naturally fractured Reservoirs”, paper
SPE 90287 presented at the Annual
Technical Conference and Exhibition,
Houston, Texas., September 26-29.

3. Cinco Ley, H. and Samaniego, V. F., 1982:
“Pressure Transient Analysis for Naturally
Fractured Reservoirs”, paper SPE 11026.
presented at the 57" Annual Fall Technical
Conference and Exhibition New Orleans,
La., September 26-29.

4. Cinco Ley H., Samaniego, V. F and Kucuk,
F., 1985: “The Pressure Transient Behavior
for a Naturally Fractured Reservoirs with
Multiple Block Size”, paper SPE 14168
presented at the Annual Technical
Conference and Exhibition, Bakersfield,
CA., March 27-29.

5. Gringarten, A., C., 1979: “Flow Tests
Evaluation of Fractured Formations”, paper
presented at the symposium on Recent
Trends in Hydrogeology. Berkeley, CA,
Feb. 8-9.

6. Herrera, G. R.: “Anadlisis Petrofisicos de
Formaciones Naturalmente Fracturadas”,
Ph. D. Dissertation, School of Engineering,
National University of Mexico (2000).

7. Herrera G. R., Samaniego V. F. and
Herndndez, F.: “On the Petrophysics of
Carbonate Reservoirs Through Whole Core
Analysis”, paper SPE 28675 presented at the
1994 SPE.

8. Stehfest, H., 1970: “Algorithm 368:
“Numerical Inversion of Laplace
Transforms”, Communications of the ACM
(Jan.) 13, 47-49.

9. Warren, J. E. and Root, P. J., 1963: “The
Behavior of Naturally Fractured
Reservoirs”, SPE Journal (Sep.), Vol. 3,
245-255; Trans. AIME, 228.

Nomenclature

A = drainage area, ft’.
B = formation volume factor, RB/STB.
c, = compressibility, psi™.
C, = dimensionless pseudo steady state shape
factor.
Cp = fracture area; is the ratio between matrix
surface

and rock volume, e,

h = formation thickness, ft.

H = matrix block size, ft.
In = modified Bessel function, first kind, nth
order.

k = permeability, md.
Kn = modified Bessel function, second kind, nth
order.

)4 = pressure, psi.

)2 = Laplace transform of p .

P = wellbore flowing pressure, psi.

q(t) = volumetric rate, bbl/day.

N, = cumulative production, bbl.

n = number of normal set of fractures.

r = dimensionless radius.

r, = outer boundary radius, ft.

rp' = effective dimensionless well outer radius.
r., = wellbore radius, ft.

r,’ = effective wellbore radius, ft.

s = Laplace space parameter.

S = fracture skin.

S, = Van Everdingen and Hurst skin factor.

t = time, hours.

! pa = dimensionless time based on

drainage area A.
Vv = ratio of total volume of medium to bulk
volume.

X = thickness, ft.

(07 = interporosity flow shape factor, ft™.

S = characteristic dimension of the

heterogeneous
medium, ft.
A = dimensionless matrix-fracture

permeability ratio, reflects the intensity of
the fluid transfer matrix fractures.

n = diffusivity.

Y7, = viscosity, cp.

¢ = porosity, fraction.

@ = dimensionless fracture storativity, is the
ratio of the storage capacity of the
fracture to the total capacity of the
medium.

Subscripts

b = bulk (matrix and fractures).

D = dimensionless.

d = damaged zone.

e = external.

f = microfracture

F = fracture

m = matrix

surf = matrix-fracture surface



t = total

Replacing the initial condition given by Eq. (9) in the
right hand side of Eq. (A-5):

Appendix A o -
General and Approximate Solutions for the d’ p (rp,s) L AP (rp.s)
Transient Flow of a Fluid in a Naturally dr 2 ro dr
Fractured Reservoir, with Transient -
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Applying the transform to matrix-fracture function:
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Applying the transform microfracture-fracture: Fr (77 , S)

F(5)= @p () + @, () i (9) 1= fFé’n :
_ > nfzti, fF X
le__ (nﬂ:D , S) — L|:477ﬂ:p Z e ’]‘/FD( ) :| 7ﬂ: fFD.S

n=0
A- F’”F (nm . )
- ! (A-3) HI=0,(9) = @ ()ICn () F(DS :
mw =0 S+ anD (n)z 7[2 mp L' mF anD.S

(A-8)
Summatory can be represented by continuous
function: The general solution of the equation of flow in the

large scale secondary porosity medium is:
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Applying the Laplace transform to Eq. (1) that Appl.y@ng the Laplace transform to the boundary
describes the radial flow in the large scale secondary con ditions given by Eqs. (10) and (11):

. . dp o (1,s) _ 1 .
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[ dimensionless pressure in the large scale secondary
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porosity:
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PFD(VD,S):

(A-12)
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+ [1 - a)f (S) - a)F (S)]CmFbD (s)gz(s)
(A-13)

Where the parameters C,,, and C,, are given by

Egs. (32) and (34), and the transient transfer
functions including the skin are:

ﬂfma/?mnh( 0.5s/Mpp ) (A-

K, (a/s[A])z—ln[eya/s[A]].
2
(A-19)

Substituting the approximations given by Eqgs. (A-18)
and
(A-19) in Eq. (A-16):

—ln(eya/sf(s)]
2

N

P rwp (s)=

(A-20)

This Eq. A-20 can be expressed:
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Complete Analytical Solution

The following Bessel function relations are valid for
big arguments:

_ 1
KMs[AJ%m

(A-18)

B= wf CbeD anDj/z [\/; + SmF Nwrp e ]

C: [ ]_wf _wF ]C’mFbD77mF03/2 |:\/;+SfF77mDﬁ/2 ]

(A-23)

Rewritten the solution:



- 1inle?7s/4) | In(Aw, +B+C) [ in(A)
pFwD(S):_i - +=
2 s 2 s 2 s

(A-24)

The complete solution in real time is:

—CrpoTlwoty |
Prunltn) =~ In(t,)+0.80007 + Eif oo Tl
2 Syl - @, — oy

=S it =S ,rt
+l —Ei fF°D +Ei mFlp
2 C fFbD n fFbD w_; [1 - w_; — W ] CmFbD /o [1 - w_; — W ] i

-S it
+l _El[ mF " D P ]
2 CmFbD 1w [l - w_/ — W ]

(A-25)

Approximate Analytical solution for short times

For small arguments, the function f(s ) given by
Eq. (A-17) can be expressed:

lim f (s)=lim o, +lim[1_w]CFbDnmn{tanh[ v S/Umngj:|

§—00 §—o0 §—00 4 s

+lim [I_w]cml"bl) V’i/mi‘bl) |:m”h(w S/anbD/Zj:| =, -
S

§—yo0 4
(A-26)

Replacing this limit for the transfer function in the
wellbore pressure given by Eq. (A-16):

1 K()(\/E)
S+ SWp K](\/E)

Prw($)=

(A-27)

The following approximations for the Bessel
functions are valid for small arguments:

X, (mz_m(ﬂm/z ]

(A-28)

K (fsx)=—

S W;

(A-29)

Replacing the approximations given by Egs. (A-28)
and (A-29)in Eq. (A-16):

—ln(ezya/sa)ﬁ]

P (8) =
(A-30)

The inversion of Eq. (A-30) results in the solution for
early times:

1 t
Prup (tp) = 2{ln((:) + 0.80907}

Fi
(A-31)

Approximate Analytical solution for long times:

l_aiCFbD \% [tan{m ]
4 s 2

]
ligfls)=lim i
(A-32)

For small arguments +[5/7], , / 2:

limf(s)za)-l-[l_w]CFbD m s -1
s—=0 8 \/; m

(A-33)

Replacing the is limit given by Eq. (A-32) in the
wellbore pressure:

1 K, (“/;)
s-/s K ] (x/; )

;FWD (s)=

(A-34)

The following approximations for the Bessel
functions are valid for small arguments (Eqs. A-28
and A-29):

K, («/;)z—ln(eyﬁé)

(A-35)

K, (M)z !
SK

(A-36)

Substituting Eqgs. (A-35) and (A-36) in Eq. (A-16):



[ )

pFwD(S): .
S

(A-37)

The inversion of this expression results in Eq. (A-
38).

Pop 1y )=Llin(t, )+0.809071].
2

(A-38)

a) Core with both horizontal fractures and vertical
fractures while connected to vugs of several sizes.

b) Net of fractures in vertical planes connecting vugs.

c) System of conjugate fractures connected to vugs.

Fig. 1 Photographs for whole cores of reservoir A with
strong changes with the time.

a) Sealing fractures with calcite and early dolomitization.
b) Fracture System and vugs
¢) Vugs plane in the same direction of fractures plane.

Fig. 2 Photographs for whole cores of reservoir B.

Pseudosteady Matrix fracture transfer

9
a8 LT
= "y
=
£ 7
£
H
ze "
= v
2 Il
25
§ ‘ ®w=0.01, lanbda =10-4
5 4 "1‘ AW =001, lambda=10-5_
P -
H "/
z 3 /
g
£ o
a2

il

1 e

0 T T T

1602 1.E-01  1E+00 1.E+01 1.E+02 1E+03 1E+04 1.E+05 1.E+06 1.E+07

Dimensionless time, tD

Fig. 3. Pseudosteady matrix-fracture flow for
constant omega and two lambda in a semilog graph.



Pseudosteady Matrix fracture transfer Pseudosteady and transient matrix-fracture transfer
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skin. The transition period exhibit a “u” form without

skin and “v” for skin =10 in a log-log graph. Fig. 9 Two behavior simultaneously in the transition

period: Pseudosteady and Transient matrix-fracture in



a log-log graph. Transient matrix fracture with skin in
a fractures and transient in vugs.

Tr ient and pset dy matrix- fracture transfer
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Fig. 10. Pseudsteady matrix fracture transfer give the
minimum response in production, the transient matrix
fracture transfer give the maximum response in
production, the real production must be the correct
skin between matrix and fractures.



