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ABSTRACT 

In the past, well histories such as produced chloride 
concentration and injection rate data have been used 
to identify well-to-well relationships and thereby to 
recognize injection return flow paths in the reservoir.  
One of the difficulties in earlier approaches has been 
the need to make some kind of assumption of the 
expected form of the production histories.  By using 
nonparametric regression, the need to assume a 
specific form of model is avoided, and a clearer 
vision of the relationships between reservoir 
parameters can be revealed.  Data from Palinpinon-I 
field were analyzed using the approach and results 
were verified successfully against tracer test data and 
qualitative field observations. 

1. INTRODUCTION 

One of the most challenging reservoir engineering 
problems in the design of a geothermal development 
is the formulation of a strategy for reinjection.  Due 
to the complexities of the geology in most 
geothermal reservoirs, which are usually found 
within fractured and heterogeneous volcanic rocks, it 
is common that injected fluids take apparently 
surprising paths through the reservoir and often show 
up rapidly and unexpectedly in production wells.  
Premature thermal breakthrough is a serious 
detriment to efficient recovery of the geothermal 
resource, and unfortunately has been a rather 
common occurrence in many geothermal fields 
(Horne, 1985). 
 
Hence one of the most important tasks for a reservoir 
engineer designing a reinjection strategy for a given 
reservoir is to make an estimate of reservoir 
connectivity.  Traditionally, this has been done by 
tracer testing, and a large number of papers have 
described field applications of this approach (for a 
recent example, see Fukuda, Akatsuka and Sarudate, 

2006).  Although effective, tracer testing has some 
disadvantages, namely: 

1. It may be expensive. 
2. The flow paths that become important 

during the production phase of the project 
may differ (because of differences in 
pressure fields) from the paths shown in 
tracer tests before the project began 
operation. 

3. It may be hard to test all wells, because of 
the logistical costs of collecting samples, 
and because some wells may not receive 
tracer until a long time has passed. 

 
For these reasons, it has also been popular to analyze 
the movement of fluids in the reservoir by monitoring 
the production of chloride, which changes as a 
function of time because the reinjected water is 
elevated in chloride concentration due to the 
separation of steam.  The classic paper that 
illuminated this approach was Harper and Jordan 
(1985), which quantified the rate of return of 
reinjection water at Palinpinon-I field by analyzing 
chloride (among other variables). 
 
In 1991, Urbino (Macario) and Horne used a 
correlation method to relate the chloride histories of 
production and injection wells, for example the well 
pair shown in Figure 1.  This figure reveals a clear 
relationship between chloride injected at one location 
and the chloride produced at another.  One of the 
variations of the approach was to subtract a linear-
with-time trend from the data, which was an attempt 
to decipher short-term fluctuations from well 
histories that show a continuously increasing chloride 
concentration.  The correlation approach was 
expanded further by Sullera and Horne (2001), who 
used wavelet decomposition to assist the illumination 
of the chloride fluctuations at different time 
resolutions.   
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Figure 1:  Example data from Palinpinon-I, showing 

chloride production in well OK-7 and 
injection rate of well PN-9RD, from 
Sullera and Horne (2001). 

 
The basis of these approaches was to make 
assumptions as to the functional relationships 
between the input and output of chloride, for 
example: 
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where      Clp  =  chloride concentration in production 
well, P  
                QIn  =  mass flow rate into injection well In 
                an    =  linear coefficient of well In 
                a0    =  a constant associated with local 
initial chloride concentration 
 
Another example model assumed a background trend 
of the chloride that increased in time: 
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The methods proceeded by determining the best-fit 
values for the coefficients a and b that gave the best 
match to the observed data for produced chloride, 
given the histories of injection.  The coefficients a 
were then directly identifiable as the magnitude of 
the connectivity between well pairs, a kind of 
“connection index”. 
 
This approach was reasonably successful, and was 
shown by Urbino (Macario) and Horne (1991) to be 
qualitatively consistent with the results of tracer tests. 
 
Nonetheless, a philosophical difficulty with this style 
of analysis is the requirement to make assumptions of 
the mathematical form of the model, such as Eq. (1) 
or (2).  The reservoir physics may result in the 
relationships being something other than simple 
forms.  This is a weakness of the approach. 

 
In an attempt to address this weakness, we 
investigated the use of nonparametric regression.  
The fundamental idea of nonparametric regression is 
to match the data without making assumptions about 
the underlying form of the relationships.  In fact, a 
major advantage of the approach is that the nature of 
the relationship is revealed in the process.  The 
magnitude of the connectivities can also be 
estimated, and these values are then useful for 
reinjection analysis and design. 
 
In the sections that follow, the nonparametric 
regression method known as ACE will be described, 
and an example of its application to data from 
Palinpinon-I will be shown. 

2.  NONPARAMETRIC REGRESSION – ACE 

The ACE (alternating conditional expectation) 
method was presented by Breiman and Friedman 
(1985) as a nonparametric approach to modeling data 
without knowing the model in advance.  An example 
of its use will be shown here to illustrate how it 
works. 
 
In this example, a synthetic data set was generated so 
that the effectiveness of the method in recovering the 
underlying model could be determined.  The original 
data are shown in Figure 2. 
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Figure 2:  Test data set, generated with the 

expression ln y = sin 2πx.  
 
These data were generated using the following 
expression: 
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     (3) 
where xj is drawn from a uniform distribution U(0, 1) 

and jε  is independently drawn from a standard 

normal distribution N(0, 1).  It should be noted that 
the underlying model for these data is: 
 

)2sin(ln jj xy π=    (4) 



Hence the functional forms of both y and x functions 
are nonlinear. 
 
The ACE method works by inferring a decomposition 
of the signal in the following form: 
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where e* is the remaining error not captured by the 
functional form, and which is assumed to be normally 
distributed. 
 
Figure 3 shows the inferred relationship g(y) as a 
function of y, compared to the form used to create the 
data original (which was ln y).  Figure 4 shows the 
inferred relationship f(x) as a function of x, compared 
to the form used to create the data original (which 
was sin 2πx).  Finally, Figure 5 shows the match of 
the “model” to the observed data.  The remarkable 
capability of the ACE method to separate the 
individual behaviors is revealed in this example. 
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Figure 3:  Inferred functional form g(y) of output 

signal, compared to original generating 
expression ln y. 

 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2

x

tx

f(x)
sin 2px

 
Figure 4:  Inferred functional form f(x) of output 

signal, compared to original generating 
expression sin 2πx. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

y

         y

      yhat

 
Figure 5:  Extracted model response, fitted to 

original data. 
 
It should be noted that the ACE method can be 
applied with more than one independent x variable.  
Hence it is a very suitable way of investigating the 
relationships between outputs (for example, chloride 
production at a well) and inputs (for example, 
injection rates at many other wells). 

3.  APPLICATION TO PALINPINON-I 
CHLORIDE DATA 

Having introduced the ACE approach, it is clear that 
this method offers advantages over the inherently 
“parametric” approaches used earlier by Urbino 
(Macario) and Horne (1991) and Sullera and Horne 
(2001).  It is no longer necessary to make any explicit 
or implicit assumptions about how the input and out 
variables depend on each other.  To compare the 
approaches, we reexamined the same data set used in 
these two earlier studies, namely the production and 
injection histories of Palinpinon-I field over the 
period between 1983 and 1989. 
 
Typical results are shown for well OK-7 in Figures 6 
and 7, and for well PN-17D in Figures 8 and 9.  
Figure 6 can be compared to the original data shown 
in Figure 1.  Looking first at Figure 6, which has 
been simplified by including only the functions due 
to time (red line) and due to well PN-9RD (pink 
squares), it can be seen that the ACE procedure 
extracts a simpler picture of the relationships between 
input and output signals.  Importantly, the time 
dependence is not linear, as was assumed in the 
earlier studies.  The details of the PN-9RD function 
are somewhat deceptive, as the well was not injecting 
for much of the time.  Hence it is the magnitude of 
the positive values of the transform function that 
indicate the degree of connection between this well 
and OK-7.  Figure 7 adds the transform functions for 
all of the injection wells – the relative sizes of their 
positive components shows their connectivity to well 
OK-7.  Figures 8 and 9 show the same kinds of data 
for well PN-17D, revealing an almost linear 
dependence on time in this case. 
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Figure 6:  Extracted model functions from OK-7 data (thin line), showing dependence on time (red line), and 

dependence on injection into PN-9RD (pink squares). 
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Figure 7:  Extracted model functions from OK-7 data, showing dependence on time, and dependence on injection 

into all injection wells. 
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Figure 8:  Extracted model functions from PN-17D data (thin line), showing dependence on time (red line), and 

dependence on injection into PN-9RD (pink squares). 
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Figure 9:  Extracted model functions from PN-17D data, showing dependence on time, and dependence on injection 

into all injection wells. 
 
 



Based on the transform functions shown in Figures 7 
and 9, we can compute a “connection index” for 
well-to-well connectivity.  We experimented with 
different ways to do this, and eventually decided on 
an index defined as: 
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These indices are listed in Table 1, and illustrated 
graphically in Figures 10 and 11.  Figure 10 includes 
the overall dependence on time, to reveal the size of 
the impact of reinjection at each production well (the 
total length of the bar).  Individual bar segments in 
Figure 10 indicate the strength of the connections 
from specific injection wells.  These same connection 
strengths are shown in Figure 11, allowing a quick 
visualization of the largest connections – the ones 
most likely to result in thermal breakthrough. 

 
Table 1:  Connection indices based on the average absolute magnitude of the ACE derived transform functions fi(xi).  

These same data are shown graphically in Figures 10 and 11. 
 
 PN-1RD   PN-2RD   PN-3RD   PN-4RD   PN-5RD   PN-6RD   PN-7RD   PN-8RD   PN-9RD   dt 
OK7 0.10 0.19 0.03 0.03 0.20 0.10 0.01 0.03 0.16 0.69 
OK9D 0.07 0.17 0.27 0.19 0.38 0.01 0.04 0.05 0.17 0.74 
OK10D 0.10 0.17 0.28 0.20 0.12 0.17 0.16 0.13 0.11 0.56 
PN15D 0.06 0.06 0.04 0.27 0.13 0.03 0.10 0.01 0.06 0.93 
PN16D 0.04 0.02 0.14 0.05 0.03 0.03 0.01 0.07 0.03 0.84 
PN17D 0.33 0.16 0.02 0.05 0.54 0.01 0.09 0.40 0.43 0.85 
PN18D 0.05 0.23 0.06 0.12 0.16 0.04 0.02 0.09 0.02 0.69 
PN19D 0.09 0.06 0.41 0.08 0.11 0.07 0.01 0.14 0.03 0.88 
PN21D 0.02 0.04 0.27 0.47 0.25 0.03 0.00 0.03 0.00 0.88 
PN23D 0.04 0.10 0.14 0.08 0.05 0.06 0.00 0.08 0.04 0.78 
PN24D 0.06 0.08 0.19 0.20 0.08 0.10 0.03 0.24 0.13 0.79 
PN26D 0.28 0.11 0.04 0.07 0.28 0.05 0.03 0.11 0.07 0.76 
PN27D 0.08 0.12 0.07 0.22 0.23 0.03 0.02 0.02 0.16 0.88 
PN28 0.13 0.15 0.10 0.08 0.08 0.00 0.00 0.14 0.00 0.74 
PN29D 0.06 0.12 0.08 0.06 0.05 0.09 0.01 0.05 0.11 0.76 
PN30D 0.05 0.10 0.29 0.11 0.22 0.02 0.01 0.22 0.02 0.57 
PN31D 0.05 0.06 0.07 0.11 0.11 0.04 0.02 0.11 0.11 0.84 
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Figure 10:  Summary of “connection indices” based on ACE function magnitudes.  Total length of bars indicate 

impact on well of reinjection returns.  Rightmost element represents time dependence. 
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Figure 11:  Summary of “connection indices” based on ACE functions, showing magnitude of well to well 

connections. 

4.  COMPARISONS TO TRACER TESTS 

We can compute these connection indices using 
ACE, but do they have physical meaning compared 
to actual fluid movements in the reservoir?  One way 
this can be investigated is by comparing the indices 
to well-to-well connectivity measurements obtained 
by other approaches.  Fortunately, a series of tracer 
tests conducted at Palinpinon-I allowed us to make 
such a comparison. 
 
During the early life of the field, PNOC-EDC 
conducted a number of tracer test campaigns at 
Palinpinon, as described by Urbino, Zaide, Malate, 
and Bueza (1986).  These tracer test records showed 
the transit time of the tracers from one well to 
another, as well as the total fraction of the tracer 
recovered.  We used the reciprocal of the transit time 
as an indicator of the connectivity, based on the 
premise that a fast (short) transit time represents a 
strong connection. 
 
Figure 12 shows the results of the tracer test with 
injection into PN-1RD, compared to the connectivity 
from well PN-1RD estimated in the ACE analysis.  
The results are very consistent. 
 
Figure 13 shows a similar comparison in the case of 
PN-9RD, which was a test that showed many more 
positive returns of tracer.  Again the results are 
consistent, although not perfectly so. 
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Figure 12: Comparison of connection indices from 

injector PN-1RD, compared to results of 
tracer test into PN-1RD (inverse of 
arrival time). 
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Figure 13: Comparison of connection indices from 

injector PN-9RD, compared to results of 
tracer test into PN-9RD (inverse of 
arrival time). 



5.  DISCUSSION 

As a demonstration of the approach, the application 
of the ACE method to Palinpinon-I data of 
production well chloride as a function of reinjection 
well injection rate showed that the well-to-well 
connectivity indices computed in this way are 
consistent with tracer test results.  The advantage of 
inferring well connectivity by this approach is that it 
can be done with routinely measured production and 
geochemical data and does not require the expense 
and operational disruption that would be needed with 
a tracer test.  In addition, it is also an important 
advantage that the well configuration is in normal 
operational condition, whereas during a tracer test 
there is often a worry that the flow paths may be 
influenced by the configuration of the wells during 
the test itself. 
 
The procedure shown here is applicable to other 
kinds of data, for example pressure, enthalpy, flow 
rate and any number of geochemical species.  The 
more kinds of data included, the better the chance of 
capturing the interwell dependencies.  The data set 
used here provided promising results, even though 
the fact that the injection wells were often shut in 
completely during this time frame is not optimal for 
the analysis. 

6.  CONCLUSION 

The ACE nonparametric regression method is a 
useful way to make estimates of well-to-well 
interrelationships.  The application of the approach to 
historical data from Palinpinon-I geothermal field in 
the Philippines yielded results that were consistent 
with tracer testing of the reservoir. 
 
The approach may also be usefully applied to other 
forms of production data, to reveal reservoir 
connectivity. 
 
Knowledge of the connectivity is of very significant 
value during the design of a reinjection strategy. 
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