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ABSTRACT 

Solute transport in fractured rocks is of major interest 
in many applications: geothermal energy production, 
petroleum industry, ground water management. This 
work focuses on a dispersion experiment performed 
with a transparent replica of a real fracture. The local 
aperture map was extracted using the well-known 
Beer-Lambert law, which shows a very 
heterogeneous medium. The hydrodynamic aperture 
was determined from single-phase flow 
measurements by assuming the validity of cubic law. 
Numerical simulation on the aperture map leads to 
the same aperture value. A tracer experiment was 
then performed at a Peclet number high enough to 
neglect molecular diffusion. While the classical 
convection-diffusion approach fails to interpret 
experimental results, a basic model of parallel 
rectangular ducts with local piston-like flow captures 
most of the breakthrough curve shape. The later 
corresponds to pure convection dispersion due to 
apertures and streamlines geometry distribution. 

INTRODUCTION 

Tracer flow in fractured rock is of great interest either 
in groundwater pollution, CO2 sequestration and oil 
recovery. This paper focuses on non-reactive solute 
transport in a single fracture with non-permeable 
walls. Solute transport is controlled by molecular 
diffusion and advection. In complex media, as real 
fracture and porous media, the heterogeneities also 
contribute to the dispersion of the solute at the 
macro-scale. Following previous works (Bodin et al. 
2003a, Detwiler et al 2000) hydrodynamic dispersion 
in fracture may be divided into three processes which 
may be added: Taylor-Aris dispersion, roughness 
dispersion and aperture-variation dispersion. The first 
one occurs even with smooth walls due to the 
combined action of convection and radial molecular 
diffusion (Bear 1988, Dullien 1992). Equations in the 
following are written in one dimension with x the 
abscissa along the flow direction. The variables like 
velocity, concentration and flux, are averages done 
for each x over the cross section of the fracture. The 
mass balance equation is:  
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where C is the average solute concentration and F is 
the mass flux per unit area. φ is the porosity defined 
for the fracture as the ratio between the apertures 
average and the maximum aperture: max/ hh >< .In a 
piston-like displacement, the relation between the 
flux and the concentration is F=UC, with U the 
average velocity across the fracture. In a real fracture, 
heterogeneities at different scales, as rugosities and 
aperture variation, induce hydrodynamic dispersion. 
A common approach to model this process is based 
on a Fickian law giving the flux in accordance with 
the concentration and its gradient (Bear 1988, Dullien 
1992):  
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which leads to the well-known advection-diffusion 
equation (Bear 1993): 
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where D is the longitudinal hydrodynamic dispersion 
coefficient which depends on the three processes 
cited before. With smooth walls and a constant 
aperture, D is the Taylor-Aris dispersion coefficient 
(Dutta and Leighton 2001, Brenner and Edwards 

1993): ( )2 2 /m mD f U h D+ , where Dm is the 

molecular diffusion coefficient, h is the aperture and f 
is a constant depending on the cross section 
geometry. For a fracture with varying apertures, D 
has a similar form φα /UDm +  where α is the 
dispersivity (Bear 1993). For a homogeneous 
medium and for given initial and boundary 
conditions, analytical solutions of equation (3) may 
be easily derived. For example, with a step injection 
in a medium initially without solute: 
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the solution of equation (3) is (Bodin et al. 2003b): 
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Two remarks may be done. First of all the catalyst of 
the dispersion process in the convection-diffusion 
approach (equation (3)) is the concentration gradient. 
Second this approach is extensively used even when 
molecular diffusion is negligible. 
Another approach describing dispersion in fractured 
media is the channeling of the fluid flow (Bodin et al. 
2003a, Neretnieks 2002, Grindrod and Impey 1993, 
Brown et al 1998). The process is controlled by 
preferential flow paths due to spatial variation of the 
aperture. The fracture may then be modeled by a 
distribution of channels along which particles are 
advected (Grindrod and Impey 1993, Neretnieks 
2002). In other words, molecular diffusion is 
negligible and fluid particles displacement is only 
controlled by advection along streamtubes which are 
represented by channels. 
This paper presents results of tracer dispersion 
experiment performed on a transparent replica of a 
real fracture. The image analysis is based on the 
Beer-Lambert law (Persoff and Pruess 1995, Isakov 
et al. 2001, Detwiler et al 2000, Lee et al. 2003). The 
first part presents the experimental setup and image 
analysis method. The experimental results are then 
detailed: single-phase flow measurements, apertures 
map determination and tracer experiment. Finally a 
discussion on experiment interpretation through 
different models shows that, neglecting molecular 
diffusion, advection allows to interpret and analyze 
the dispersion process observed when the classical 
convection-diffusion model fails. 

EXPERIEMENTAL SETUP AND IMAGE 
PROCESSING 

The resin replica of the fracture was made from a 
split block of Vosges sandstone. Its length is 330 mm 
(flow direction in the following), and its width is 148 
mm. The details of the apertures measurements are 
presented in the results part. The replica is placed in a 
transparent acrylic glass holder allowing tracer and 
multiphase flow visualization. On one side four ports 
allow differential pressure measurements along the 
flow direction. The fluid injection was controlled 
either with a pharmacia pump (rate 5 ml.h-1 to 499 
ml.h-1) or a Moineau pump allowing high flow rates 
up to 200 l.h-1. Visualization was performed with a 
2304x3456 resolution CCD camera leading to data of 
1545x2760 after cropping over the fracture area. The 
light source was a Planistar light table giving 
homogeneous and constant lighting. A color filter is 
used in order to achieve the monochromatic source 

needed for the image processing described later. The 
solute is a blue copper-phthalocyanine dye and the 
particles size is in the range of 50 nm (Harris 1999). 
The molecular diffusion coefficient may be estimated 
using the Stokes-Einstein equation (Cussler 1984). A 

particle of 50 nm in water at 20 °C has a diffusion 
coefficient of 4.3×10-12 m2.s-1. A Taylor-Aris 
experiment in a rectangular duct gave 3.6×10-11 m2.s-

1. The Peclet number defined by ( ) / mPe = HU D is 

then greater than 5×103 with our experimental 
conditions: a flow rate of 100 ml.h-1 and the measured 
hydraulic aperture H (Table (1)). 
The intensity of a light going through a solution is 
attenuated according to the solute concentration and 
the solution thickness. The Beer-Lambert law gives 
the transmitted intensity I for a monochromatic 
incident light as follow (Detwiler et al 1999): 

( )0expI = I Chε−  (6) 

where C is the solute concentration, h is the solution 
thickness and ε is the solute absorptivity. Attenuation 
due to the container is taken into account through I0. 
Measuring the intensities and knowing the 
absorptivity, equation (6) allows the calculation of 
one of the two unknowns, h or C, from the 
knowledge of the other. Using a rectangular Plexiglas 
cell with a constant h = 5 mm, ε is first calculated by 
measuring the intensity for different concentrations. 
Figure (1) shows measurements done with 
concentrations varying from zero to C0=0.85 g.l-1 

and equation (6). It gives ε=1.12 ± 0.07×103 m2.kg-1. 
 

 
 
Considering the Beer-Lambert law valid at each 
pixel, two images are required to derive the apertures 
map over the entire fracture: one with the fracture 
filled with clear water (no solute) giving I0xy, the 
second one with the void volume fully saturated with 
a solution at concentration C0 giving Ixy. The 

 
Figure 1: Solute absorptivity calibration: C*=C/C0, 

scatters are gray intensities, line is the 
Beer-Lambert law with ε = 1.12 ±0.07 
×103 m2.kg-1. 



subscripts x and y are the pixels coordinates. The 
apertures map hxy is then calculated with equation (6) 
(Figure (2)). 
 

 
 
After which, from the knowledge of hxy, I0xy and ε, 
Cxy may be calculated during a tracer experiment by 
taking images at different time. 

EXPERIEMENTAL RESULTS 

Single-Phase Flow Experiments 
A fracture is a complex object with different scales 
involved from rugosities to average aperture. The 
simplest hydraulic model of this object is a smooth 
fracture with a constant aperture H giving the same 
head loss. H is commonly called the hydraulic 
aperture. For a Poiseuille flow between two smooth 
planes with the width much greater than the aperture, 
the solution of the Navier-Stokes equation is well 
known (Zimmermann and Main 2004): 
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where H is the aperture, µ is the fluid viscosity, ∆P is 
the pressure drop along the flow direction, w and Lx 
are respectively the width in the transverse direction 
and the length along the flow direction. By measuring 
the flow rate and the pressure gradient over the real 
fracture, we are able to derive the hydraulic aperture 
H. By analogy with the Darcy law for an 
incompressible fluid, the permeability would be 

( )3 / 12 K = wh A with A the cross-sectional area. At 

high flow rate inertial effects lead to a deviation from 
the Darcy law as a non-linear relation (Fourar et al. 
1993). Several empirical laws have been proposed 
(Bear 1988). The relationship most commonly used is 
the Forchheimer equation (Forchheimer 1914): 
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where ρ is the fluid density and β is the inertial 
coefficient. Using the analogy between Darcy law 
and Poiseuille flow in a smooth fracture, equation (8) 
may be rewritten in term of hydraulic aperture 
(Fourar et al. 1993): 
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In our experiment, we used water density and 
viscosity at standard conditions and w=148 mm. 
Three sets of experiments have been performed with 
a flow rate from 0 to 200 l.h-1. Figure (3) shows 
equation (9) fitted to experimental data points. The 
least square method leads to H=413 µm and β = 44.6 
m-1. 
 

 
 

Apertures Map Determination 
Figure (1) shows that the Beer-Lambert law is valid 
for a product hC up to around 2.13 g.m-2. Our goal 
here is to extract the aperture map over the entire 
fracture. Because hxy is varying spatially up to a 
maximum hmax, we have to choose a concentration C0 
such as 2

0 2.13maxC h g.m−< . Although the hydraulic 
conductivity is usually not equal to the arithmetic 
mean (Renard and de Marsily 1997), we may take the 
experimental value of H as an order of magnitude. 
This would give a maximum concentration around 
5.16 g.l-1. Considering that the maximum could be at 

least twice H, we chose C0=2.55 g.l−1. 
As explained above an image of the fracture fully 
saturated with a solution at C0 gives I at each pixel, a 
second one with clear water gives I0. The apertures 
map is then easily obtained using equation (6) at each 
pixel. Figure (4) shows the aperture histogram. The 
main statistical characteristics are summarized in 
Table (1) with: ha the arithmetic mean, hh the 
harmonic mean, σ the standard deviation and V the 

 
Figure 3: Monophasic experiments: scatters are 

experimental data sets, line is the 
Forchheimer equation plot with H = 413 
µm and β = 44.6 m−1 . 

 
Figure 2: Apertures map determination: in image I0

the fracture is saturated without solute, in 
image I it is saturated with a solution at 
C0, h is the apertures map. 



total volume. The harmonic mean has been calculated 
from the data set without the zero apertures that 
represent less than 1.1 % of the original 1545×2760 
data (Figure (4)). 
 

 
 
Figure (2) shows the extracted map with apertures 
ranging from 0 (black) to 1.091mm (white). The first 
half (bottom) is clearly more heterogeneous than the 
second. The dark area in the center corresponds to 
very small apertures which will strongly affect the 
dispersion process as it will be shown later. The 
averages ha and hh give good order of magnitudes 
with a hh H h> > as it has often been observed 
(Renard and de Marsily 1997)). To further check the 
map extraction process validity from image analysis, 
hydraulic aperture is calculated numerically using 
this aperture field. The mesh is as each pixel is 
centered on an element volume  xyy xhδ δ with δx the 

space step along the flow direction and δy in the 
transverse direction. Considering the fluid 
incompressible, 0=⋅∇ u , equation (7) may be 
solved with ( )max/ hyQu xy δ= : 

( ) 0P =∇ ∇K  (10) 

where P is the local pressure and K is the spherical 
tensor of local conductivity with ( )3 / 12xy maxh h  as 

diagonal elements. Equation (10) is solved 
numerically using finite volume method. The 
boundary conditions are no-flow in the transverse 
direction and pressures are imposed at the inlet and 
the outlet. Calculation with no refinement gives 
H=447 µm which is in agreement with experimental 
value within 8.2 %. The map extraction is then 
validated with a reasonable error between the 
numerical and experimental hydraulic apertures. 
 
Table 1: Apertures map characteristics 

H (mm) ha (mm) hh (mm) hmax (mm) σ 
0.448 0.497 0.363 1.091 0.156 

 

Tracer Experiment 
The tracer experiment was performed at a constant 
flow rate of 100 ml.h-1. The concentration C0 of the 
injected solution was 2.55 g.l-1. Images were taken at 
intervals of time between 10 seconds and 180 
seconds. Initial condition is C=0 over the entire 
fracture. The tracer is injected continuously at a 
constant rate (conditions (4)), and is supposed to be 
uniform over the inlet cross-sectional area. Figure (5) 
shows six images at different times. The effect of the 
small apertures area (see the apertures map 
determination section) is clearly observable with two 
main flow paths downstream which grow very slowly 
in the transverse direction. 
 

 
 
Figure (6) shows the average concentration versus 
time at four different positions along the flow 
direction x*=0.25, x*=0.5, x*=0.75 and x*=1, with 
x*=x/Lx.  
 

 
Figure 4: Normalized aperture histogram. 

 
Figure 5: Tracer experiment: six images at different 

times t*=tQ/V with Q=100 ml.h-1 and V 
the total volume (Table 1 ). Injection is 
from the bottom. 



 
 
A piston-like flow gives a step front at each position. 
In a homogeneous medium with our injection 
conditions the concentration profiles are given by 
equation (5). The differences are discussed in the 
following section where we try to interpret the 
experiment with two models. 

DISCUSSION 

The Convection-Diffusion Approach 
As said above, the common approach to analyze 
dispersion experiments is through the convection-
diffusion equation (Equation (3)). We first tried to 
determine the dispersion coefficient by fitting the 
analytical solution (5) to the concentration profiles.  
As shown in Figure (6), the results are fairly poor, 
especially about the second part of the curves. This 
may be explained by the fact that heterogeneities at 
the experiment scale are too important to use a 
homogeneous model. As a matter of fact, equation 
(3) assumes that properties are uniform from the inlet 
to position x but D may vary along the sample as any 
other properties like the local aperture. To take into 
account heterogeneities, analysis may be done at a 
smaller scale. The concentration is measured locally 
and the experimental flux Fexp may be derived from 
equation (1) Then we are able to calculate the 
average flux and the average concentration for each 
abscissa x. The dispersion coefficient may then be 
calculated for each position by minimizing 

( )expF F− , with F given by equation (2). Figure (7) 

shows that ( )xULDD /* φ=  fluctuates with no 
evident trend around an low average value, 4×10-3, 
with a standard deviation of 15.5×10-3. 
 

 
 
Therefore, this approach is not appropriate to 
interpret the experiment. In particular, the 
convection-diffusion model has a dispersion process 
faster than the experiment (Figure (6)). The 
discrepancy may be explained by the fact that this 
approach takes into account molecular diffusion 
whereas this process should be negligible due to the 
high Peclet number, 5×103, in the experiment (Sahimi 
1993)).  

Capillary Model 
When molecular diffusion is negligible, tracer 
particles are only advected. Considering laminar 
flow, their displacement may be described by 
streamtubes without solute transfer between flow 
paths. A very simple approach is then to model each 
streamtube as a capillary rectangular duct with an 
aperture hi, a width δyi and a length Lxi. Because of 
the tortuosity, Lxi may be greater than Lx. But 
considering that hi is the local hydraulic aperture 
characterizing each flow path, it may be assumed that 
tortuosity is taken into account, consequently it is 
assumed that Lxi=Lx. The flow is approximated by a 
piston-like displacement along each streamtube. The 
flux is then given by i i iF = U C and the mass balance 
equation (1) is: 
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with Ci the local concentration, Ui the average 
velocity derived from a Poiseuille flow in a 
rectangular duct with the aperture considered small in 
comparison with the two other dimensions: 
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where ∆P is the pressure drop along the flow 
direction, Lx is the fracture length and hi is the 

 
Figure 6: Concentration versus time at four different 

positions: C*=C/C0 and t*=tQ/V; scatters 
are experimental data sets; lines are the 
fits using equation (5). 

 
Figure 7: Determination of the dispersion coefficient 

on each slice: coefficient of dispersion 
versus position. 



hydraulic aperture for a pressure gradient applied 
over the fracture. The velocity may be expressed as a 
function of the total flow rate Q: 
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where H is the equivalent hydraulic aperture of the 
total fracture, Ly the fracture width. Dimensionless 
form of the mass balance equation is written: 
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With * /t = Qt V , * / xx = x L and 0* /C = C C . V is 
the total void volume. Because the average aperture 

over the model is ( )/xi i i x yh = L δy h L L∑ then 

x yV = L L h . Equation (14) gives the local 

concentration in a rectangular duct. The total 
concentration at x* and t* is then given by: 
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( )/i i i iδy h y hδ∑  is noted ( )ihθ in the following. The 

analytical solution of equation (14) with a constant 
injection from a given time t=0 corresponds to the 
Heaviside function defined as: 
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Then the concentration is simply: 
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The apertures map is a matrix of nx rows (transverse 
direction) and ny columns. As a first approach the 
fracture was divided into ny channels of one pixel 
width. Each channel being a series of nx segments 
with different apertures dj, its equivalent aperture 

may be approximated as 13 31/ih = d
−

 (Bear 1993). 

The results obtained with this distribution of channels 
were not satisfactory: the beginning of the 
breakthrough curve was too fast and the end too 
slow. This poor result could have been expected 
because the ducts width used to model the streamtube 
distribution were too small. It was then impossible to 
take into account the flow complexity (tortuosity, 
etc.) through the equivalent aperture. In addition 
channels containing very small apertures will have an 
underestimated hydraulic aperture.  

A way to reduce effects of very small apertures is to 
extract from this distribution a histogram with a 
number of bins smaller than ny. Figure (8) shows the 

histogram extracted from the distribution of hi
3 with 

bins size of 1/10. Their quantity is noted δy on the 
ordinate axis because it simply corresponds to the 
ducts width in dimensionless form. 
 

 
 
Results are shown on Figure (9) for three different 
abscissas. For each coordinate x the histogram used 
in the analytical model is extracted from the fracture 
cropped from 0 to x. A very good agreement is 
observed for the outlet x=1, but the two others 
profiles show poor results. This could be easily 
explained by the basics of the model. One of the main 
assumption is that a constant pressure drop is apply 
over all channels between the inlet and the outlet. 
However the pressure map obtained by simulation 
(Figure (10)) clearly shows that this condition is not 
satisfied inside the fracture. 
 

 
This model describes the breakthrough curve using 
pure advection assumption. The mass flux in each 

 
Figure 8: Histogram of apertures hi3 used in the 

capillary model, dy corresponds to the 
channels width. 

 
Figure 9: Concentration versus time at three 

abscissas: Capillary model (lines) and 
experiment (scatters). 



channel is not controlled either by molecular 
diffusion or any concentration gradient. 
 

 
 

CONCLUSION 

A tracer flow experiment has been performed on a 
resin replica of a real fracture. The set up 
transparency allowed flow visualization, apertures 
map determination, local concentration and flux 
calculation using the Beer-Lambert law. The 
estimated Peclet number was at least 5 ×103. The 
experiment was first interpreted using the classical 
convection-diffusion approach. An analytical solution 
for homogeneous medium has been compared to 
experimental concentration profiles versus time. 
Results were very poor. The analytical solution did 
not catch at all the profiles for I > 0.5 increasing 
faster than experimental data sets. The solution 
assumes that the medium was homogeneous, whereas 
the fracture exhibits strong heterogeneities. The local 
dispersion coefficient was then calculated by 
minimizing expF F− , with Fexp the experimental local 

flux and F the theoretical flux given by the 
convection-diffusion approach (equation (2)). The 
results did not show any trend. The classical 
convection-diffusion approach failed to describe our 
tracer flow experiment. In this approach, the process 
catalyst is the concentration gradient, as in Fickian 
diffusion, whereas the high Peclet number indicates 
that molecular diffusion is negligible. Finally the 

experiment was described using a pure advective 
model. Assuming negligible molecular diffusion and 
laminar steady state flow, the fluid particles are 
advected along constant streamtubes. In the model, 
the flow paths are represented by parallel channels 
with hydraulic apertures taking into account 
tortuosity, and a piston-like flow is assumed. By 
calculating the channel apertures distribution from 
the experimental map, we were able to model the 
breakthrough curve. These results indicate that the 
approach based on pure advective description, with 
the dispersion process controlled by heterogeneities, 
gives good results. 
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