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ABSTRACT 

This study presents a general solution 
for the radial flow of tracers in 
naturally fractured reservoirs. 
Continuous and finite step injection 
of chemical and radioactive tracers 
are considered. The reservoir is 
treated as being composed of two 
regions: a mobile region where 
longitudinal dispersion and convection 
take place and a stagnant region where 
only diffusion and adsorption are 
a1 1 owed. Radioactive decay is 
considered in both regions. The model 
of this study is thoroughly compared 
to those previously presented in 
literature by Moench and Ogata, Tang 
et al., Chen et al. , and Hsieh et al. 
The solution is numerically inverted 
by means of the Crump algorithm. A 
detailed validation of the model with 
respect to solutions previously 
presented and/or simplified physical 
conditions solutions (i.e., 
homogeneous case) or limit solutions 
(i.e., for short times) was carried 
out. 
The influence of various dimensionless 
parameters that enter into the solution 
was investigated. A discussion of 
results obtained through the Crump and 
Stehfest algorithm is presented, 
concluding that the Crump method 
provides more reliable tracer 
concentrations. 

INTRODUCTION 

Reservoir characterization plays a 
very important role in the 
optimization plan of a reservoir. 
Among the tools available to acomplish 
this task, the injection of tracers 
and proper analysis has shown through 
the years to be a useful mean. 
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Naturally fractured reservoirs are 
complex systems that require careful 
studies for optimal exploitation 
conditions. In aiming toward this 
goal, tracer flow test provide 
estimation of basic reservoir 
parameters, in addition to the 
connectivity of the reservoir and the 
transit time of injected fluids. This 
latter information is very important 
in fluid reinjection projects. 

There are several papers that deal 
with the flow of tracers in naturally 
fractured reservoirs (for a review, 
see the paper by Ramirez et al., 
1990). The existing literature with 
regard to the radial flow of tracers 
appears to be mostly oriented to the 
homogeneous case (Bailey and Gogarty, 
1961; Brigham and Smith, 1966; Moench 
and Ogata, 1981; Pickens, et al., 
1981; Guven, et al., 1985; Hsieh, 
1986; Guvansen and Guvansen, 1987; 
Chen, 1987; Falade and Brigham, 1989). 
A review indicates only a few papers 
that discuss the radial flow of 
tracers in naturally fractured systems 
(Chen, 1985 and 1986; Stephenson et 
al. , 1989). The purpose of this study 
is to present a general solution for 
the radial flow of tracers in naturally 
fractured reservoirs. Continuous and 
finite step injection of chemical and 
radioactive tracers are considered. 
This solution considers all the 
important mechanisms that affect tracer 
flow: diffussion, convection, 
adsorption, and radioactive decay. 

MATHEMATICAL MODEL 

The model considered in this study is 
shown in Fig. 1. The naturally 
fractured medium is represented by 
means of a system of horizontal 
equally spaced parallel fractures, 
alternated with matrix blocks. The 
system shown in this figure consists 
of two flow regions: a) a mobile 
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region constituted by the fracture 
network and b) a stagnant or immobile 
region. Both regions are 
interconnected by means of a thin 
fluid layer contained within the 
immobile region, which controls the 
fluid and mass transfer between the 
regions. This type of visualization 
of the problem by means of two regions 
has been used by other authors in the 
past (Deans, 1963; Walkup and Horne, 
1985; Maloszewski and Zuber, 1985; 
Chen, 1986; Rivera et al., 1987; 
Ramirez et al., 1988 and 1990). 

In the mobile region the following 
effects are considered: 
a) Longitudinal dispersion that 

includes molecular difussion: 
D r =  uv + Dmr (1) 

The z direction is not considered 
because it is assumed that fracture 
with 2w is small and, consequently 
there is no concentration gradient in 
this direction. 
b) Convection. Based upon the 

discussion presented in a) , flow 
velocity in the Z direction is 
assumed to be uniform and only 
its variation is considered 
along the r direction. For the 
case of this study of radial 
flow under constant rate 
injection, velocity is defined 
as 

(2) a 
r v = -  

where 

Q (3) 4n (w-6) a =  

c) Decay. This condition is 
considered for the case of a 
radioactive tracer of decay 
time less than the transit 
(travel) time . 

For the immobile region the following 
effects are considered: 

a) Difussion. This effect is 
only considered in the Z 
direction, because the 
longitudinal component is 
assumed to be negligible. 

b) Adsorption 
c) Decay 

Based upon the above mentioned 
assumptions, considering an 
incompressible fluid, the governing 
equations for tracer concentrations in 
the fracture and in the porous matrix 
can be stated as follows: 

a) Fractures : 

- - -  a c l D  - 1 

atD f 
DZD ac2D + - -  

'OD azD 

a2c1D 1 aclD 
-"1 D 

- - -- 
r arD art D 

(4) 

'OD 

b) Matrix 

a2c2D + rCzD = 0 
ac2D 

atD 
RD2D 7 - -  

(5) 

where the definitions for the 
dimensionless groups that enter into 
these equations are 

at 
a 

tD = - 

cz - ci 
czD = co - c, 

(9 1 Z 
a ZD = - 

r r = -  
D a 

r = -  ha2 
a 

The last term of Eq. 4 considers the 
interaction between the fractures and 
matrix systems, representing a 
difussion mass transfer from the 
fractures to the matrix at 
zoo = (w-6)/a. 

The equations that complete the model 
are given by Eqs. 14-19. 
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Initial conditions 
CID(rD,O) = 0 

To find the solution to this problem, 
the Laplace transformation method was 
used. The resulting equations after 
the application of this method to Eqs. 
4 and 5 were coupled, yielding: 

where 
D2 D 

< = S + V + ~  tanh m(& - 2 Z O D )  
O D  

with the following boundary 
conditions: 

To express Eq. 2 0  in an easier form, 
the following expressions can be used 
(Tang and Babu, 1 9 7 9 ) :  

1 
y = r  D + 4 E  ( 2 5 )  

The result is the standard Airy 
equation (Abramowitz and Stegun, 
1 9 7 0 )  : 

The general solution of Eqs. 2 0  and 
2 1 - 2 8  is 

where 
1 Yo = roD + - 4 c  

Eq. 2 9  gives the tracer concentration, 
chemical or radioactive, in the 
fractured region for the case of 
continuous injection. 

A solution for the finite step 
injection case, may be obtained 
through the use of Eq. 2 9  and the 
principle of superposition. 

METHOD OF SOLUTION 

The Airy functions Ai(x) that enter 
into Eq. 2 9  were computed according to 
(Abramowitz and Stegun, 1 9 7 0 ,  p. 4 4 8 ,  
Eq. 1 0 . 4 . 5 9 )  . 
For small times, Z > 4 . 8 :  

2 3/2 <=?.z 

co = 1 

r ( 3 ~ + 1 / 2  
CK = 

54"K! (K+1/2)  

For - 5 . 0  5 Z 5 4 . 8 ,  Ai (x) can be 
computed according to (Abramowitz and 
Stegun, 1 9 7 0 ,  p. 4 4 6 ,  Eq. 1 0 . 4 . 2 )  

where 

( ~ t + 1 / 3 ) ~  = 1 

3 K ( ~ + l / 3 )  K:=(3Ct+l) (3Ct+4).  . . (3Ct+3K-2) 

and c1 =3-2'3/r(2/3)=0.3550280538, 

where a for this problems is equal to 
0. 
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An excellent comparison with the 
tabulated values of the Airy function 
of Abramowitz and Stegun (1970, p.475, 
Table 10.11) was observed keeping 20 
terms each of f(Z) and g(Z). 
For the inversion of Eq. 29 the 
algorithm of Crump (1976) was used, 
obtaining excellent results for the 
range of parameters used; this will be 
discussed later in this paper. The 
Stehfest numerical inverter algorithm 
(1970) was also used for the inversion 
of Eq. 29, finding important numerical 
dispersion problems for large 8 ' s  or 
large rDfs . 
VALIDATION OF MODEL 

The solution of the model of this 
study was compared in its homogeneous 
porous media version with those of 
Moench and Ogata (1981) and Hsieh 
(1986). It is important to keep in 
mind that the differential equation 
that describes the tracer flow problem 
of these two papers and the one used 
in this work are the same, the only 
change being the method of solution. 
The continuous tracer concentration 
solutions of these authors are 
expressed in the Laplace space by 
means of Airy functions. Moench and 
Ogata numerically invert their 
solution using the Stehfest algorithm 
and Hsieh's solution is of integral 
type. It can be demonstrated that 
these solutions correspond to 
particular cases of the model of this 
study. For the case of small 
diffusion coefficient and porosity of 
the matrix (Stagnant) region, (DZD/Zo) 
~(s+T)/(RD ) 0, the naturally 
fractured 'porous media approaches 
homogeneous behavior and, the proposed 
model simplifies to a homogeneous 
model. In other words, for these 
conditions Eq. 21 reduces to = s. 

Table 1 shows a comparison of the 
results presented by Hsieh and those 
of this study, for dimensionless times 
tD equal to 50 and 100, ryD= 10 and 
different dimensionless radial 

It can be observed, in distances r 
light of a comparison with the 
analytical solution of Hsieh that the 
accuracy of the results of this model 
is very good. 

With regard to the naturally fractured 
case, the solution of this study will 
correspond to that of Chen (19851, 
provided that the matrix region 
behaves under transient conditions 
(the matrix region be of infinite 
extent for the times of interest). 

D' 

For these conditions, Eq. 21 becomes, 

Fig. 2 presents a comparison of 
results obtained by means of the 
continuous tracer concentration 
analytic and approximate solutions of 
Chen and those of this study. It can 
be observed that agreement is 
excellent. 

DISCUSSION RESULTS 

Next, a presentation of results for 
the continuous tracer concentration 
solution will follow. The data used 
to get the results are those of Chen 
(1986), where the const2nt injection 
rate Q is equal to 0.01 m/d. 

Fig. 3 shows results of tracer 
concentration versus radial distance 
for dimensionless times of 1, 5 and 
10. The concentration level gradually 
decreases with radial distance. 

Fig. 4 presents results of tracer 
concentration versus radial distance, 
for values of the dimensionless well 
radius of 0.5, 1.0, 1.5, and 2 . 0 ,  for 
a dimensionless time of 1. These 
results are similar to those presented 
by Hsieh (1986) for the homogeneous 

tracer case , showing that 
concentration response is strongly 
affected by the wellbore radius. 

Fig. 5 shows a graph of tracer 
concentration versus time for a 
wellbore radius of 0 and for a radial 
distance of 1. This graph can be 
compared to the tracer concentration 
results of Ramirez et al. (1990) for 
linear flow, not shown in this paper, 
concluding that a uniqueness problem 
may arise if the test interpretation 
were to be conducted without 
additional information coming from 
other sources (i.e., geological, core 
analysis, well logs, etc.). 

Fig. 6 presents results of tracer 
concentration for the finite-step 
case, for injection times of 0.3 and 
0.5. As expected, it is observed from 
results of this figure that as the 
injection time increases, so does the 
maximum tracer concentration and, that 
the time at which this maximum is 
attained is larger than the injection 
period, due to the dispersion effects. 
Again, as previously discussed with 
regard to Fig. 5, a uniqueness problem 
may arise if the test interpretation 
were to be conducted without 
additional information coming from 
other sources (i . e. , geological , core 
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analysis, well logs, etc.). 

CONCLUSIONS 

The main objective of this work has 
been to present a solution for the 
radial flow of a tracer in a naturally 
fractured reservoir. 

The main conclusions of this study are 
as follows: 

1. 

2. 

3. 

4. 

5. 

A model is presented for the 
radial flow of a tracer in 
naturally fractured reservoirs. It 
considers the f ol lowing 
mechanisms: diffusion, convection, 
adsorption, and radioactive decay. 

The Crump algorithm was found to 
be superior for the numerical 
inversion of the solution of this 
study to that provided by the 
Stehfest algorithm. 

A thorough validation of the model 
against simplified and similar 
solutions published in the 
literature was carried out. 

Solutions are presented for the 
continuous and finite step 
injection cases. 
A comparison of radial and linear 
tracer flow continuous and 
finite-step injection solutions 
indicates that a uniqueness 
problem may arise in the 
interpretatlon of a test. 

NOMENCLATURE 

C 

C 
- 

cD 

Dm r 

Dr 

E 

K 
Q 
r 

R 

t 
V 
W 
X 
Y 
Z 

advection parameter, Eq. 3 
Airy function 

tracer concentration 
parameter, Eq. 26 
dimensionless tracer 
concentration Eqs. 7 and 8 
molecular diffysion 
coefficient, L /T 
longitudinal dispersi2n 
coefficient, Eq. 1, L /T 
thickness of the symmetry 
element, L 
adsorption constant , L3/M 
constant injection rate, L3/T 
radial distance, L 

dimensionless parameter, 
Eq. 13 
time, T 
fluid velocity, L/T 
fracture half-width, L 
parameter, Eq. 27 
parameter, Eq. 25 
vertical coordinate, L 

= dimensionless effective 
zoD fracture half-width 

Greek simbols 

ff = dispersivity of fracture, L 
s = parameter, Eq. 22 
r = dimensionless parameter, 

Eq. 12 
6 = Stagnant fluid film 

thickness, L 
= parameter, Eq. 21 

Subscripts 

D = dimensionless 
i = initial 
1 
2 = immobile (fluid layer and 

= mobile or fractured region 

porous matrix) region. 
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TABLE 1:COMPARISON OF THE HOMOGENEOUS RESULTS OF HSIEH (1986), 
G. AND THOSE OF THIS STUDY, CD. 

rD G cD rD G cD 

0.964 0.96412 11.0 11.0 
12.0 0.892 0.89231 13.0 
13.0 0.775 0.77523 14.0 
14.0 0.617 0.61714 16.0 
15.0 0.439 0.43925 18.0 
16.0 0.273 0.27294 20.0 
17.0 0.145 0.14493 22.0 
18.0 0.645 0.64501 23.0 
19.0 0.023 0.02207 25.0 

0.993 0.99301 
0.949 0.94875 

0.90010 0.900 
0.72402 0.724 

0.463 0.46298 
0.21295 0.213 
0.Q6501 0.065 

0.030 0.03005 
0.004 0.00397 
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Fig. 4. Continuous injection tracer concentration vs 
radial distance for various values of the 
dimensionless wellbore radius, for t D = l .  

Fig. 1. Proposed Model for representation of the 
naturally fractured medium. 

8 0.0 - 
0.4 - 

I ! I I I I , I  
0 0 2  0 4  0 6  0 8  I I ?  1 4  I G  I 8  2 0.a - 

0.2 - T~~ 'nd Tor 

ai - Fig. 5. Comparison of the radial and linear continuous 
tracer concentration responses for equivalent 

I 1.1 If IJ 1.4 1 s  1.6 1.7 1.n 1.9 1 matrix-fracture system characteristics. 

Fig. 2. Comparison of the continuous tracer concen- 
tration solutions, for naturally fractured 
reservoirs, of Chen (1986) and of this study. 
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Fig. 3. Continuous injection tracer concentration vs 
radial distance for various values of tD. 
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Fig. 6. Influence of the injection period on the finite- 
step injection tracer concentration. 
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