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ABSTRACT

This study presents a general solution
for the radial flow of tracers in
naturally fractured reservoirs.
Continuous and finite step injection
of chemical and radioactive tracers

are considered. The reservoir is
treated as being composed of two
regions: a mobile region  where

longitudinal dispersion and convection
take place and a stagnant region where

only diffusion and adsorption are
allowed. Radioactive decay is
considered in both regions. The model

of this study is thoroughly compared
to those previously presented in
literature by Moench and Ogata, Tang
et al., Chen et al., and Hsieh et al.
The solution is numerically inverted
by means of the Crump algorithm. A
detailed validation of the model with
respect to solutions previously
presented and/or simplified physical
conditions solutions - (i.e.,
homogeneous case) or limit solutions
was carried

(i.e., for short times)
out.
The influence of various dimensionless

parameters that enter into the solution

was investigated. A discussion of
results obtained through the Crump and
Stehfest algorithm is presented,
concluding that the Crump method
provides more reliable tracer
concentrations.

INTRODUCTION

Reservoir characterization plays a

very important role in the

optimization plan of a reservoir.

Among the tools available to acomplish

this task, the injection of tracers

and proper analysis has shown through

the years to be a useful . mean.
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Naturally fractured reservoirs are
complex systems that require careful
studies for optimal exploitation
conditions. In aiming toward this
goal, tracer flow test provide
estimation of basic reservoir
parameters, in addition to the
connectivity of the reservoir and the
transit time of injected fluids. This
latter information is very important
in fluid reinjection projects.

There are several papers that deal
with the flow of tracers in naturally
fractured reservoirs (for a review,
see the paper by Ramirez et al.,
1990). The existing literature with
regard to the radial flow of tracers
appears to be mostly oriented to the
homogeneous case (Bailey and Gogarty,

1961; Brigham and Smith, 1966; Moench
and Ogata, 1981; Pickens, et al.,
1981; Guven, et al., 1985; Hsieh,
1986; Guvansen and Guvansen, 1987;
Chen, 1987; Falade and Brigham, 1989).

A review indicates only a few papers
that discuss the radial flow of
tracers in naturally fractured systems
(Chen, 1985 and 1986; Stephenson et
al., 1989). The purpose of this study

.is to present a general solution for
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the radial flow of tracers in naturally
fractured reservoirs. Continuous and
finite step injection of chemical and
radiocactive tracers are considered.
This solution considers all the
important mechanisms that affect tracer
flow: diffussion, convection,
adsorption, and radioactive decay.

MATHEMATICAL MODEL
The model

shown in
fractured

considered in this study is
Fig. 1. The naturally
medium 1is represented by
means of a system of horizontal
equally spaced parallel fractures,
alternated with matrix blocks. The
system shown in this figure consists
of two flow regions: a) a mobile




region constituted by the fracture
network and b) a stagnant or immobile
region. Both regions are
interconnected by means of a thin
fluid layer contained within the
immobile region, which controls the
fluid and mass transfer between the
regions. This type of visualization
of the problem by means of two regions
has been used by other authors in the

past (Deans, 1963; Walkup and Horne,
1985; Maloszewski and Zuber, 1985;
Chen, 1986; Rivera et al., 1987;
Ramirez et al., 1988 and 1990).

In the mobile region the following
effects are considered:

a) Longitudinal dispersion that
includes molecular difussion:
Dr=c>cv+Dmr (1)

The 2 direction is not considered

because it is assumed that fracture
with 2w is small and, consequently
there is no concentration gradient in
this direction.

b) Convection. Based upon the
discussion presented in a), flow
velocity in the 2Z direction is
assumed to be uniform and only
its variation is considered
along the r direction. For the
case of this study of radial
flow under constant rate
injection, velocity is defined
as

=2
v == (2)
where

= __—Q———-
a 41 (W-3) (3)

c) Decay. This condition is
considered for the case of a
radioactive tracer of decay
time less than the transit

(travel) time.

For the immobile region the following
effects are considered:

a) Difussion. This effect is
only considered in the Z
direction, because the
longitudinal component is
assumed to be negligible.

b) Adsorption

c) Decay

Based upon the above mentioned
assumptions, considering an
incompressible fluid, the governing

equations for tracer concentrations in
the fracture and in the porous matrix
can be stated as follows:

a) Fractures:
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where the definitions for the

dimensionless groups that enter into
these equations are

_ at
= = (6)
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The last term of Eq. 4 considers the
interaction between the fractures and

mgtrix systems, representing a
difussion mass transfer from the
fractures to the matrix at

Z = (w=48)/a.

oD

The equations that complete the model
are given by Egs. 14-19.

Boundary conditions

C1D (ron’tn) =1 (14)
czn(ro’zon'tn) =cm(rn’tn) (15)
c,(.t)) =0 (16)
ac

2D
2z =0 (17)

D
(r,,E/2a,t))



Initial conditions

c ,(r ,0) =0 (18)

c, (r ,2,,0) =0 (19)

To find the solution to this problem,
the Laplace transformation method was
used. The resulting equations after
the application of this method to Egs.
4 and 5 were coupled, yielding:

VdZEID dElD -
- -¢&rC =0 (20)
drz dr D 1D
D D
where
D2D E
§=S+7+2—— v B tanh{V B (E_ —ZZOD)}
oD
(21)
_ S+ 7
S ) (22)
2D
with the following boundary
conditions:
T (r ,8) =2 23
' oe’”! T8 (23)
c (,8) =0 (24)

To express Eq. 20 in an easier form,
the following expressions can be used

(Tang and Babu, 1979):
1
C=¢,  exp (-y/2) (26)
x = E1/3 (27)
The result 1is the standard Ai;y
equation (Abramowitz and Stequn,
1970):
2=
9-% = xC (28)
dx
The general solution of Egs. 20 and
21-28 is
_ Y-Yoy A (87 y)
Co~ § exp[ 2 ] 173 (29)
A (£ y)
where
_ 1
Yo = Tpp * 4
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Eg. 29 gives the tracer concentration,

chemical or radioactive, in the
fractured region for the case of
continuous injection.

A solution for the finite step
injection case, may be obtained

through the use of Eq. 29 and the
principle of superposition.

METHOD OF SOLUTION

The Airy functions Ai(x) that enter
into Eq. 29 were computed according to
(Abramowitz and Stegun, 1970, p. 448,
Eq. 10.4.59).

For small times, Z>4.8:

_ 1 -t2 _-1/a =€ _a1:\K -K
A(Z) =5m Z e Z (-1)°c &
k=1
(30)
where
£ = % 7372
cC =1
0
C(3K+1/2)
C = ——_—
* safrirT(R+1/2)
For -5.0 = 2 = 4.8, A1 (x) can be
computed according to (Abramowitz and
Stegun, 1970, p. 446, Eq. 10.4.2)
A (2) = C,£(2) - C,g(2) (31)
where
3K
_ K,1 Z
f<z)—2 3 (3) (3K) }
K=0
3K+1
_ k 2 Z :
9(2) "KZ; 3 3 )

(a+1/3) = 1

3K(a+1/3)x=(3a+1)(3a+4)...(3a+3K—2)

and ¢ =3"*"/T'(2/3)=0.3550280538,

c =3—1/3

A r'(1/3)=0.2588194037

where a for this problems is equal to
0.




An excellent comparison with the
tabulated values of the Airy function
of Abramowitz and Stegun (1970, p.475,
Table 10.11) was observed keeping 20
terms each of f(Z) and g(Z).

For the inversion of Eq. 29 the
algorithm of Crump (1976) was used,
obtaining excellent results for the
range of parameters used; this will be
discussed later in this paper. The
Stehfest numerical inverter algorithm
(1970) was also used for the inversion
of Eq. 29, finding important numerical
dispersion problems for large t ’s or
large zb’s . P

VALIDATION OF MODEL

The solution of the model of this
study was compared in its homogeneous
porous media version with those of
Moench and Ogata (1981) and Hsieh
(1986) . It is important to keep in
mind that the differential equation
that describes the tracer flow problem
of these two papers and the one used
in this work are the same, the only
change being the method of solution.
The continuous tracer concentration
solutions of these authors are
expressed in the Laplace space by
means of Airy functions. Moench and
Ogata numerically invert their
solution using the Stehfest algorithm
and Hsieh’s solution is of integral
type. It can ‘be demonstrated that
these solutions correspond to
particular cases of the model of this
study. For the <case of small
diffusion coefficient and porosity of

the matrix (Stagnant) region, (D2p/Zo)
v(S+7)/(RD_) = 0, the naturally
fractured “porous media approaches

homogeneous behavior and, the proposed
model simplifies to a homogeneous
model. In other words, for these
conditions Eq. 21 reduces to S.

Table 1 shows a comparison of the
results presented by Hsieh and those
of this study, for dimensionless times
t  equal to 50 and 100, L 10 and

D
dimensionless radial

different
distances r,- It can be observed, in
with the

light of a comparison
analytical solution of Hsieh that the
accuracy of the results of this model
is very gocd.

With regard to the -naturally fractured
case, the solution of this study will
correspond to that of Chen (1985),
provided that the matrix region
behaves under transient conditions
(the matrix region be of infinite
extent for the times of interest).
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For these conditions, Eg. 21 becomes,
s, |'?
E=8+ | —
'ZODR
Fig. 2 presents a comparison of
results obtained by means of the
continuous tracer concentration
analytic and approximate solutions of
Chen and those of this study. It can
be observed that agreement is
excellent.

DISCUSSTION OF RESULTS

Next, a presentation of results for
the continuous tracer concentration
solution will follow. The data used
to get the results are those of Chen
(1986), where the const%nt injection
rate Q is equal to 0.01 m/d.

Fig. 3 shows results of tracer
concentration versus radial distance
for dimensionless times of 1, 5 and
10. The concentration level gradually
decreases with radial distance.

Fig. 4 presents results of tracer
concentration versus radial distance,
for values of the dimensionless well
radius of 0.5, 1.0, 1.5, and 2.0, for
a dimensionless time of 1. These
results are similar to those presented
by Hsieh (1986) for the homogeneocus
case, showing that tracer
concentration response 1is strongly
affected by the wellbore radius.

Fig. 5 shows a graph of tracer
concentration versus time for a
wellbore radius of 0 and for a radial
distance of 1. This graph can be
compared to the tracer concentration
results of Ramirez et al. (1990) for
linear flow, not shown in this paper,
concluding that a uniqueness problenm
may arise if the test interpretation

were to be conducted without
additional information coming from
other sources (i.e., geological, core

analysis, well logs, etc.).

Fig. 6 presents results of tracer
concentration for the finite-step
case, for injection times of 0.3 and
0.5. As expected, it is observed from

results of this figure that as the
injection time increases, so does the
maximum tracer concentration and, that
the time at which this maximum is
attained is larger than the injection
period, due to the dispersion effects.
Again, as previously discussed with
regard to Fig. 5, a uniqueness problem
may arise if the test interpretation

were to be conducted without
additional information coming from
other sources (i.e., geological, core



analysis, well logs, etc.).

CONCI.USIONS

The main objective of this work has
been to present a solution for the
radial flow of a tracer in a naturally
fractured reservoir.

The main conclusions of this study are
as follows:

1. A model is presented for the
radial flow of a tracer in
naturally fractured reservoirs. It
considers the following
mechanisms: diffusion, convection,
adsorption, and radioactive decay.

2. The Crump algorithm was found to
be superior for the numerical
inversion of the solution of this
study to that provided by the
Stehfest algorithm.

3. A thorough validation of the model
against simplified and similar
solutions published in the
literature was carried out.

4. Solutions are presented for the
continuous and finite step
injection cases. .

5. A comparison of radial and linear
tracer flow continuous and
finite-step injection solutions
indicates that a uniqueness
problem may arise in the
interpretation of a test.

NOMENCIATURE

a = advection parameter, Eq. 3

Al(x) = Aliry function

o] = tracer concentration

C = parameter, Eq. 26

c, = dimensionless tracer

concentration Eqs. 7 and 8

D = molecular diffusion

nr coefficient, L°/T
D = longitudinal dispersion
r coefficient, Eq. 1, L°/T
E = thickness of the symmetry
element, L

K = adsorption constant,vIP/M a

Q = constant injection rate, L'/T

r = radial distance, L

R = dimensionless parameter,

Eq. 13

t = time, T

v = fluid velocity, L/T

w = fracture half-width, L

X = parameter, Eq. 27

y = parameter, Eg. 25

z = vertical coordinate, L
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dimensionless effective
fracture half-width

Greek simbols

o = dispersivity of fracture, L
B = parameter, Eq. 22
s = dimensionless parameter,
Eq. 12
8 = Stagnant fluid film
thickness, L
= parameter, Eq. 21
Subscripts
D = dimensionless
i = initial
1 = mobile or fractured region
2 = immobile (fluid layer and
porous matrix) region.
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TABLE 1. COMPARISON OF THE HOMOGENEOUS RESULTS OF HSIEH (1986),

G. AND THOSE OF THIS STUDY, Cbp.
t_ = 50 t = 100
D D
r, G CD r, G cD
11.0 0.964 0.96412 11.0 0.993 0.99301
12.0 0.892 0.89231 13.0 0.949 0.94875
13.0 0.775 0.77523 14.0 0.900 0.90010
14.0 0.617 0.61714 16.0 0.724 0.72402
15.0 0.439 0.43925 18.0 0.463 0.46298
16.0 0.273 0.27294 20.0 0.213 0.21295
17.0 0.145 0.14493 22.0 0.065 0.06501
18.0 0.645 0.64501 23.0 0.030 0.03005
19.0 0.023 0.02207 25.0 0.004 0.00397
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Fig. 1. Proposed Model for representation of the
naturally fractured medium.
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Fig. 2. Comparison of the continuous tracer concen-
tration solutions, for naturally fractured
reservoirs, of Chen (1986) and of this study.
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Fig. 4. Continuous injection tracer concentration vs
radial distance for various values of the
dimensionless wellbore radius, for tp=1.
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Fig. 5. Comparison of the radial and linear continuous
tracer concentration responses for equivalent
matrix-fracture system characteristics.
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step injection tracer concentration.






