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ABSTRACT

of tracer tests a single tracer
injecuon mass history - ideally a single slug of tracer.
Unfortunately, tracer injection functions can be very
erratic, leading to variations in the recovered tracer
concentrations. Under these circumstances it is
essential to correct the data for the erratic tracer
injection, thereby recovering the impulse or slug

response of the injector-producer system.

‘\w:‘r discuss a method for estimating the impulse
response using the Wiener-Hopf equation. The
estimation technique involves forming and solving a
Toeplitz matrix approximation of the Wiener-Hopf
equation for the impulse . “The elements of the
matrix are autocorrelations of the injection tracer mass
with respect to time, while the known vector is the
cross-correlation of the injected tracer mass and the
produced tracer concentrations. The matrix solution is
easy to formulate and computationally rapid.

The Wiener-Hopf method has several advantages over

other published techniques for correction for tracer -

reinjection. First, the method can estimate the impulse
response in principle no matter how complicated the

initia! injection tracer mass history. Itis also the least-

squcsumawrofmcimpuhcmpmse

\We 1llustrate the impulse estimation techmque using
reactive and non-reactive tracer data gamered at Dixie

Valley.
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PROBLEM FORMULATION

Suppose that the impulse response of the tracer transfer
system is denoted - h(t). Then if the input tracer mass
as a function of time is x(t) and the produced
concentration is C(1), ‘

c@ - J;((t-u)h(a)da. W

We wish to estimate h(t) from this equation given a
finite number of noisy measured values of C(t) and

x(®.

: Dunngau'accrmaquanutyofmismemdintoa

_well and the outflow at other wells is monitored for the

presence of the tracer. The measured concentration of

‘the tracer in the monitoring wells as a function of time
can ‘contain information about: the hydrologic

connection and the thermal regime between wells
1988). One:

-(Robinson, -1985; Robinson et al.,

Robinson (1985) presents a method for estimating
h(t), for the case where produced water is re-injected.
Briefly, he supposes that the injection tracer
concentration consists of an initial slug and subsequent
reinjected waters. Thus for t=0,

x(t) = B(t) + BHC, 2
where B(1). is some function which expresses the

degree to which the reinjected water is concentrated or
rarefied. Thus introducing (2) into (1) gives

- . t
C =h) + J Bt-a)Ct-oh(o)da.  (3)

h(t) CO- Jﬁ(t-a)c(t-a)h(a)da @

i'?'r’l‘tmsformeeasewhenmedarahasbeennonnalizedto

- potential* problem in comparing tracer tests or in’ : :

. interpreting the measured concentrations in terms of a
- deterministic or. stochastic. model is that the input

concentration of tracer may vary from experimentto . -

experiment. This is especially true since in many cases -
- producuon water will be re-injected and the injected -~
depend on the concentration

of tracer in the production wells. Thus it is desirable to

standardize ‘tracer tests to a uniform tracer input

function. Since the transfer of tracer from well to well
. must be a causal linear process in a properly

tracer test, it is reasonable to use the impulse response

- of the system -as the standard of comparing or
modelling a tracer test. In this case, we must find
effective means of estimating the impulse response of

the system from an arbitrary tracer input and a

. measmedoutputatﬂxeprodud:onweﬂ

give a unit input slug, the impulse response can be

calculated at each time t by evaluating the convolution

integral over past values of ‘h.-This scheme can be

given a discrete form. Suppose that the input
* concentration at discrete pmnts is

x[n]= bln-ll + BCln]

" for n- l 2,. .,N andouq:utconcentrauon Cinl. In. i
‘this case we have assumed for convenience that the. -

" reinjection fraction B isconstantasa functionof n.
- Then the discrete version of equation (3) i is
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Solving this equation for hin] gives

h{n] = (Cln] - B Z Cln-k+1]h[k]}. (6)

1+ 5C[ll

As in the case of continuous data, the impulse '

response at a particular time is a function of the
impulse response at previous times.

This formulation is concise and appealing. However,
it has several possible drawbacks. First, the
technique supposes that each measurement is exact,
when in fact noise is always present in the data.
Second, it presupposes an initial impulse injection,
when in fact the actual initial injection concentration
may be unlike an impuise. In this paper we seek a
technique of estimating the impulse response which
will not have these two failings.

We wish to solve equation (1) in a least squares
sense, which will ameliorate the effects of data noise
on the estimate of h. Following Papoulis (1977, p.
340), the least-squares solution to (1) is the soluuon
to the Wiener-Hopf equation,

Rexlt) - J Re(T-a)h(e)da = 0, )]

for 120, where R.y is the cross-correlation of
C(t) and x(t) and Ryy is the autocorrelation of x(t).
This equation has a formal solution for h, which is
discussed by Papoulis.

In an actual tracer experiment, data is collected at
discrete time intervals. Thus, the discrete version of
the Wiener-Hopf equation is (Papoulis, 1977 eg. 10-
115),

Rexlm] - :-{1 Ruclm-k+1J1[K] = 0, ®

where m 2 0. Since data is collected at only N
points, equation (8) becomes

N
Rex[m] - kzl Rex[m-k+1]h{k] = (&)
where m =0,1,...,N-1. The values of Ry and Ry,
can be estimated using the formulas
Resfm] = o N;;nﬂ r{n]sin+m]
® Ndm| &, ’
or

1 N-m .
Relm]l =5 ¥ rin]s{n+m],

n=1

(Oppenheim and Schafer, 1975). These estimators
differ only in the value of the anterior muttiplier. The
first estimator is unbiased but has large variance as m
approaches N. The second estimator has a bias
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\RyefN-1] RyefN-2] R“m 3.

which approaches 0 as N becomes large. Ithasa
smaller variance than the first estimator as m
approaches N. Although some study as to the proper
estimator to use might be useful we simply use the
second following the conjuncture of Jenkins and
Watts (1968) that it may in many cases give a smaller
mean-square residual.

Equation (9) determines a set of equations which give

- the matrix form

(Rafl]
Rex(2]

R[N
7 Rel0]

Rux(1]
Rxx(2]

Ryx(1}
Rxx([0}
Rexl1]

Ryx{2] ... RyxIN-1]
Rexll] ... Rex[N-2)
RadO] ... Rx[N-3].

. Rxl0]

Ahi1]
h[2]
‘h{3] .
. ) v (10)

\n[N]
where we have used the fact that Ryy[-k] = Ryx[k].
The matrix is 2 Toeplitz matrix, which means that the

. matrix equation can be rapidly solved for h using the

Rybicki algorithm (Press et al., 1986). By design,
the solution will be valid in a least-squares sense.

NUMERICAL EXPERIMENTS

As a test of the Wiener-Hopf technique we considered
a simple tracer experiment, depicted in Figure 1. The
impulse response for this experiment converts a unit
impulse into two impulses of amplitude .5 lagged one
and two time units respectively, as shown in Figure

- 1. During the experiment, the produced water-tracer

solution is diluted by an equal part of pure water and
is reinjected, as in Figure 1.

The sampled values of x[i] and c[i] for this case
were used to estimate h[i] using both the Robinson
technique and the Toeplitz matrix technique. In the
case of noise-free data both techniques did a good job
of estimating h{i], giving estimates which were .5 to
three significant figures at i = 2,3 and were smaller
than .5x10-4 for ail other h[i] values. In both
cases, the estimated impulse responses oscillated
about 0 with decreasing envelope as i increased.
We then contaminated the tracer data with Gaussian
noise having a variance equal to 5% of the data values
using an algorithm from Press et al. (1986). Using
this contaminated data, the Robinson technique gave
h{2] = .537 and h{3] = .478, while the least.

technique gave h[2] = .569 and h{3] =.512. Both

techniques gave h[i]!less‘than .2x10-3 for all other
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Figure 1. ,
injectlon Joop for the ﬁrstnumericalm case.

h[i] values. As before, both estimates oscxllated ,

about 0 with decreasing envelope as i increased.

Although the Robinson technique workcd well with
noisy data in this particular case, weemphas:zethat
itsgenem!mponsemndsydatainunknown

Theoretical impulse response and re-

In this and the subsequent numerical experlment, we

have not examined the variation of the impulse
response estimate with respect to amount of data
included, autocorrelation estimators used, or pre-
filtering of the data. Thus our impulse response

estimates ‘'may not be the best achievable from a -

pa:ﬁcular data set usmg the Wiener-Hopf equation. .
ﬁgurs 2 and 3 give concenu'ationdata for a tracer

experiment at Dixie Valley (Adams et al., 1989) using
an initial 150 Kg shug of Fluorescein dyc and a 100 -

. We have not examined

response falls below the data, as is expected. The
total percent difference between the data and the
impulse response at day 70 for the Fluorescein is 8%
of the impulse response, while the discrepancy for the
Benzoic acld at day 70 is 10% of the mxpulse

. For both tracers, the i response has
oscillations which track the oscillations in the data.
This suggests that these high frequency variations in
the tracer responses are not caused by variations in the
tracer mass of re-injected water.

CONCLUSIONS

We have discussed the estimation of the impulse
response of single injector tracer experiments using
the Wiener-Hopf equation. This approach is
advantageous because it is not restricted to a parti

“initial tracer injection mass history and it gives the

least squares estimation of the impulse response. We
have illustrated the use of the technique using tracer -
data gathered at Dixie Valley In this application the

-technique was important in demonstrating the
. independence of cscillations in the tracer responses

from tracer mass variations in the re-injection water.
the variation of the impulse
response estimate with respect to amount of data
included, autocorrelation estimators used, or pre-
filtering of the data. Thus our impulse response
estimates may not be the best achievable from a

pamcular data set usmg the Wiener-Hopf equation.
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; vAdams M C., Benoxt, ‘W R Doughy, C.,

'~ ‘Bodvarsson, G. S., and Moore, J. N., 1989, Dixic

. Kg slug of Benzoic acid respectively. We presentthe - -

tracer responses as concentrations in an attemptfo: '
" lessen the effects of non-constant -production flow
_rate. - The Benzoic acid data is initially smooth but - - -

then becomes slightly oscillatory. The Fluorescein

- data is much smoother than the Benzoic acid data,

‘with .oscillations in the curve tail much attenuated

to those in the Benzoic acid data curve. It
isunclearwhetherthmeosdllauonsrepmentermrin
chemical analyses, represent . actual  flow

. characteristics of the earth or reflect variations in the
~tracer concentrations of re-injected waters, as shown
. 'in Figures 4 and 5. - However, if the osctllations -

' reflect variations in the mass of the reinjected tracers,

- ‘least-squares impulse
and the Benzoic acid data.  The final impulse-
response estimates are shown in Figures 2 and 3.
The impulse response

early times for both cases. At latcr times the mpnlse

agrees well with the data at -
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Figure2.  Fluorescein concentration data for the Dixie Valley Test., naormalized to a unit mass initiat slug. togcther
with the impulse response estimated using the Wiener-Hopf equation. .
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Figure 3. Benzoic acid concentration data for the Dixie Valley test, normalizedtoaunitmassiniualslug together
with the impulse response estimated using the Weiner-Hopf equation.
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Figure 5. Re-injécted Benzoic acid as a function of time.
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