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: ABSTRACT
This study presents a semianalytical solution
of the integral form for continuous, finite
step and spike-injection flow of a . tracer

in naturally fractured .reservoirs. An impor-
is  that

tant advantage of this  solution
the numerical dispersion reported by previous
investigators when using the Stehfest . inverter
Laplace transform ~algorithm ~is - avoided.
The reservoir is treated as being composed
of two regions: a mobile reg1on where diffu~
sion ‘and convection take place and a stagnant
region where ‘only diffusion and - adsorption
are allowed. This model can also be used
to study the flow- of radioactive tracers.
The solution of “this paper
in terms of two dimensionless parameters*
the Peclet number for the: fractures, P
and a parameter a= E/P_, , where &d¢,D,/v(

and P _.is the Peclet %umber for the matrix.
A sensitivity study -was carried out with
regard to the above mentioned main parameters
that enter into the continuous, f1n1te step
“and spike~injection solut1ons.

INTRODUCTION

The use of tracers has long been used fordf
the characterization .of hydrocarbon. reser— '

voirs, however, it  wasn't until
that they . gained

: recently
importance “as .- a. useful

means. to . study - geothermal reservoirs. ‘Geo— . =
thermal: reserv01rsare “in_most ‘of the. cases. .

complex naturally . fractured systems - that
require careful studies for optimal ‘exploita-
“tion conditions. Tracer flow tests, in addi-
tion to well testing, provide an . excellent

- means- to obtain estimations for basic reser-’

voir parameters, as well ~as:the connect1v1ty,

of the reservoir and the transit times of -

1n)ected fluids. This Latter information
is of ' outmost - importance  in

- pro:ects of br1ne 1nto these reservoirs.

.'Dur1ng the last tuo decades several papers

appeared - in. the -literature dealing with

- the . flow of tracers in naturally: fracturedi‘

. systems “(Grove and- Beetem,  1971: - Grisak .
and ~ Pickens, 1980  dnd - 1981;

1980 Tang et al.,1981' Fossum and Horne, ;

* Nou u1th Aquater
** Now with Universidade Estadual de
Campinas

js  expressed .

Tester et al., 1983; Horne and Rodriguez,
1983; Jensen, 1983: Hugakorn et al., 1983;
Maloszewski et ..al., 1985: Rasmuson, 1985:
Okandan, 1987: Rivera et al., 1987; Ramirez
et al., 1988). It 'is important to know that
the number of studies that consider a quanti-
tative determination of reservoir parameters
is Limited (Grove and Beetem, 1971; Tang
et al., 1981; Walkup and Horne, 1985: Rivera
et al., 1987; Ramirez et al., 1988)

The purpose ' of - this study is to present a
semianalytic -solution of .the integral form
for the continuous, finite step and spike-
jnput flow of a tracer in naturally fractured
reservoirs. This solution considers all the

£:x
(t)g P|L\

.'and  mass

re1nject1on

~of Ramfrez ‘et al.
" the. def1n1t1ons ‘of “the - d1mens1onless groups

“Neretnieks,

affect tracer flow:
sorption and radio-

61 de\‘h- 7is study is shown
© fractured medium
ad- al \>\"-"’ a system of equally

;1 alternated with
hown in this f1gure

- ns a mobile region
constituted by the fracture network where
diffusion and convection take place and a stag=~
nant. -or’ immobile region where only diffusion
“and adsorption are allowed. This model also

! considers ‘the possibility ‘of. a radiocactive

tracer.A Both regions are interconnected by
means .of a thin fluid layer contained within
the immobile region which controls the fluid
transfer : between these  regions.
This type of ~visualization ‘of the problem
by ‘means of two .regions has been -used by
other. -authors in .~ the -past “(Deans, 1963;
Walkup and Horne, 1985;'Haloszeusk1 and Zuber,

. 1985; Rivera et al., 1987; Ramirez et al.,

1988)... For. a  detailed ~description: of the
model the —reader is referred to- the work
€1988) Appendix-. A . shows

used 1n th1s study.

for the-case of a. cont1nuoUs tracer 1nJeet§on
the governing equation for. flow 1n the frac-

" tures 1s as follbus-

P, o x
T % _ + % -9 @
2 Tt &= 1 s ot
Pet Xy 3 % |'T °v°
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The solution of this equation in Laplace
space considering the proper initial and
boundary conditions is given by (Ramirez
et al., 1988):

- ! Pe1xl> '
C,n = — exp( ) exp |- x
10 s 2 D
Pe1 )
-+ Pe1 s+ v+ £m1 tanh m1(E -2u+28)
4 ()
2L
2)
where .
Pe2 3

mER T

It has been $hown (Ramirez, 171988) that
for practical purposes the thickness E
of the repetitive element of Fig. 1 does
not sensibly affect the tracer concentration
results, because for the parameters that
enter 1into the hyperbolic tangent, its
evaluation results approximately in a value
of 1. Under these conditions, Eq. 2 can
be written as follows:

1 P .x [~
- 1°D
C1D = — exp( £ ) exp| = x

s .2

o )\
Pe1 P 2 (s +Y) W

2
4 +Pe1[s*Y+ET

It can be mentioned that Tang et al. (1981)
have presented an expression similar to
Eq. 4.

If €q. &4 is analyzed, it is possible to
define a new dimensionless parameter
@ that would allow to express this solution
in terms of only two dimensionless param—-
eters'

= tfe "

Considering a chemical tracer (vy=0) and

L

(5>
viw -6) (u -5)

that R=1, Eq. &4 can be written as follows:
1 ° P2 A

- 1%p. el

C =— epD L€+ p (staV/5 )

(e L PR )

)

It can be observed from Eq. 6 that through

the parameter o the stagnant region affects
the tracer concentration of the mobile region.
Based upon this observation, for small values
of ala + 0), the system would behave as if
the immobile region were impermeable and that
the tracer will only flow through the mobile
(fractured) region. This case is equivalent
to consider the flow of a tracer through a
homogeneous media. Thus, under this condition,
€q. 6 can be expressed: .

_ 1 P .x

1
C, = — exp( €
i

o)exp {=x

P
e .p sb D
4 e

The inversion of this equations yields:

1

C,_=-—erf
1D Zerc

D
1
exp(P X )erfc
2

Eq. 8 has been presented by Coats and Smith
(1964) for homogeneous systems.. For the case
of this study of a fractured formation, it
represents a limit analytic solution due to
the fact that maximum tracer concentrations
are attained when there is no tracer transfer
to the second immobile region, which as mention
ed corresponds to impermeable conditions
(@ & 0. .

e1 *p e1
D

In many field situations, the tracer is inject-
ed for a short per1od and are referred to

"spike injection tests” in the Lliterature (Walkup,
1984). It has been stated (Walkup, 1984;
Walkup and Horne, 1985) that the solution for
an spike test is the time derivative of a
step injection solution:

ac -1
01 ‘ =
€ J_ . .= = c O
1p " spike at, {510}

Substituting Eqs. 6 and 7 into Eq. 9:

A Y
eﬂxo
<c1l>sp1ke expf -,‘J =-+P, (s«xf) “am
3
P
_ P, Tl
(cw)sp'ike- exp(: ) exp Xy = Pyys “an
Limit
The solution for a finite step 1injection

for fractured and homogeneous  Ssystems can
be derived through the application of the
principle of superposition and the use of
Eqs. 6 and 7.
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METHOD OF SOLUTION

First the. algor1thm for the Laplace transform
of Stehfest was used to invert Eq. 6, finding
some numerical . dispersion of _the .results,
which increased with the d1mens1ontess time,
Based on this finding, an alternate approach
to solve this problem was sought.:

Applying Eq. 7.4.3 of Abramow1tz and Stegun
" (1970) to Egs. 4, 6 and 7 we obtained the

following solutions:

Continuous .injection.

Radioactive tracers.

-
1
Pe1’d, 2_JFet’ °-+ ﬂ
= =¢ Y.
1I>(xmt‘.,) == exp( " J exp[ T PR
0. .-
exp(- 2)erfc
{ 41’
on
+exp (————) + Y(t‘
8 lt"
H rto--Jﬂfga dt R a2
4
Continuos injection.
s Chemicaﬁftracere (Y # 0.
: “‘, 5 R
1xb e1 xD
(x t )--——ewp( £ J enp( T ?
F oo e o et
, Paax? T e
42
sp1ke - 1n3ect1on fév' R o
P | P
G .(x 1t epire™ em[-r?’-'(;)z.
1 D sp1ke  ‘43 : va: et v
B s 6—-—9 H( - ) d (14)
E e1xl>2-l tp '
(tD ‘ R

41"‘

- continuous

- numerical - integration of the Limit solution

. given by Eq. 15 and the: Limit analytic solu-
~tion. . for homogeneous systems given by Eq.
8, ‘with 'the ' numerical ' integration 'solution
- of the general Eq. 13 for an o value of 0.01.

VALIDATION OF THE SEMIANALYTICAL (INTEGRAL)
SOLUTION.

Equat1ons 12 and 13 were numerically inte-
grated using the algorithm of 0'Hara and
Smith (1969), and compared to the numerical
inversion solutions using the algorithm of
Stehfest (1970 a,b) of Eas. 6 and 10. Figures
2 and 3 show the results obtained of tracer
concentration for - the continuous injection
and Figs. & and 5 show the corresponding
results = for the spike-injection case. It
can be observed from these results that the
semianalytical (integral) solution is far
better than that obtained through numerical
Sthefest inversion.

Another step taken toward the validation

" of the integral solution method was to obtain

the limit integral solution for the continuous
case of Eq. 7, following the same procedure
already outlined 1n the previous sect1on'

2%
=70 d *o. 2 d
=2 - )e
 Cyp(xpety? frm( 5 )Jexp(-xbr oot
Het, ---—)‘*1 dt as
4T

This equation 15 was numerically dintegrated
by the . algorithm of O'Hara and compared to
the -limit solution for homogeneous systems
given by Eq. 8, :finding an excellent compar-—
1son, as will ‘be shown next. The next step
in ‘the validation effort was to compare the
solutions obtained through the

This value "was chosen based on the ‘previous
finding - (Ramirez, 1988) that  for oS 0.01
tracer response 'is ‘esentially the same as

,*,fprfu=0;ﬁwhich_corresponds to the zero diffu-
©sion into.. the ~‘matrix- (homogeneous
- Table 17 'shows the results of. this compar1son

case),

for a value of P equat to 2, with a maximum

_ d'lfference 1n ths resul.ts of 0.('.0)15 % percent.

S1m1ler.validat1on5‘of the integral'solution
to the previousty discussed for  the contin-

uous - injection case were carried out - for

" the finite-step and Sp1ke injection cases

v finding “an excellent ' comparison u1th the
Limit correspond1ng sotut1ons. ) .

DISCUSSION OF RESULTS

In. th1s sect1on ‘a. discuss1on is presented
of ‘the tracer responses  for the ‘continuous,
finite=step and spike “injection cases -given

"'4for the first ‘and the Llast case by Egs.
13 ‘and 14, respectively. An important part

of this discussion will focus on the finite-
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step injection case that is often used in
field applications.

It 1is important to keep in mind that the
integral solution of this study, used to
describe the tracer flow in naturally fractur-
ed systems, is expressed in terms of only
two basic parameters: the @ parameter and
the Peclet number for the mobile region P 1"
Thus, it is easy to check the effect of eSch
of these parameters on the tracer flow re-
sponse.

Fig. 6 shows the tracer behavior for different
distances of the injector to the producing
well, for values of P_,=1 and a =0.01. For
practical purposes, racer concentration
is important for a distance x,=1 and, conse-
quently, results of this study will correspond
to this distance.

It has been previously discussed that the
o parameter determines the influence of
the immobile region upon the tracer flow
through the fractures (its definition giv
en by Eg. A-11 involves the porosity of the

matrix ¢2 and the difussion coefficient Dz).

It is useful to further discuss Fig. 3 which
shows the influence of the parameter a upon
tracer concentration. It can be noticed that
as o increases, the tracer concentration
at x.=1._decreases and also that the break-
throth time of the tracer 1is essentially
constant for all a values. In addition, the
graphical results indicate that the curve
for the Llimit concentration, a =0.01, is an
upper Llimit for all solutions and that the
tracer responses for the various g values
eventually will reach a maximum concentration
tess than 1. Of course, this is due to the
transfer of tracer to the immobile region.

Figs. 7 and 8 illustrate, for the case of
continuous injection, the influence of Peclet
number of the mobile region upon the tracer
concentration. If we analyze the definition
of the Peclet number (Eq. A=-5), it can be
concluded that for practical purposes the
variation of Pe is due to diffusion in the
mobile region répresented by D1:

D1 = DLV + D* 16

where D, is the logitudinal dispersion coef-
ficient "of the fractures and D* is the tracer
molecular diffusion coefficient. The values
of the molecular diffusion coefficient D=
are usually gquite smaller than the values
of D, and consequently, the Pecltet number
Pe1 i§ inversely proportional to DL.

Fig. 7 also indicates that the breakthrough
time of the tracer is a function of the Peclet
number for the mobile region P 1° As expected,
if Pe1 increases we get longer tracer break-

-

through times. This can be explained by saying
that as P increases, the coefficient D
will be smailer and this will result in Llonger

breakthrough times. However, after breakthrough,
the increase of tracer concentration is faster

for the highér P 1 values; this means that
the slope of th€' tracer concentration re-
sponses increases and as shown in Fig. 8,
for values of P 4 greater than 5 the response

will be similaf' to that of piston {(ike dis-
placement predicted by the Buckley-Leverett

frontal theory of Llinear waterflooding dis-
placement in oil reservoirs (Craig, 1971).

In summary, from the foregoing discussion
it has been concluded that for a fixed value
of a, the Peclet number P 1 -affects the
tracer concentrations respoﬁ%es (different
shapes and also changing breakthrough times),
and that for a constant P the responses
for various o values show curves of similar
shape, and_ that the response for a egual
to 0.01 is an upper Llimit for all solutions.
These conclusions also hold for the finite-
step and spike injection cases to be discussed
next.

With regard to the finite-step case, Fig.
9 shows results for an injection period ex-
pressed in dimensionless time equal to 0.3,
P = 1 and various o vatues. It can be ob-

-sg1ved that the time to reach maximum concen-—

tration conditions is independent of &¢ ;
this means that the diffusion and adsorption
of the tracer in the immobile region has
no influence on the travel of the maximum
concentration towawrd the producing well.

Fig. 10 shows results of tracer concentra-
tion for the finite-step case for a= 0.01
and various values of the P parameter for
an injection period of 0.3; %' can be noticed
that the time to reach maximum concentration
conditions will increase as Pe1 increases.

Fig. 11 shows results of tracer concentration
for, the finite-step case for the same G and
P _.'s parameters already stated for Fig. 10,
bSl for an injection period of 0.1; comparing
the results of this Fig. 11 with those of
Fig. 5 for the spike injection case, it can
be concluded that the tracer responses for
both cases are similar and that the finite-
step solution will only converge to the spike
solution for large dimensionless times. Another
important point 1is that the time to reach
maximum concentration and the breakthrough
time are essentially the same for both solu-
tions, for the particular case of an in-
jection period equal to 0.1.

Next, Fig. 12 presents the results of tracer
concentration for the finite-step <case,
for a value of @ = 0.01, P-, = 2 and values
of the injection period 3} 0.1, 0.3 and
0.5. As expected, it is observed from results
of this figure that as the dinjection time
increases, so does the maximum tracer con—
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centration and ‘that the time at which this
“maximum is attained is larger than the in-
jection period, due to the dispersion effeqts,
taken into account in the Peclet number P

It can also be noticed that the tracer ¢ n-
centration .response for different 1nJect1on
periods is the same for times smdllér. than
the injection time. This implies that for
times smaller than the .injection time, the

continuous solution is valid to analyze tracer:

concentration response. This can be further
verified if the results of this figure for
an  injection time of 0.5 are .compared to
those of Fig. 3 for a = 0.01, finding that
both responses are the same for times smaller
- than the injection time.

CONCLUSIONS.

The main pourpose of this work was to present
a semianalytical. solution  of the integral
form for. the flow of a tracer in .naturally
fractured reservoirs.

Based on the material presented in this study,
the following conclusions are pertinent, .

1. A model
tracer in naturally fractured reservoir
that considers the following mechanisms:
diffusion,  convection, adsorption . and
radioactive decay.

2. The integral. semianalytical = solutions
presented for the continuous, the finite-
step and the spike injection - cases do
not show numerical dispersion ‘as shown
by previous investigators when using the
Stehfest inverter Laplace transform aigo-
rithm. ‘

3. For practical pourposes - the  thickness
(size) of the matrix blocks does not affect
the ‘tracer concentration results. Under
this condition, . the tracer concentration
response '
two d1mens1onless parameters° a and P- e1°

4. The parameter « determines the
centration response,

" to the matrix (a = 0). It was shown that
th1s solut1on can be appl1ed for a<0-01.

" 5, The immob1le regxon 1nfluences ‘the tracer:
values of =

concentration’ . response - for
a> 0.01, It was found that the breakthrough

" time of the tracer is essentially constant
for "all a values ‘and ‘that the ‘response .

.UTCraig, RaFu, dra, 1971, The Reservoir Engi~

for o =0, 01 L1m1t “for all

: is. an upper

f'solut1ons. PR

6. The Pectet number of the mob1le (fractured)

5T region P has . .an- important - effect: ‘upon
the trager concentration .
was' observed 'that if P increases -the
breakthrough time also increase and ‘also

.7« ~The

X X £ <€ ctet mizr11§ - rFrXTnooo

is presented for the flow of a

is expressed in terms of only

n»é*W»dfvin ‘

1nfluence'
. of theimmobile region upon the ‘tracer con=: '
An anatyt1c solution.
was derived for the case of no diffusion

response, - It

that the shape (slope)

concentration response

this parameter.

continuous . injection
valid to analyze  tracer
response - for times smaller
injection time.

_ NOMENCLATURE

of the tracer
is affected by

solution is
concentration
that the

tracer concentration, M/L3
dimensionless tracer consentrat1on
diffusion coefficient, L°/T
fracture spacing, L
step function,” Eqgs. .12,
adsorption constant, L°/M
distance from the injector to producing
well, L
inverse Laplace's
parameter, €gq. 3
Peclet number, dimensionless
dimensiontess group, Eq. A-10
taplace variable
time, T
dimensionless time, Eq. A-=7
velocity, U/T
fracture half-width, L
distance in the x direction
dimensionless distance in the x di-
rection Eq. A-6
= distance in the y direction
= dimensionless distance in the y direc-
_tion, Eq. A-2

<

13 and 14

© ® i
b
N W wn

WO R

U‘

<
b

Greek simbols.

K A,d11"¢‘nensionl.ess group defined by . Eq.
dimensionless group,

. A-‘"

Stagnant fluid film thickness, L.
porosity, referred to bulk volume

dummy. var1ab§e of integration

density, M/L

.radioactive decay constant, T-1

defined by Eq.

0O A0 <

ubscripts’

dimensionless

initial

spike :
“mobile or fractured reg1on
1mmob1le reg1on

]
:il' Wil
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APPENDIX A

DIMENSIONLESS GROUPS USED TO DESCRIBE THE
FLOW OF TRACERS

Peclet number.
Mobile (fractured) region (1)

V1L
Pe1= -D— (A=5)
1
Immobile region (2)
V1L _
Pe2= B;_ (A=6)
Dimensionless time (fD)
V1t .
tD‘-' - (A-7)
Dimensionless concentration
Mobile (Fractured) region (1)
C1-Ci .
Con= ™/
10 Co-ci (A-8)
Immobile region
€~¢
C2D= _— : (A-9)
C -C,
o i
Dimensionless parameter R
¢2
R = (A‘10)
¢2+pk(1 ¢2)
Dimensionless parameter a
(A-11)

o= &g
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Comparison of the limit analytic solution for homogeneous systems (EQ. 8), the limit solution’

Table 1.
(EQ. 14), and the numerical integration solution of the genera! EQ. 12, for ¢ = 0.01.

~CDla. . - CDlint. CDint.
TD (Eq. .8) (Eq. 14) {Eq. 12)
0.10 0.004077 0.004076 0.004047
0.20 0.063753 0.0&63733 0.063309
0.30 0.165726 0.165726 0.164584
0.40 0.270613 0.270613 0.26B876%
0.50 0.364975 0.364975 0.362520
0.60 0.446383 0.446383 0.443422
0.70 0.515738 0.515738 0.512365
0.80 0.574723 0.574723 0.571021
0.90 0.625022 0.625023 0.621058
1.00 0.668101 0.6468102 0.663929

REAL SYSTEM IDEAL SYSTEM 160

- 'POROUS - 0:90 o

Mtbluu- - .o

5 rucrg! ——r 020 <

NICROPRACIURTS.* - ‘/’“\ 0704

-_-/\,1---'----- 060

FRACTUNCS

%
[ Y A

Fig. 1

naturally fractured medium.

Idealized proposed model for representatron ofthe . .

" Fig. 2 Continuous Inlecuon tracer concentration solutions . * -

“‘obtained through numerical inversion using the

‘Stehfest algorithm
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solutions injection tracer concentration for long times.
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Fig. 6. Continuous injectiontracer concentration for various Fig9. Influence of the a parameter on the finite-step
- xp values i i injection tracer concentration for tp = 0.3, Peq = 1.
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Fig. 7. Influence of the peclet number on the continuous Fig. 10. Influence of the peclet number on the finite-step
injection tracer concentration for short times. ~ injection tracer concentration for tp = 0.3, a = 0.01.



Fig. 11. Influence of the peclet number on the finite-step
injection tracer concentration for tp = 0.1, a = 0.01.
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Fig. 12." Influence of the injection period on the finite-step
injection tracer concentration for Peq = 2, o = 0.01.
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