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The .Larderello production history has
been interpreted by ' the author(1987)
as the consequence of - an- initial

depletion-type production regime
followed by d4 diffusive type one. At
the moment & diffusive " flow |is

developing -~ vertically all over the
northern part of the field. This paper
presents a mathematical model of  the
Larderello production history which
incorporates the - above mentioned
concepts. Such  a model " has been
validated calculating the ' measured
reservoir pressure drop caused by the
actual production history.

In a _ previous paper (Neri,
1987), the Larderello production

history has been ‘interpreted by the

author . as '‘the consequence of  an
initial depletion-type production

regime followed by a diffusive-type
“one. - At the moment a diffusive" flow is
developing vertically all over -the

northern part of the Eield as - is
shown Dby 'the wells shutéin]'tests
described in Ref.. 1.  The' depletion
regime - could have 'been caused- - by the

- uniform ‘boiling of-1liquid water (White
.-et - al,,1971) stored .in the ~uppermost =
part . of  .the ' reservoir ' where - a
carbonatic formation is present. The ~

diffusion regime starts = when the
boil;ng process becomes dominated by

boiling front - which propagates’ down
the ‘teservoir’ giving origin. to - a’

process of  pressure diffusion. With

such ~a concept in mind,the reservoir:
‘ \canﬂvbe therefore = conceived as made by’
! two, dxfferent;régionS';
; "Fig.l. . Region 'l 'represents ' the
volume corresponding to” the ‘top of ‘the =
‘reservoir ‘'where evaporation - develops
uniformly  before- spreading "“to."the’

underlying Region 2.

2. . e SR

: In order ' " to o ‘treat. in
mathematical terms the conceptual
reservoir model, it has seemed useful

as’ iliustrated.

to start out with a few simplifying
hypotheses, to make easier the
mathematical treatment of the problem.

Hypotheses:

a) All processes occurring within the
reservoir are more or less
isothermal.

b) The  pressure gradient is negligible
in Region 1 of ¥Fig. 1, whereas in
Region 2 it . is small enough .tec
allow the use of the diffusion
equation to describe the . pressure
field.

c) Rock porosity and volumetric
saturation of ~ liquid water are
homogeneous,rock permeability is
homogeneous and isotropic
throughout the reservoir.

with these hypotheses, and in

reference to- the scheme of Fig.
< bl,the pressure. field within the

reservoir can be described by the
. followinq equatlons.

 }(2) (Grad* Grad)pz (x, t) .'tf T
; '(l/n) 8Pz (x,t)/ét Region 2

where C = c LIS 'o
Qz; - (K/u) *A* (6 P;/&x) x=0 -

- The -initial and ' the . boundary
conditions .under which equations 1 and

7f2 must be’ resolved are: -

‘P (t>°) - P2 (x =0, t)o)
Q (t20) qupstant_-

It is  convenient to introduce

‘the following dimensionless variables
“ into equations 1 and 2;
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Pi.z.p ==>=—~- (P1.2.2 - Pa,2)

Psa, 2.2 = [nitial pressure in

regions 1 or 2.

P, depends on time only, whilst
Pz depends on depth too.

Equations 1l and 2 therefore
assume the following form:

: dPio dP 2o
(1) Cp ~~~-- - m————- =1
dto d Xa | %a=0
. dPzn
(2)’(Grad * Grad )Pzp = -=--
dto
The resolution of equations
(1)° and (2)° in consegquence of

hypothesis b), which gives us
Pip = Pap (%o = 0), t2 ©

is analogous to that of a problem of
heat conduction 1in a semiinfinite
medium whose surface is in contact
with a well stirred fluid supplied
with a constant amount of heat per
unit of time

H. §S. Carslaw and J. C. Jaeger
report (Ref. 2) a solution to this
problem which, adapted to our case,
dcquires the form:

(3)
Po (tp. Cp, Xo = O) = 2 4 (tﬂ/“) + Cp
[esPs/cp2 % erfc(dtp/Co) -1]

Such a solution {is valid for a
constant Q and hypothesizing that for

Xo = O, then Pap = Pap = Pp for
to>0

In eq. (3) appears the
parameter Cgp, which is an index of the
storage capacity of region 1 of the
reservoir.

The greater Cp 1is, longer the
depletion production regime will last.

The parameter Cgp, mnay not
appear explicitly in the solution of
Po if we define an dimensionless time
to” given by

to” = ts/Cp?

and at the same time define a
dimensionless pressure Pp” as

Po KAZ (Pa2 - P2)
pD. - eem-- - wmwmm K aewcmcoooeo-— -
Co v ‘ Qu

vith these new definitions,
solution (3) can be written as

(4) Po™ (to™ , Xpo = 0) = 23(to"/®) +

to”
+ e * erfc(itps”) - 1

. Solution  (4) is represented in
Fig. 2 in the form of a bilogarithmic
graph of Pp™ as a function of tp".

From Fig. 4 it can be noted
that for "small®™ tp" values, Pp* is
propertional to to”, whereas  for
"large” tp*, Pp” 1is proportional to
Ito". This is indicating that the
pressure is initially controlled by
the reservoir storage, then by a
diffusion equation for linear flow.

3. THE RESERVOIR PRESSURE DROP AS
CALCULATED WITH THE MATHEMATICAL
MODEL

The solution Pg™ given by (4)
constitutes an dimensionless influence
function for Xo = O, that is at the
top of the reservoir.

If we wish to calculate the
pressure drop at the ¢top of the
Larderello reservoir, we must solve
the system of equations 1 and 2 in the
case of variable flow @, as the flow
produced by the field has been
variable over time.

Using Tp (to”, Xp=0) to
indicate the solution of equations 1
and 2 in the case of variable Q over
time, we will get

(EL fp{to”,Xo =0) =
Io Q (tp)(dPo™(t-T)n/dto)dtn

The integral (5) can be
approximated as a finite sum of terms
subdividing the time-span tp into n
intervals within each of which flow Q
can be assumed to be constant.

Vith this approximation, (5)
becomes

(6) ﬂp(tpn*,xD'o)-
n

§ io* (tn-t3=1) o(Qs- Q3-1) /0
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< 'peripheral ' ‘to. the
“drilled
can be considered a monitoring well of:

with Qo = O for te = 0

of the volumetric
flow Q. the mass flow G can be
introduced into (6), and at. the same
time we can define the dimensionless
pressure mgp as: )

In the place

K[P2 -P2]AZ
ZG; R™ Tzu V
In the calculation of 1wp using
(6)., flow G actually produced in
Larderello north darea - (Valle Secolo)
was approximated with the formula -

G e+ (Go ; Ge) exp(-t/T)

(7) G =

o = 1981 t/h

Tt = 97 months
which interpolates the measurements
taken since August - 1956 . The flow G,
in the - ‘j-th ‘time-period, -was
calculated as an arithmetical average
of the G readings given by (7) at the

extreme ends of the period.
In order to use eq, (7) for
calculating np given by (6),it was
necessary to match the physical time t
with the dimensionless time tp. To
this purpose various values  of the
parameter & = nA2/V2 which relates tp
to -t by the relation tp=iit,have been
used and a family of curves of np 385 a
function of - time 't  has
generated.These
in Fig.3: :
: "Using  the pressure
“the shut-in,welln No. 111,
group
Valle Secolo

readings'of
“which is

in the area and

the reservoir-top pressure, we find
‘that . the ' . theoretical curve  with
N 10-#2" "g=3 . interpolates: . the .

experimental data of

whereas the curve with & = 10-% s-3
interpolates better the experimental
after ‘the - 50th month from start-..

- data .
s upof production (Fig. 5).

. “The -interpolation is- acceptable
with - both values of the parameter #,
N but not outside this range. - s

o Unfortunately well No. 1lll ' is
".the ‘only. well  which has .
for some’ thirty years and - which has;;i

shown
wells
period.

interference with the producing
~during ‘the £ie1d »production

- For. shorter time-periods
records . exist for’
may ' be indicative
pressure.

of the

‘been
curves are represented

. depending
‘of ‘wells

, ‘the  first <200
.. months : of production, (cf Fig. 4 where
“the time-scale 'starts in August '1956),

RS

oz
.

‘been . closed’
_ot the reservoir

“other
'shut-in wells which -
reservoir’'s

These = are the pressure-readings
for wells 159, Gabbro 4, Gabbro 8, s.
Dalmazio 2 and S. Dalmazio 4. :
. The readings for  well - 159,
which

is also - located .in  the Valle
Secolo .area, follow the trend - of the
well 1l1 readings, whereas those of

the wells in the Gabbro area (Gabbro 4
and Gabbro 8, S, Dalmazio 2 and 4)
have a trend which seems to be that of
well No.lll but delayed by some ten
years, i. e.the time-lapse which
separated the exploiting of the two

- areas. (Fig. 6)

Graphing the pressure drop of
the  wells belonging to the Gabbro area
in bilogarithmic paper as in the Figqg.
7 and 8,it may be observed that the
graphs ~show a trend qualitatively
gsimilar - to the one calculated with the
mathematical model in the case of
production -at constant flow.Thus the
physical assumptions of the
mathematical model seem to hold for
the ~‘various producing area of the
Larderello reservoir.

4.  ESTIMATES _ OF DIEFUSIVITY.

By interpolating the pressure

reading from well No.lll with the set
of - ‘theoretical  curves, we get two
possible values for the following

groups of pdrameters:

i Po/Co=0.4 ; 6(P%)=100 (bar2);
3 = 10-% g2

i1 'Po/Co=0.07 ; 8(P2)=100 (bar?);

fi= 10-® s-2

“ on whether the interpolation
is-.‘done-- 'with one - or the other value
for &, .

From " the definition of Pp/Cop and
,putting i
Gy = 2000 t/h ~-'550 Kg/s
» = 460 J/ (Kg x °K)
ST = 500°K ;
-] e v
= 2*10" P. * s

ve qet K (A'/V) - (200 - 1000) * 10-1:2
n3 o

wfitinq V = A%h and assuming :
A =5 Km? ; the surface area occupied

©.by wells.

h: =500 m, the thickness of reqion 1

It follows ( 20 x~$‘100)r10~=:narcy,
H' From the definitions ‘of & we
get. o

o .25*10‘? S n £ 2.5,* 10-* m3¥/s

-317-




Finally, dividing Pp/Cp by & we
can get ‘the total compressibility ¢cVv
which depends weakly on the parameters
of the fit,because, being &(P2) the
same for both the groups of
parameters,the .value of #Vec depends
only on the ratio between Pp/Co and #
which is 0.4*10¢ s or 0.7*10¢
. s.Adopting  the previous assumed values
for A anda h,we can get ¢c from dcV.It
results:

2 *10-% < ¢c £ 4 * 10-% PL-3

These values for ¢c are
strongly . affected by the assumed
values of A and h.The uncertainty of V
is mostly dQue to the doubts on h, as
the surface area of the reservoir,
drained by the wells, is known.

The height h should correspond
to the thickness of the upper
formation of the reservoir, the one
known as the anhydritic formation,
which ' does not have a homogeneous
thickness, vyet is around a few hundred
metres. The estimated value £for ¢c¢
should therefore be 1in the proper
order of magnitude and is,according to
Grant et al.(l1982),typical of a two
phase fluid.

5. PRESSURE __ DISTRIBUTION ALONG _ THE
BRESERVOIR VERTICAL AXIS

The proposed model
far used to fit the pressure
drop,measured at reservoir top,caused
by some 30 years of production. The
fit allowed the evaluation of the
parameter & which is proportional to
the diffusivity n .It now becomes
possible to calculate by the model
equdtions the pressure distribution at
various reservoir depths caused by the
past field exploitation.

The solution of

has been so

equations 1°'

and 2’ has been still derived by
Carslaw and Jaeger.Posing Pp instead
of Po/Co and introducing the .
dimensionless depth ¥p* = Xp/Co ,the

following equation holds:

Po to™ .
(8)-~(to™,Xp")=2J(--~)exp(-Xo"2/4tp")~
. Cop n
~{1+Xp")erfc(Xp™/2itp" )+
+ exp (Xp" + tp™)*

* erfc [(Xp/2its"+itp™]

Xo = X/<A
Xo" = Xo/Co = X* A/V

to® = to/Cp? = n%x( AZ/V2)xt

The dimensionless depth Xo" is
the ratio between real depth, measured
from the plane separating regions 1
and 2 in the reservoir, and the
thickness of region 1.

Having estimated that the
parameter #& is within the range 10-*°
and 10-® sec-* , the same method of
approach, which adopts the principle
of superposition and which was taken
to €figure out the pressure decline
over time at the reservoir top ,can
be used to calculate the current

pressure at various depths of the
reservolir.

The results of the
calculations, represented in graphic
form in Fig. 9, show that the
pressure drop is negligible for Xp* =
2. This allows us to affirm that the
depressurization of the reservoir is
limited to a depth of 3h. Being h
probably 4 few hundred meters, it

follows that depressurization should
not have involved the part of the
reservoir at depths over 2000 m.

6. L

The model ~ described in this
paper has been successfully used to
calculate the reservoir’  pressure drop

in the Valle Secolo area of the
Larderello field, caused by the field

exploitation.The fitting of the field
data by the model's results has also
allowed us to estimate the hydraulic
diffusivity n, the fluid
compressibility ¢ c and the vertical
pressure distribution in the
reservoir.Such a distribution has been
calculated after 30 years of
exploitation and therefore is that
should exist at present. .

It shows that the
depressurization of the reservoir
turns out to be restricted to a depth
of some 2000 m.Recent results obtained
by deepening old wells (S. Martino 2,
Campo ai Peri, WVC8, 156, 119) reveal
indeed the existence of a vertical
pressure gradient in the reservoir
much higher than that due to static
steam,consequently reveal a
substantial pressure increase with
depth in agreement with the model.

The calculations ‘have been
restricted to the Valle Secolo area
,but it has been verified howeéver that
the shut-in wells in the Gabbro
area,area exploited some ten years.
after the Valle Secolo, possess a
pressure history qualitatively similar
to that foreseen by the model.

This  observation shows also
that the drainage on the Gabbro area,
due to the Valle Secolo wells, is
rather weak.
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If this low interference (in a
horizontal direction) is generalizable
for  the different producing areas of
the  whole geothermal field,.  then we
can think that significant reserves of
fluid might well still be located at
modest depths in the areas -where
density of production is low. .

This consideration gseems - to be
.actually confirmed by the drilling of
new wells in areds of the Larderello
field which are weakly exploited (Val
di Cornia, Monteverdi).
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P Pressure

G Mass flow-rate

Q Flow-rate in volume
v Volume -

A Surface area of flow
R

B = R/Mw where R is the perfect
gases  constant and Mw 1is the
molecular weight of water
K Permeability
u Dynamic viscosity
4 Compressibility factor for steam
n Diffusivity
¢ Porosity
c Fluid compressibility
r Density
b 4 Position coordinate
t Time

Grad Gradient operator
erf  Error function
erfc Complementary error function

e or exp Exponential function

Subscripts

3.2 Region indices

1 . Time index

32 .. Used in Qia to indicate flow from

Region 2 to Region 1

B Indicates a dimensionless entity
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