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ABSTRACT 
A comprehensive analytical model is presented to 

study the pressure transient behavior of a naturally frac- 
tured reservoir with a continuous matrix block size dis- 
tribution. Geologically realistic probability density func- 
tions of matrix block size are used to represent reservoim 
of varying fracture intensity and varying degrees of frac- 
ture uniformity. Transient interporosity flow is assumed 
and interporosity skin is incorporated. 

Drawdown and interference pressure transient tests 
are investigated. The results show distinctions in the pres- 
sure response from intensely and sparsely fractured reser- 
voirs in the absence of interporosity skin. The pressure 
response in a nonunifomly fractured reservoir approaches 
that of a nonfractured (homogeneous) reservoir for the 
case of large matrix block size variability. Type curves are 
developed to estimate matrix block size variability and the 
degree of fracture intensity for drawdown and interference 
well tests. 

JNTRODUC TION 

Currently, matrix block size distribu 
a determinable parameter from pressure transient 

tests. Yet, the utility of determining matrix block size 
distributions is paramount since block size is one of the 

two phase flow, it 
recovery efficiency of the 

an also result due 
to variability in matrix block size and intersection angle. 
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Figure 1: Idealizations of Typical Fracture Patterns 
seen in Nature. 

tures are calcite cemented or mineral filled which 
can restrict flow from the matrix blocks to the fractures. 

omenon can be included as interporosity skin. 
he distribution of fracture lengths commonly ob- 

served in outcrops are exponentially decaying (i.e. there 
are many short joint lengths and few large joint lengths). 
Figure 2 illustrates a probability density function con- 
structed from an outc . Abott quadrangle 

not considered and a pseudosteady 
state (PSS) interporosity flow assumption is commonly 
used. Cinco-Ley et a1 [5], however, used a discrete model 
of up to five different block sizes and demonstrated the 
transition zone is affected significantly while the late and 
early time responses are not. Both C iceLey  et of ,  and 

alistic explanation for the ob- 
r by introducing an interporos- 
Jalali-Yazdi [2) extended the 
Ley et ai to continuous prob- 

ability density functions of matrix block size. They con- 
sidered three probability density functions: Dirac delta, 
uniform, and bimodal. With an increase in the variance 
of the matrix block size distribution, they found features 
of a fractured reservoir response become less pronounced. 
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The function f (s )  embodies the reservoir parameters in- 
cluding the matrix block size distribution.. For transient 
interporosity flow in the presence of interporosity skin: 

dhD 9 

1 G t a n h ( @ ) P ( h D )  1-b 1 + SID@ad8(*) 
f ( s )  = w j  + wm 

(6) 

(7) 

where, 

- 4  
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Y 

;3 CI 

2 

t a ,  

0 The interporosity skin factor (SID) is a function of matrix 
block size distribution and, hence is ody constant when k 
is constant. A more realistic assumption is that the depth 
of skin damage (h,) is constant for all matrix block and 
hence, SID can be defined as: 
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Figure 2: Construction of Probability Density Func- 
tion from Outcrop, Central Siem Nevadaa. 

(9) In this paper, a continuous probability density func- 
tion of matrix block sizes will be used. The objective is 
to show that drawdown and interference well testing can 
provide an indication of the degree of fracture intensity 
and the degree of uniformity of fracturing. 

THEOR Y AND SOLU TION 

The diffusivity equation for a double porosity reser- 
voir can be modified to include a random distribution of 
matrix block size by adding a source integral [2]: 

PROBABILITY DENSITY FUNCTIONS 

Prediction of the pressure response requires the 
type of matrix block size distribution be known or as- 
sumed. Once the PDF is selected, fracture intensity can 
then be inferred from pressure transient data. Two types 
of probability density functions are used to represent the 
variability of matrix block sizes. These types, exponential 
and linear (Figure 3), occur mast often as indicated in the 
geological literature. The Dirac delta (or uniform block 
size) and rectangular distribution are each subsets of the 
exponential and linear distributions. As fracture intensity 
increases, mean block size decreases and P(h) becomes 
skewed to the smaller block sizes. As fracture intensity 
decreases, the reverse is true. 

The exponential PDF is given br: 

The source integral in Equation 1 accounts for the 
flow contribution of the matrix to the fracture. It is as- 
sumed that fluid travels from the matrix to the fractures 
and to the wellbore. P(h) is the probability density func- 
tion (PDF)describing the likelihood of a certain matrix 
block size to exist and Q(h) is the flow contribution from 
that matrix block to the fracture. For transient inter- 
porosity flow and slab geometry: 

Q( h), therefore, takes into consideration the mode of inter- 
porosity flow and also the geometry of the matrix blocks. 

For a well producing at constant rate in an infinite 
reservoir, the interference solution in Laplace space is: 

where ‘a’ is the exponential eonstant. The linear distribu- 
tion function is: 

and for drawdown: 

where ‘m’ is the slope and ‘b’ is the vertical intercept of the 
Cartesian plot of P(hD) versus ho. Because a probability 
function must be positive. the slope must be in the range: 

Parameters is the Laplace variable related to dimension- 
less time ( t ~ )  and the Bessel function argument is: 

2 = fi. (5) (14) 
-2 2 

(1 - h r a ~ ) l  ‘ (1 - hrstio)2 ’ 



P(h D ) 1 fi = P(hD) 1 fi 
1 .o 

ratio 
h 1 .o 

ratio 

P(h ) 1 .i ~ p(hD) 1 , Rectangular , ~ 

D Dirac Delta 

Table 1: Functions f ( s )  for various PDF’s. 
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Figure 3 Probability Density Functions. 

The intercept ‘b’ is given by: 

(15) 
1 - .5m t .5h$,i,, . b =  

1 - hmtm 

When ‘m’ is zero (linear) or ‘a’ is zero (exponen- 
tial), both probability density functions reduce to the rect- 
angular distribution: 

(16) 
1 

1 - hratio 
P(hD) = -, 

and when ‘m’ or ‘a’ approach infini 
to the Dirac delta function: 

10 100 loo0 loo00 kt05 l e 4 6  lei07 le48 
Dimensionless Time t~ 

igure 4: Exponential PDF: Varying ‘a’ with 
when h = H where H is the characteristic length of all = .I, A,,, = 10-7, Wm = .9. 
matrix blocks. The Dirac delta distribution describes frac- 

esponse is that of a rectangu- 
block sizes. Also, it is evident 
s a substantial degree of asym- 

turing becomes more 
derivative protiIe can 

ues of ‘a’ holding hrotto constant. For pasitively increasing indicates perfectly nonuniform fraeturing. 
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Figure 5 Rectangular PDF: Varying larat& for Geo- 
metric Mean X = wm = .9. 

Figure 5 illustrates the pressure response for vary- 
ing values of hratio with 'a' held constant. For h r a b  equal 
to zero, the response is similar to that of a homogenous 
reservoir. This occurs because there is an incessant grad- 
ual contribution from the matrix to the fractures. As long 
as fracturing is extremely nonuniform, the response will 
not exhibit the classical profile of a distinct transition zone 
separating early and late time response. For the rectan- 
gular PDF, a type curve can be developed for estimation 
of Urn, Amin, and hrab.  The type curve is generated using 
the following time domain solution of the wellbore pres- 
sure response: 

where F( t ~ )  is the time-dependent reservoir storativity: 

Equations 19 and 20 are obtained by applying the inver- 
sion technique of Najurieta and Schapery [17,15,14]. For 
the rectangular PDF, Equation 20 becomes: 

where y is the variable of integration and r is the matrix 
response time coefficient: 

and r,, is the response time coefficient of the most dor- 
mant or largest matrix block 

In general, the time domain approximation gives remark- 
ably good results (Figure 6). Using the difference between 
the extrapolated late time pressure response and the ob- 
served pressure, one obtains: 

The rype curve (Figure 7) is then generated by plotting 
the pressure difference AP versus & for a range of hroti. 
and wm values. 

The type curve demonstrates several key ideas. As 
matrix storativity predominates (increasing wm), h,t, af- 
fects the pressure response more significantly. The effect 
of an increasing h r a b  on the pressure response is great- 
est for lower values of hmc& ( e.g. the pressure response 
changes more significantly for hrab values from 0.1 to 0.5 
than from 0.5 to 1.0). Therefore, the larger the matrix 
block size variability, the more significantly the pressure 
response is affected. For hratio approaching one, the re 
sponse reverts to the uniformly fractured (uniform block 
size) case. 

An example of the effect of interporosity skin 
(SID,,,,,,) on the pressure transient response is shown in 
Figure 8. For small interporosity skin factors, a si&- 
cant change in the pressure derivative is seen, and thus, 
the effect of the matrix block size distribution is masked. 
The derivative profile becomes symmetric which is typical 
of the PSS response demonstrated by Warren and Root. 
As interporosity skin increases, the derivative profile shifts 
in time, giving apparent X values that are too small (more 
dormant). Thus, interpreting pressure transient tests via 
Warren and Root may give systematically lower estimates 
of X than actually exists in the reservoir. The fracture 
intensity will then be underestimated. 
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ON-INTERFERENCE mTIXrJG 

Braester[41 demonstrated that drawdown 
(or buildup) testing in naturally fractured reservoirs may 
not be influenced by matrix blocks significantly away from 
the wellbore. Interference testing, therefore, is preferred 
because the response is affected by matrix blocks between 
the active and observation web.  A simplified solution for 
interference testing in the absence of storage and wellbore 
skin is the line source solution: 

(25) 
KO(rDJs fC;T)  

a P D f  = 

For any'PDF distribution, it can be shown that 0 = 
Amin% is a correlating parameter [6,7]. For instance, us- 
ing the linear P D F  

" 
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+- 

Figure 7 Rectangular PDF: Drawdown Type Curve 
for tD > 100 and A,,, < lo-' for Varying h++, Amin, 

Wm - 

(26) 

Equation 25 can then be evaluated using the inverse 
Laplace transform relation: 

A type curve (Figure 9) is prepared using the uniform 
PDF case for a given w,. For each value of 6, is 
varied from zero to one. If hrah determined from the 
type curve is equal to one, the PDF type is Dirac delta 

, the parameter h,h 

" 

ar PDF and slab matrix block geometry. Type 
curves yield estimates of the parameter h,t, which Skin, hraho = .1, Ami,, 3: w, = .9. 
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Figure 9 Rectangular PDF: Interference Type Curve 
for Varying hrath, 6, with wm = .9. 

3 

describes the matrix block size variability or the 
degree of uniformity of fracturing. For h,t, a p  
proaching unity, the response approaches that of a 
uniformly fractured reservoir, while for hr4& ap- 
proaching zero, the response resembles that of a h e  
mogeneous reservoir. 

For naturally fractured reservoirs with interporosity 
skin, the matrix block size variability is not estimat- 
able. Fracture intensity may be underestimated if 
the Warren and Root interpretation is employed. 

POMENCLATURE 

a = exponential PDF constant 
b 
Cf = fracture total compressibility 
ern = matrix total compressibility 
CD = dimensionless wellbore storage 
P(h) = block size distribution function 
P(hD) = dimensionless block size distribution function 
f ( s )  = Laplace space function 
h = matrix block size characteristic length 

hD = dimensionless matrix block size length 
h l  = fracture thickness 
hmjn = minimum block size length 
hmar = maximum block size length 
hrotio = ratio of h,;, to h,,, 
ha = interporosity damaged zone thickness 
H = constant matrix block size 
kf = fracture permeability 
km = matrix permeability 
ks 

Ko(t )  

K l ( z )  

= intercept of linear PDF 

(Volume/Area) 

= interporosity damaged zone permeability 
= modified Bessel function, second kind, zero 

= modified Bessel function, second kind, first 
order 

order 
m = slope of linear PDF 
P D ~  = dimensionless fracture pressure 
PDm = dimensionless matrix pressure 
PD" = dimensionless wellbore pressure 
Pf = fracture fluid pressure 
Pi = initial reservoir pressure 
Pm = matrix fluid pressure 
PW = wellbore fluid pressure 
Q(h) 
r = radial coordinate 
TD = dimensionless radial coordinate 
f w  = wellbore radius 
8 = Laplace parameter 
SO 
S l D  
SlD,,, 

factor 
t = time 
t D  = dimensionless time 
7 
x 
Am4r 

Amin 

I 

~ m 4 ,  

P = viscosity 
c 

interface 
f D  

matrix interface 
41 = dimensionless fracture porosity 
9 m  = dimensionless matrix porosity 
Wf 
wm 
8 = dimensionless correlation parameter 

= flow contribution from matrix size 

= dimensionless wellbore skin &tor 
= dimensionless interporosity Skin &tor 
= minimum dimensionless interporosity skin 

= 1.781, exponential of Euler's constant 
= dimensionless interporosity flow coefIicient 
= maximum dimensionless interporosity BOW 

= minimum dimensionless interporosity flow 

I dimensionless matrix response time coefficient 
= maximum dimensionless matrix response time 

coefficient 

coefficient 

coefficient 

= coordinate normal to fracture-matrix 

= dimensionless coordinate normal to fracture- 

= dimensionless fracture storativity ratio 
= dimensionless matrix storativity ratio 

APPENDK 

The dimensionless boundary conditions and flow 
equations are: 
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(39) 

Wf = 1 - 0 ,  (40) 

(41) 

(42) 

P(hD) = hmarP(h) (43) 

h 
hmor 

i; 

hD = - 
c 

Other matrix block geometries can be included in 
the solution by changing the interporosity boundary con- 
ditions. After applying Laplace transforms to the flow 
equations and boundary conditions one obtains the soln- 
tions of Equations 3 and 4. 
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