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ABSTRACT

A comprehensive analytical model is presented to
study the pressure transient behavior of a naturally frac-
tured reservoir with a continuous matrix block size dis-
tribution. Geologically realistic probability density func-
tions of matrix block size are used to represent reservoirs
of varying fracture intensity and varying degrees of frac-
ture uniformity. Transient interporosity flow is assumed
and interporosity skin is incorporated. :

Drawdown and interference pressure transient tests
are investigated. The results show distinctions in the pres-
sure response from intensely and sparsely fractured reser-
voirs in the absence of interporosity skin. The pressure
response in a nonuniformly fractured reservoir approaches
that of a nonfractured (homogeneous) reservoir for the
case of large matrix block size variability. Type curves are
developed to estimate matrix block size variability and the
degree of fracture intensity for drawdown and interference
well tests.
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Currently, matrix block size dxstnbutxon is not con-

sidered a determinable parameter from pressure transient
tests. Yet, the utility of determining matrix block size
distributions is paramount since block size is one of the
main parameters of a fractured reservoir that governs pro-
ducibility. - In one phase flow, it controls the transition

_from early production from the fra.ctures to late prodic- -
" tion from the total reservoir (matrix and fractures). In -

two phase flow, it controls the rate of imbibition (or dis- -
placement) and ultimately the recovery eﬁicxency of the

reservoir(11]. ~

The Warren and Root’ model {19] and other pres-
. sure transient models of naturally fractured reservoirs as-

sume fracture intensity is constant throughout the reser-
voir, i.e., they assume fracturing is uniform and matrix

block size is constant. Geological and geomechamca.l stud-

_ies of fractured. reservoirs and: outcrops, however, com- -
monly report occurrences of nonuniform fracture patterns

due to variability in hthology, ‘bed “thickness, degree of
dlagenesxs, and stress environment [1,3,8,16,18,12,9]. For

" reservoir engineering purposes, fracture patterns can be

_represented by simple geometric shapes or designs shown
in Figure 1. Skewed fracture patterns can also result due
to variability in matrix block size and intersection angle.
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Figure 1: Idealizations of Typical Fracture Patterns
seen in Nature. '

Some fra,ctures are calcxte cemented or mineral filled which
can restrict flow from the matrix blocks to the fractures.

/- This phenomenon can be included as interporosity skin.

The distribution of fracture lengths commonly ob-
served in outcrops are exponentially decaying (i.e. there
are many short joint lengths and few large joint lengths).
Figure 2 illustrates a probability densjty function con-
structed from an outcrop in the Mt. Abott quadrangle

lof! the central Sierra Nevadas [18}.-

In well testing hterature' the variability of matrix
block size is generally not consxdered and a pseudosteady
state (PSS) interporosity flow assumption is commonly
used. Cinco-Ley et al [5], however, used a discrete model

1 ‘of up to five different block sizes and ‘demonstrated the

transition zone is aﬂ'ected slgmﬁca.ntly while the late and
early time responses are not. Both Cinco-Ley et af , and
Moench [13] presented a realistic explanation for the ob-

. servance of the PSS behavior by introducing an interporos-
~ ity skin factor. Belani and Jalali-Yazdi [2] extended the -
 discrete formulation of Cinco-Ley et al to continuous prob-
“ability density functions of matrix block size. They con-
“sidered three probability density functions: Dirac delta,

‘uniform, and bimodal. With an increase in the variance »

" of the matrix block size distribution. they found features
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of a fractured reservoir response become less pronounced.
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Figure 2: Construction of Probability Density Func-
tion from Qutcrop, Central Sierra Nevadas.

In this paper, a continuous probability density func-
tion of matrix block sizes will be used. The objective is
to show that drawdown and interference well testing can
provide an indication of the degree of fracture intensity
and the degree of uniformity of fracturing.

Y AN TIO
The diffusivity equation for a double porosity reser-

voir can be modified to include a random distribution of
matrix block size by adding a source integral [2]:

kt 2 p, = oo, 8L 4 [P
L By = dyes g+ [ QUIP(RYA. (1)

The source integral in Equation 1 accounts for the

flow contribution of the matrix to the fracture. It is as-
sumed that fluid travels from the matrix to the fractures
and to the wellbore. P(h) is the probability density func-
tion (PDF)describing the likelihood of a certain matrix
block size to exist and Q(h) is the flow contribution from
that matrix block to the fracture. For transient inter-
porosity flow and slab geometry:
Q(h) VPm |mter[uoe . (2)
Q(h), therefore, takes into consideration the mode of inter-
porosity flow and also the geometry of the matrix blocks.
For a well producing at constant rate in an infinite
reservoir, the interference solution in Laplace space is:

Ko(zrp)

Po, = S + S @ TR )
and for drawdown:
Po. Ko(z) + SpzK1(z) 4)

a[Cpa(Ix (::) + SpzKi(z)) + qu(z)]

" Parameter s is the Laplace variable related to dimension-
less time (2p) and the Bessel function argument is:

sf(s). )

The function f{s) embodies the reservoir parameters in-
cluding the matrix block size distribution.” For transient
interporosity flow in the presence of interporosity skin:

Vs taak(y/55)Plko)

1
f(8) =wy +w, —_—eee————dhp,
TN P hvario 1+ S1p\[/25*tank(\[252)
where, X
hrotio = 222, ™
Sip =25 ®

The interporosity skin factor (Syp) is a funct:on of matnx
block size distribution and, hence is only constant when & ¥
is constant. A more realistic assumption is that the depth
of skin damage (h,) is constant for all matrix blocks, and
hence, Srp can be defined as:

A
S = SID...-.‘/ S (9)
. min
where, Lh
mess -
SIDmin = E hmz (10)
and now:
tanh P(h
/) = oy Vs tank(y /%) P(ho)

1
hratio 1 + SIDpin [ £BE tanh(\/_ ) dho

(1)

PROBABILITY DENSITY FUNCTIONS

Prediction of the pressure response requires the
type of matrix block size distribution be known or as-
sumed. Once the PDF is selected, fracture intensity can
then be inferred from pressure transient data. Two types
of probability density functions are used to represent the
variability of matrix block sizes. These types, exponential
and linear {Figure 3), occur most often as indicated in the
geological literature. The Dirac delta (or uniform block
size) and rectangular distribution are each subsets of the
exponential and linear distributions. As fracture intensity
increases, mean block size decreases and P(h) becomes
skewed to the smaller block sizes. As ﬁ-acture intensity
decreases, the reverse is true.

The exponential PDF is given by:

a(ezp=°*0)
ezp‘(ﬂhnu'o) - ezp—ﬂ ’

P(hp) = (12)
where ‘a’ is the exponential constant. The l.mea.r distribu-
tion function is:

P(hp) = mhp+b

Sm(l-h% )+ b(l Apatio)
where ‘m’ is the slope and ‘b’ is the vemca.l intercept of the

cartesian plot of P(hp) versus hp. Because a probability
function must be positive, the slope must be in the range:

2 .
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(13)
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Figure 3: Probabﬁity Density Functions.

The intercept ‘b’ is giver by:

1- 5m + 5h,.¢,,,

b=
1 = hratio

(15)

. When ‘m’ is zero (linear) or ‘a’ is zero (exponen-

tial), both probability density functlons reduce to the rect-
angular distribution:

P(hp) = (16)

1
1- hracio ‘

and when ‘m’ or ‘a’ approach mﬁmty, the solutions reduce
to the Dirac delta function:

Pho)=bh-H). - . (17

The Dirac delta functnon is zero when & 75 H and mﬁmte

when & = H where H is the chara.cterxstxc length of all
matrix blocks. The Dirac delta distribution describes frac:

tures that are perfectly ordered as in the Warren and Root.

model. The’ rectangular distribution, however, represents
a contmunm of block sizes that are equa.lly proba.ble from -~

“the smallest (hmin) to the largest (Amaz). In general, the "
'rectangular dxstnblmon should be used if the dlstnbutwn o

type is unknown.:

" Once the type of PDF is determined, Equation 11 :
can be solved for 1(s). Table 1 hsts the solunons of f(s) for

' the va.nous PDF’

Equatlon 4 m the absence of wellbore storage a.nd g

’skm reduces to

FD :'-'. : (V"Jz";) : (18)

= 83/’:7733;1\’;(\/.9?235)

N . ‘ ,Equa.txon 18 is eva.luated for the exponentla.l PDF hsted in
Table 1. Figure 4 illustrates the response for varying val-
ues of ‘a’ holding R,,s, constant. For positively increasing '
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PDF (s}, wheref - ‘/:f

- oy Owm ¢ tanh(y) &
P * e = ) Jorm WA F SioEtanE D] Y
. o {2 + Ltank(y)
Livear “1 ¥ EBm(T = Fhooa) + W1 = Frawa)] Jthowme 1+ S15_Etanls)
R V! ki ¢ __‘M__d,,
s m Foute) Jhoume YL+ 1D € tanA(y)]

. wmtanh(£)
Dirac delta w;+m o WhETe Apin % Amee ™ A

" Table 1: Functions f(s) for various PDF's.
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 Figure 4 Exponential PDF: Varying ‘2’ with

hmﬁo = -1-9 Amin = 10—7» Wm = 9.

values of ‘a’, ffacture intensity decreases and the response

approa.ches the Dirac delta response for a uniform: matnx
..block size Amaz. For negatively increasing values of ‘a

fracture mtensxty increases and .the response a.pproaaches

“'the Dira.c delta response for a uniform matrix block size

Rmins
For ‘a’ = 0, the response is that of a rectangu-

lar dxstnbutxon of matrix block sizes. Also, it is evident

the derivative profile shows 2 substa.ntxa.l degree of asym-

" metry with respect to the time axis as ‘a’ increases or

decreases to large values. The response for the rectangu-

. lar matrix block size distribution, however, is nearly sym-
- metric, Asymmetry increases as ‘fracturing becomes more
" uniform. Therefore, the shape of the derivative profile can

- ‘be used as a qualitative indicator of the degree of matrix

‘block size variability or nonuniformity. In addition, the

parameter Aqso is important in estimating matrix block

.-size variability. An hratio approaching one indicates per-
" fectly uniform fracturing, while k.., approaching zero

indicates perfectly nonuniform fracturing.
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metric Mean A = 107¢, w,, = .9.

Figure 5 illustrates the pressure response for vary-
ing values of Rrqsio with ‘a’ held constant. For Arario equal
to zero, the response is similar to that of a homogenous
reservoir. This occurs because there is an incessant grad-
ual contribution from the matrix to the fractures. As long
as fracturing is extremely nonuniform, the response will
not exhibit the classical profile of a distinct transition zone
separating early and late time response. For the rectan-
gular PDF, a type curve can be developed for estimation
of W, Amin, a0td Arqeio- The type curve is generated using
the following time domain solution of the wellbore pres-
sure response: -

Po, = ;—,{ln( .}%’Fg) +.80907], (19)

where F(tp) is the time-dependent reservoir storativity:

1 Avtp “m
F(tp) = wy+wm /;. 'm,/—w-m—zanh( o )P(h) dhp.
(20)
Equations 19 and 20 are obtained by applying the inver-
sion technique of Najurieta and Schapery [17,15,14]. For

the rectangular PDF, Equation 20 becomes:

tp ' Wm tp
F = et | e
(Tmu:) “rt (1 = Rratio) Y Tmaz

x JVE ) gy )
"r-tio\/ -?D“- v

where y is the variable of integration and r is the matrix
response time coefficient: ’

= (22)
and 7pgz is the response time coefficient of the most dor-

mant or largest matrix block:
W

(23)

Tmaz = S
min

-42.

P,
tp

PD..: tp

Laplace Inversion
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Figure 6: Rectangular PDF: ‘Solution by Ste-
hfest Inversion versus Time Domain Approximation,
Rratio = .1, Amin = 10-7’ W =.9. ‘

In general, the time domain approximation gives remark-
ably good results (Figure 6). Using the difference between
the extrapolated late time pressure response and the ob-
served pressure, one obtains:

AP =P, = Poy,, =~3nF(:2).  (24)
mazr

The type curve (Figure 7) is then generated by plotting
the pressure difference A P versus ;'%; for a range of Rragio
and wm values.

The type curve demonstrates several key ideas. As
matrix storativity predominates {increasing wmp), Bratio af-
fects the pressure response more significantly. The effect
of an increasing h,qs, on the pressure response is great-
est for lower values of h,qs, ( e.g. the pressure response
changes more significantly for A,q¢, values from 0.1 to 0.5
than from 0.5 to 1.0). Therefore, the larger the matrix
block size variability, the more significantly the pressure
response is affected. For hrqsio approaching one, the re-
sponse reverts to the uniformly fractured (uniform block
size) case.

An example of the effect of interporosity skin
(SID,..) On the pressure transient response is shown in
Figure 8. For small interporosity skin factors, a signifi-
cant change in the pressure derivative is seen, and thus,
the effect of the matrix block size distribution is masked.
The derivative profile becomes symmetric which is typical
of the PSS response demonstrated by Warren and Root.
As interporosity skin increases, the derivative profile shifts
in time, giving apparent A values that are too small (more
dormant). Thus, interpreting pressure transient tests via
Warren and Root may give systematically lower estimates
of A than actually exists in the reservoir. The fracture
intensity will then be underestimated.
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DISCUSSION-INTERFERENCE TESTING

Braester{4] - demonstrated  that = drawdown
{or buildup) testing in naturally fractured reservoirs may
not be influenced by matrix blocks significantly away from
the wellbore. Interference testing, therefore, is preferred
because the response is affected by matrix blocks between
the active and observation wells. A simplified solution for
interference testing in the absence of storage and wellbore
skin is the line source solution:

Pp, = Ko(rpy/sf(s)) :" I 5) (25)

For any'PDF distribution, it can be shown that 8 =
Amint) is a correlating parameter {6,7]. For instance, us-
ing the linear PDF:

2 Zm ?
srh) =
f( D) wy + .517!(1 - hzcﬁo) + b(l - hrutio) wm"rgb

x/\/—r"' m 9
hm-'o\/—-_':-: “‘M” D

+ Stank(y) dy.

(26)

Equ#tion 25 can then be evaluated using the inverse
Laplace transform relation:

C"[FD,("D)] = TPD,( ) (27)

A type curve (Figure 9) is prepared using the uniform

PDF case for a giver wm. For each value of 8, hrasio is
varied from zero to one. If A.us, determined from the
type curve is equal to one, the PDF type is Dirac delta
and the type curve is similar to that presented by Deruyck
et al[6,7]. For large values of §, the matrix block size vari-

_-ability becomes increasingly important and A.qs, can be

better estimated. Thus, if the dimensionless distance (rp)
between ‘the active and observation wells becomes large,
or if Anin becomes large, the matrix block size variability
becomes one of the key parameters in interpretating the

L ‘interference ‘pressure-transient test. For extremely large -

values of #, however, the fracture response may not be de-

" tected and the response will be the same as the line source
" solution. Also, for large values of wm, the parameter Rrqsio

increasingly dominates the pressure response.

o A formnlatxon xncorpora.tmg transxent interporosity
-+ flow and interporosity skin is presented for fractured .
i reservoirs with variable matrix block size. Geolog-
* jcally realistic PDF’s have been used to represent
. -intensely or sparsely fractured reservoirs.

" s Type curves have been generated for both draw-
- down and mterference well tests based on the rect-

" angular PDF and slab matrix block geometry. Type
curves yield estimates of the parameter Ayqpi, Which
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Figure 9: Rectangular PDF: Interference Type Curve
for Varying ka0, 8, with wyn = .9.

describes the matrix block size variability or the
degree of uniformity of fracturing. For A,q4, .ap-
proaching unity, the response approaches that of a
uniformly fractured reservoir, while for A,.tio ap-
proaching zero, the response resembles that of a ho-
mogeneous reservoir.

For naturally fractured reservoirs with interporosity
skin, the matrix block size variability is not estimat-
able. Fracture intensity may be underestimated if
the Warren and Root interpretation is employed.

NOMENCLATURE

= exponential PDF constant
intercept of linear PDF
fracture total compressibility

matrix total compressibility
dimensionless wellbore storage

= block size distribution function

= dimensionless block size distribution function
= Laplace space function
= matrix block size characteristic length

(Volume/Area)

= dimensionless matrix block size length

= fracture thickness

minimum block size length

maximum block size length

ratio of Apin t0 Amasx

interporosity damaged zone thickness
constant matrix block size

fracture permeability

matrix permeability

interporosity damaged zone permeability
modified Bessel function, second kind, zero
order

modified Bessel function, second kind, first

nwnn

(LI T 1A I T I

) order

m = slope of linear PDF

Pp, = dimensionless fracture pressure

Pp,, = dimensionless matrix pressure

Pp, = dimensionless wellbore pressure

P, = fracture fluid pressure

P; = initial reservoir pressure

P = matrix fluid pressure

P, = wellbore fluid pressure

Q(k) = flow contribution from matrix size

T = radial coordinate

D = dimensionless radial coordinate -

ry = wellbore radius

5 = Laplace parameter

Sp = dimensionless wellbore skin factor

Stp = dimensionless interporosity skin factor

S1Dmin = minimum dimensionless interporosity skin

. factor :

t = time

tp = dimensionless time

v = 1.781, exponential of Euler’s constant

A = dimensionless interporosity flow coefficient

Amaz = maximum dimensionless interporosity flow

i coefficient ,

Amin = minimum dimensionless interporosity flow
coefficient : : :

T = dimensionless matrix response time coefficient

Tmaz = maximum dimensionless matrix response time
coefficient

b = viscosity

€ = coordinate normal to fracture-matrix
interface

€p = dimensionless coordinate normal to fracture-
matrix interface

o = dimensionless fracture porosity

bm = dimensionless matrix porosity

wy = dimensionless fracture storativity ratio

W = dimensionless matrix storativity ratio

8 = dimensionless correlation parameter

APPENDIX

The dimensionless boundary conditions and flow
equations are:

azPD, _1_3PD, - w 8Pp
01-50 rp Orp Iatp

1 oP :
[, 2522 Plho)

Aratio aCD
(28)
8%Pp, wmOPp,,
3%, A otp (29)
e Pp,=Pp, =0atip=0
e Pp,=Pp, =0atrp—=o

8Pp

Co%pe - gt lep=a=1

8P
Pp, =[Pp, - Sp5=t] lrp=



s Pp, = (PDm = Slo%ﬂ] lep=0 for slass

. ggﬂpn lepz1 for stass= 0 at no flow boundaries

here:
where _ 2mkshy(P; = P))
@®

_ 2rkghy(P; = Pr)
- .
2rkshy(Pi ~ Pu)
ap
kgt

(¢/¢:1 F GmCm)Hrs,

Pp, (30)

Pp,

(31)

Pp, = (32)

(33)
(34)

(38)

(37)

k k,..r
A =
mes k/hmm ’

PmCm
¢[¢j + dmem

wp=1l=-wn

h
hp = f—
nes
€D=;;

P(hD) = hma:P(h)

' (38)
Wy = (39)
(40)
(41)
(42)
(43)

Other matrix block geometnes can be included in
the solution by changing the interporosity boundary con-

ditions. - After applying Laplace transforms to ‘the flow
equations and boundary. conditions one obtains the »soln-
tions of Equations 3 and 4.
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