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ABSTRACT tem (natural state), and on its basis 
concluded that a substantial 

we revise and expand our previous vap- vertical permeability contrast must 
liq model of the Los Azufres hydrother- exist between the vapor- and the li- 
mal system. We present data that delin- quid-dominated layer, the smaller per- 
eate the vertical distributions of the meability corresponding to the later. 
formation's thermal conductivity and Assuming a homogeneous vertical dis- 
bulk density. Both distributions dis- tribution of thermal conductivity we 
close a sharp change of formation prop- estimated permeability values and other 
erties at the boundary between the thermohydrological parameters of the 
liquid-dominated layer and the steam 
cap. This supports the inference of our 
previous work that a substantial per- this model was consistent with a 
meability contrast must exist between number of observations (downhole pres- 
the liquid- and vapor-dominated layers sures, stabilized temperatures, geothe- 
of the system. we present the observed rmometrical estimates, hydrother-mal 
vertical distribution of liquid satura- alteration as deduced from drill cutt- 
tion in the system as inferred from the ings, and the ranges of permeabi-lity 
chemical composition of reservoir flu- and thermal conductivity found in labo- 
ids and well logs; we use it, in addi- ratory measurements of drill cores), 
tion to the pressure profile, to calib- the reliability ef the estimates remai- 
rate the model's thermophysical parame- ned somewhat questionable because: (a )  
ters. Calibration against both observed only the observed vertical pressure 
profiles greatly improves the reliabil- profile was fitted in detail, and it is , 
ity of the model. The new model predi- known that pressure fitting alone may 
cts vertical pe 
about 0.1~10 l8 m 

tem. In addition to the d 
vertical permeability, th 
des estimates of the 
fluxes and of the relativ 
functions of the system 

1988a, 1988b) we 
otherma1 systems a 
gical conditions 
(The central, upfl 
systems is a sta 
liquid layer at 
dominated zone 
vapor-dominated cap). We also presented 
a vapliq model of the Los Azufres sys- 

and Arellano 1988a, 1988b) we assume a 
step distribution of vertical pemeabi- 
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lity, with the lower value correspond- 
ing to the liquid-dominated layer. ,At 
the base of the system there is hot 
compressed liquid that ascends isoenta- 
lpically (e.g,, White, 1967). Eventual- 
ly the compressed liquid reaches its 
boiling point and a ?-phase, liquid- 
dominated layer develops. This layer 
extends upwards until it is replaced by 
a vapor-dominated cap, starting at the 
permeability discontinuity. 

The model equations are given in Igle- 
sias and Arellano (1988a). They repres- 
ent 2-phase, steady-state conservation 
of mass, momentum and energy, and are 
complemented by appropriate constitu- 
tive equations. Heat flux Q and mass 
flux F are constants of the system. 
This set of equations is numerically 
solved. The present numerical code 
allows arbitrarily varying distribu- 
tions of thermal conductivity. 

LIQUID SATURATION PROFILE 

In-situ liquid saturations for 15 wells 
representative of ascending flow in the 
system were derived from 63 fluid samp- 
les (Table 1). A subset of these resu- 
lts appeared in Nieva et al. (1987). 

Table 1. Sampling for liquid saturation ............................... 
Well Samples Well Samples 

Az-5 9 Az-32 1 
Az-6 8 AZ-33 1 
Az-9 3 AZ-34 1 
Az-16AD 8 Az-35 1 
AZ-17 9 AZ-36 3 
Az-19 4 Az-37 1 
Az-22 5 Az-38 3 
AZ-28 6 

............................... 

Liquid saturations were computed with a 
method originally devised by Giggenbach 
(1980) and modified by Nieva et al. 
(1985). This modification was neces- 
sary to apply the method to wells with 
high concentrations of non-condensable 
gases in their total discharges. Brief- 
ly, liquid saturation is computed from 
the seeming distortion of the relative 
proportions of chemical species par- 
ticipating in the Fischer-Tropsch reac- 
tion in the reservoir. 

The method requires estimates of reser- 
voir temperature for each well (feed 
zone). The required temperature estima- 
tes were obtained from cation geother- 
mometers, temperature logs, pressure 
logs and 2-phase assumption, and ex- 
trapolation to zero flowrate at com- 
puted bottomhole conditions. These 
temperature estimates were independent 
from the results generated by the vap- 

liq model described in the preceding 
section. This prevents circular bias. 
The sensitivity of the computed liquid 
saturation to the assumed reservoir 
temperature is relatively mild, e.g., a 
temperahre error of f5.C typically 
results in a 5% variation in liquid 
Saturation. 

The locations of the feed zones were 
obtained from records of drilling fluid 
losses, temperature logs, pressure 
logs, well completions and lithologic 
column records. 

Figure 1 represents the resulting li- 
quid saturation profile, and the as- 
sociated uncertainties. 

FORMATION PROPERTIES 

As stated, previous work indicated that 
the vertical permeability distribution 
may be approximated by a step function 
with its discontinuity marking the 
location of the boundary between the 
liquid-dominated layer and the vapor- 
dominated cap. The corresponding per- 
meability values were estimated in this 
work by fitting model-generated profi- 
les to the observed pressure and liquid 
saturation profiles (see following 
section). 
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LIQUID SATURATION 

Fig. 1. Observed distribution of liquid 
saturation in the central, upflowing 
part of the system. Numbers identiry 
wells. 
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Thermal conductivity was recently meas- 
ured In 16 drill cores from Los Azufres 
(Iglesias et al., 1987; Garcia et al., 
1988). Figure 2 presents these 
in terms of elevation. We dis 
distinct trends in the data. The eleva- 
tion of the boundary between both tre- 
nds is strikingly coincident with that 
at which the liquid-dominated layer 
turns into the vapor-dominated cap, as 
attested by the observed pressure prof- 
ile (Fig. 3). The upper trend of Fig.2 
has a linear correlation coefficient 
r-0.7988, with a confidence level (a) 
greater than 99.5%. For the lower trend 
the corresponding figures are r=- 
0.8617, CL>99.5%. Note that the discon- 
tinuity in thermal conductivity is 
clearly observable in well Az-3 (cores 
3-1, 3-4 and 3-5) and in well Az-26 
(cores 26-2 and 26-3). 

The percentage of total hydrothermal 
alteration of 20 drill cores from Los 
Azufres, which include the cores of the 
preceding paragraph, were also deter- 
mined recently (Iglesias et al., 1987). The hydrothermal alteration of the PRESSURE ( bar 1 
cores lying in the vapor-dominated 
layer correlates well (r-0.8075, Fig. 3. Fit to the observed distribu- 
CL>99.5%) with elevation, as illustra- tion of pressure in the central, upflo- 
ted in Fig. 4. No significant correla- wing part of the system. Numbers iden- 
tion of total alteration with elevation tify wells. 
was found for the cores in the liquid- 

Coincidently, thermal conductivity dominated zone. 
correlates well (rx0.9917, CL>99.5%) 

0 
0 too 200 

clearly substantiate the 
harp 'Change in formation 
ts at the boundary bet- 
and the vapor-domina- 
s Azufres, whatever its 
lated vertical permeab- 
is consistent with such 
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Fig. 4. Total hydrothermal alteration 
in the vapor-dominated layer. Numbers 
identify (well)-(core number). 
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Fig. 5. Correlation between thermal 
conductivity and total hydrothermal 
alteration in the vapor-dominated lay- 
er. Numbers identify (well)-(core num- 
ber). 

BULK DENSITY (g /an3  1 

Fig. 6. Vertical distribution of bun 
density, from dill cores. 

1988a, 1988b), by matching model profi- 
les to the observed pressure (Fig. 3) 
and liquid saturation (Fig. 1) profil- 
es. The main parameters thus estimated 
are Q, the net (vertical) heat flux; E', 
the net (vertical) mass flux; k ( z ) ,  the 
distribution of vertical permeability 
in terms of altitude z ;  kL and kv , the 
liquid and vapor relative permeabiliti- 
es; S and S , the liquid and vapor 
irredbgible #&rations; and p( z )  and 
S( z) , the pressure and liquid satura- 
tion vertical profiles, respectively. 

In this model we take as known input 
parameters p , the pressure at the 
boiling point of the system; z , the 
elevation of the boiling point; and 
K(z), the vertical distribution of 
thermal conductivity. The input parame- 
ters also include trial values of Q, 
and trial functions k ( z ) ,  and kL(S) 
and kV(S), where S is liquid satura- 
tion. 

The boiling point of the system is 
pg-8.6 MPa, and its elevation zg-1300 m 
a.s.1. (Iglesias et al., 1985). The 
variation of thermal conductivity 
along the liquid-dominated layer is 
small (Fig. 2). Thus a simple model is 
to set K=constant in the liquid-dmina- 
ted layer, and K linearly varying with 
Z ,  in the vapor-dominated cap, as in 
Fig. 2. Trial values for 0, k and 
k (the values of k(z) in thedf&id- &8 vapor-dominated layers respective- 

I 
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ly) were suggested by our previous work 
(Iglesias and Arellano, 1988a: 1988b). 
For the relative permeability functions 
we tried Corey- and X-type curves; only 
X-type curves resulted in reasonable 
matches of the observed pressure and 
liquid saturation profiles, 

Our best match for the model of the 
preceding paragraph is shown in Figs. 3 
and 7. The correspogging model paEnwE- 
ers are Q=gr4 w9] , Fx0.4 kgm s 
k =1.0x10 m-l!cLI k = 0 . 8 ~ 1 0 - ~ ~  m2: 
Kdown=l. 6 , up K =variable, 
Sdol%.20, S =O.OO. The m!&h to the 
pi'8ssure pgfile is excellent. The 
match to the liquid saturation profile 
looks promising but not quite satisfac- 
tory: the synthetic profile seems too 
low in the liquid-dominated layer. 
Despite this, it is interesting to note 
that the position of the nearly verti- 
cal line matching the liquid saturation 
of the vapor-dominated layer is totally 
determined by the value assigned to 
S lower (higher) values 
p&eter shift the nearly 
line to the left (right). 
interpret the approximately constant 
observed liquid saturation of the steam 
cap as resulting mainly from the forma- 
tion's irreducible liquid saturation. 
The value indicated for Q i s  consistent 
with that inferred from stabilized 
temperatures in the caprock (Iglesias 
et al., 1988a, 1988b). The small value 
obtained for F is qualitatively consis- 
tent with the mild (as compared with 
other geothermal fields) surface manif- 
estations, which consist exclusively of 
fumaroles. 

present model is consistent with a 
large body of multidisciplinary eviden- 
ce, including pressure, temperature and 
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Fig. 7. Fit to the observed distribu- 
tion of lf~;t33. saturation, taking 
Kdown'l.6 Wm 
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Fig. 9. Conductive and convective com- 
ponents of t h e  heat f lux.  

d r i l l i n g  logs (used t o  def ine the  ob- 
served pressure and l i q u i d  sa tu ra t ion  
p r o f i l e s ) ,  s t a b i l i z e d  temperatures, 
discharge enthalpies ,  chemical composi- 
t i o n  of t o t a l  discharges ( v i a  t h e  in- 
ferred l i q u i d  sa tu ra t ions ) ,  ca t ion  
geothermometers, hydrothermal altera- 
t i o n  a s  deduced from d r i l l  cu t t i ngs  and 
cores [e.g., co r re l a t ions  of t o t a l  
hydrothermal a l t e r a t i o n  with thermal 
conductivity and with elevation; con- 
s is tency of t h e  3-D d i s t r i b u t i o n  of 
calcite deposit ion with t h e  inferred 2- 
phase l aye r s  ( I g l e s i a s  et  a l . ,  1986a)],  
and measurements of formation densi ty  
and thermal conductivity i n  d r i l l  cores 
( t h i s  paper).  Furthermore, t h e  permeab- 
i l i t y  values predicted by t h i s  model 
are consis tent  with t h e  laboratory 
measured matrix permeability of d r i l l  
coresl8 w8ich ranges frog l e  s than 
2x10 m t o  about 400x10 18 mE ( Ig l e -  
sias et  a l . ,  1986b). This ample m u l t i -  
d i s c ip l ina ry  consistency lends s t rong 
support t o  t h e  model. 

SUMMARY AND CONCLUSIONS 

This paper contr ibutes  previously un- 
published v e r t i c a l  d i s t r i b u t i o n s  of 
thermal conductivity,  formation bulk 
densi ty ,  and observed l i qu id  satura-  
t i o n ,  fo r  the cen t r a l ,  upwelling zone 
of t h e  Los Azufres geothermal system. 
These contr ibut ions were used t o  r e f i n e  
a previous model of t h e  system. 

The present model is strongly supported 
by ample mult idiscipl inary evidence. 

The observed v e r t i c a l  d i s t r ibu t ions  of 
formation propert ies ,  pressure and 
l i q u i d  sa tu ra t ion ,  and the  model resul- 
ts, consis tent ly  indicate  the  existence 
of a sharp change i n  formation proper- 
ties a t  the boundary between the li- 
quid-dominated l aye r  and the  vapor- 
dominated cap. Our model predicts  ver- 
t i ca l  _pgrmsability values of about 
0 . 1 ~ 1 0  m f o r  t h e  liqygd-gominated 
l a y e r  and of about 80x10 m f o r  t h e  
steam cap. The low permeability of t h e  
liquid-dominated l aye r  and t h e  exis- 
tence of the inferred permeability 
con t r a s t  appear as the  main reasons f o r  
t h e  vapliq characteristic displayed by 
t h i s  geothermal system. 

The model a l s o  indicates  that the ob- 
served l i q u i d  sa tu ra t ion  in the  steam 

'reflects the  formation's 
cap* i r reduc ble i i qu id  saturat ion S . The 
model furthermore indicates  %type 
r e l a t i v e  permeability functions and 
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