PROCEEDINGS, Thirteenth Workshop on Geothermal Reservoir Engineering

Stanford University, Stanford, California, January 19-21, 1988
SGP-TR-113

TRACER FLOW MODEL FOR NATURALLY FRACTURED
GEOTHERMAL RESERVOIRS

Jetzabeth Ramirez

Jestis Rivera and

Fernando Rodriguez
Universidad Nacional Autdnoma de ME&xico

ABSTRACT

The model
study the flow of tracers through naturally frac-
The reservoir is

proposed has been develaped to

tured geothermal reservoirs.
treated as being composed of two regions: a mobil
region where diffusion and convection take place
and a stagnant or immobile region where only

diffusion and adsorption are allowed.

Solutions to the basic equations in the
Laplace space were derived for tracer injection
and were numerically inverted using the Stehfest
Eventhough numerical dispersion is
starting at moderate

algorithm.
present in these solutions,
dimensionless time values, a definite trend was
found as to infer the behavior of the system

under different flow conditions. For practical

purpouses, it was found that the size of the ma-
trix blocks does not seem to affect the tracer
concentration response and the solution became

equivalent to that previously presented by Tang
et al. Under these conditions, the behavior of

thesystem can be described by two dimensionless
parameters: the Peclet number for the fractures,
Po,» and a parameter oo = £ Aﬁ;; ), where £ is
€= ¢g De/v(w-é) and %2 is the Peclet number
for the matrix. Tracer response for spike in-
jection was also derived in this work. A 1im-
iting analytical solution was found for the case
of a approaching zero and a given Pel’ which
corresponds to the case of a homogeneous sys-
It is shown that this Timiting solution

For the case of contin

tem.
is valid for o < 102
uous injection this solution reduces to that
previously presented by Coats and Smith., For
the spike solution it was found that the break-
through time for maximum tracer concentration
is directly related to the dimensionless group
79*X5P8173 . Therefore it is possible to obtain

the val
e value of %1 orXD.

A set of graphs of di

mensionless concentration in the fracture vs.
dimensionless time for tracer response were

developed. It was found that if %1 is held
constant while o is changing, the 1Timiting so-
lution becomes a Timiting curve for a family
of curvesinaplot of CD Vs tD. In this graph
Pe1 fixes the range in which the family of curves
evolves. It was also found that the break-
through time for a given concentration is a

strong function of a.

INTRODUCTION

Reinjection of separated hot brine back
into the geothermal reservoir can be considered
as a promising reservoir pressure maintenance
technique. In addition to this, secondary
heat mining from the reservoir seems to be de-
sirable. However, several field experiences
in the past years indicate that unless careful
and detailled studies on the selection of the
reinjection-production pattern are made, adverse
effects such as early thermal breakthrough can
result (Horne, 1982). Therefore, before a
reinjection project could be implemented, a
proper reservoir characterization should be

given a major role in designing the project.

Geothermal reservoirs are highly-fractured,
complex systems, which require the use of so-

phisticated techniques in order to be properly
characterized. In addition to well testing,
tracer flow interpretation techniques provide
the means to obtain basic reservoir parameters,
as well as the connectivity between several re
gions of the reservoir and a good estimation of
transit times of injected fluids. Most inter
pretation models published to describe tracer
flow through both aquifers and o0il reservoirs
cannot be directly applied to geothermal reser-
voirs, because they treat the flow system as
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a homogeneous porous medium, which does not
correspond to the case of most geothermal fields.
Most of the models for geothermal reservoirs
published to date provide only qualitative es
timation of reservoir parameters (Fossum, 1983,
Tester et al, 1982, Jensen, 1983) and only a
few of them allow quantitative determination
of these parameters (Walkup and Horne, 1985,
Tang et al., 1981).

In this study a fractured, two flow region
model was developed to quantitatively determine
basic geothermal reservoir parameters from

tracer return curves. This model takes into

account the main mass transport mech-
anisms that take place in the reservoir when
a tracer is flowing under actual reservoir
conditions. In spite of this, the model can
still be considered as simpler than other pub
lished models (Walkup and Horne, 1985), since
it requires only one numerical inversion in
order to bring to real space the analytical
solution for the concentration profile, which
is also
shown that under certain conditions, the frac-
tured system can be properly characterized by
a minimum of two fitting parameters, which
compare favorable with four or five fitting

parameters required by other published models,

was written in Laplace's Space. It

MODEL DESCRIPTION

The model proposed in this work is actu-
ally an extension of that previously presented
(Rivera et al.,.1987) at the Eleventh Workshop on
Geothermal Reservoir Engineering. Dimensionless
parameters were redefined in order to simplify
the solution to the model and also to elimi-
nate some numerical dispersion that was pre-
sent in the solution to the former model. In
this work the characteristc length was taken
as the distance from the injection point to
that in which the concentration profile has
to be calculated.

The proposed model 'is shown in Fig. 1.
The fractured heterogeneous medium is repre-
sented by means of a system of equally spaced
parallel fractures alternatedwith porous blocks.
As shown in Fig. 1, this system is made of two
connected regions; a mobile region constituted
by the fracture itself, where diffusion and

convection processes are taking place and an

immobile region wherennly diffusion and ad-
sorption are allowed. Connecting both regions
there is a very thin, stagnant fluid layer
of thickness §, which acts as a resistance
to mass transfer from the mobile region to
the immobile one. For a more detaileddescrip-
tion of the model the reader should refer else-
where (Ramirez, 1987, Rivera et 2l., 1987). The
idea of representing the flow system by means
of two interconnected regions has been used
in the past by several anthors (Deans, 1963,
Walkup and Horne, 1985, Maloszewski
1985, among others).

and Zuber,

The governing equations of the model are as
follows:

a) For the mobile region:

3%C 3¢ ) ac aC
D,— - Vp—=" - A - —— D —= -0
' ax? X w-§ 3y  |{w-8) ot
e (1)
b) For the immobile region:
D 32¢C aC
e £ oA, -==0 .. (2)
ok(T-¢e7 oy e ot
14 —=
e

The main assumptions for development of the
model are the following: a) no production by
reaction of the chemical species within the
control volume; b) continuous injection of
tracer into the fracture system; c) tracer
transport in the fractures is due to diffusion
and convection; d) tracer distribution across
the fracture width can be assumed constant
due to efficient transverse diffusion and
dispersion; e) constant density; f) in the

immobile region only diffusion in the y-direction
is important; g)reversible adsorption with

a linear adsorption isothermis taking place.
In dimensionless form, egs. (1) and {2) can

be expressed as follows:

1 3%C aC oC oC
-————%-——D—l-ycmu;nz i)
Pe1 3% Xy dyp w8 at,
..(3)
R 3%C oC
— D2 e, - =0 .(4)
Pe2 3y D atD
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where:
p o Unt
el 0
m
P =v_m.|.-.
e2 D
e
c . tele
Vm(w-d)
LA
y = —
Vm
¢
R = e

b * ok(1-9,)

The initial and boundary conditions are as follows:

CDI(XD’ 0) =0
Cpolxps ¥p» 0) =0

C, (0,t

p1{0stp) =

Cpy(=stp) = 0

w=§ -
Coolxps = » tp) = Cpy (xpstp)

aCps o
ay

where:
. Cm'ci
‘177
o i
o - Ce-C1~
D2 Co'ci
« =X
D L
zl
L
= th
tD s —
L

Equations (3) and (4) can be solved by means
of the Laplace's transform. Solution for con
centration distribution in the mobile and im

«..(5)

... (6)

e (7)

... (8)

~..(9)

...{10)

... (11)

... (12)

... (13)

...(14)

...{16)

<. {17)

...(18)

...{19)

...(20)

mobile regions in Laplace's space are as fol
lows:

P .x
e lo g it | T Wgiary \
ch' s_ exp » [l 7’1+ Pel(s+y+ o " tanh(al)]

... (21)
. exp[-ml(% - yp)l+exp(-m yy) ~
Cp2 = o " ‘01
exp[-m, (2248 Jeexp[-m, (9]
.oo(22)

where:

P
my =]’—§g (s+y) .. {23)
R

ml(E - 2w + 28)
e A ... (22)
2L

g,/;; ... (25)

A particular case of eq.(21) results when a

Q
n

as defined by eq.(25) above becomes very
small. In a given situation, this can be
produced by either one of the following fac
tors or any combination of them: the poros-
ity or the diffusion coefficient for the im-
mobile region are very small, or the velocity
in the mobile region is very large. In this
case, the immobile region will behave as if
it were impermeable, so that only one flow
region will contribute to any change in the
tracer concentration. Under these conditions,
eq.(21) becomes:

= v FXDPel el 1
Cp1™ Eexp[ 5 ]exp[-xD —4-+Pel(5+y)J

...(26)

In real space, the: inverse transform of eq.
(26) can be written as follows:

| P X, [P a,t
1 el D [ el 2D
ch(xn'tD)=2eXp['XD( 2, - —7~)]erfc<7— ’tD -’52Ii>

' P x. [P At
1 el D [‘el 2%
+ 3 exp|x.( Va, + ==)|erfc|{ 5 [+ + |F5—
3 exp[xp( /7 + 5] (2 -\/ T Per

...(27)

-283-




where:
2
Pel
4

a, + TPy ...(28)

Eq.(27) corresponds to that case in which the
influence of the immobile region is negligi-
ble. This equation will reduce to that previ-
ously presented by Coats and Smith (1963) for
an infinite homogeneous system when y=0.

On the other hand, if for practical purpouses
the size of the immobile region in the verti-
cal direction, E, does not show any influence
on the behavior of the system, eqs. (21} and

(22) can be expressed as follows:

C P _.x 4
Tpi® 20 exp | -£L0 [1 - 1+ —=(s+y+a/s) ]
s 2 P
el
..{29)
w
tDZ exp [- ml(_yD - E)] ...{30)

The system described by egs. (29) and (30) was previ-
ously studied by Tang et al. (1981) and their
solutions in Laplace's space agree very -well
with the solution presented here. Numerical
inversion was used for the evaluation of eqs.
(29) and (30) in real space. The algorithm
presented by Stehfest (1970) was used for this
purpouse. Data reported by Tang et al were used
in the evaluation of eqs. (29) and (30) and
then compared with those obtained from the in
tegral solution previously presented by Tang et
al. Results obtained from both evaluations
agreed very well with each other.

To determine the influence that the size of the
repetitive element, E, could have under several
combinations of practical values for the param-
eters involved in the solution to the model,
extensive evaluations of the general solution,
eq. (21), and the particular solution when the
effect of E is negligible, eq.
ried out.

(29), were car-
It was observed that for all condi-
the results obtained that
can be expected in practical applications, the
size of the repetitive element, E, does not

tions considered,

have influence in the magnitude of the tracer
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concentration obtained at the producing end,

or at any other location within the flow path.

Under these conditions the system can be prop-

erly described by just two dimensionless param

eters: the Peclet number for the mobile region,

Pel’ and a. If the tortuosity of the fractured
D should be added

medium is considered, then x

to these parameters.

Thus far, all discussion has been centered in

the continuous injection case. However, in

field applications tracers are injected as fi-
nite slugs in a short period of time
has
the
and

the

, which
been called the "spike injection case" in
literature. As it was pointed out by Walkup
Horne, the solution for an spike-input is
time derivative of a step input, that is:

3¢
I RS Y
(Cpi)spike™ 38, =L [SCDI} -« (31)

Therefore to obtain the solution for a spike-
input all that is needed is to multiply the
expression for the step input in the (x,y,s)
space by s and then invert the resulting
equation to the (x,y,t) space. Two cases can
be considered; the first one results by con-
sidering the solution when the effect of E is

negligible. From eq. (29):
(C.) =5 T,,=C_ ex Pe1*D 1- 4 +y+0/%)
D1/spike™ “D17%0 P (72 1+ E(S Yros

... (32)

(32) it can be seen that a
maximum {or limiting) solution can be obtain

By analyzing eq.
ed when a=0. Applying the inverse transfor-

(32) when a=0 the following
is obtained:

X P P X 4y

D [Tel el[ D
5o | = exp { | xp(2- =)=~ (1+ 5— )}
ZtDw’ntD 0N g T P,

... (33)

mation to eq.
expression

(Cp1)spike”

Timit

An estimation of the time of arrival of the
maximum tracer concentration can be obtained
by equating to zero the time derivative of

eq. (33). Thus, the following expression is
ocbtained:
~/9 +x2 P2 -3
ty = D el ...(38)
cmax
el



This corresponds to that dimensicnless time
when the maximum dimensionless tracer concen-
tration breaks through at the producing point
location. Since it has been calculated from

eq. (33), it will hold for o=0. However, from
the cases studied, it has been determined that
although the maximum tracer concentration at a
given location will change with a departing
from zero, the time of arrival of the maximum
concentration will have a small variation com-
pared with that value predicted by eq. (34).
Therefore, this expression should be considered
as a good estimation for the time of arrival of
the maximum tracer concentration.

DISCUSSION OF RESULTS

Analysis of results generated from Eqns. {21) and (26)
show that for practical purposes, w/L > 0.005,
1< Pgp 2 102 and 107 < PEZi]Olza tracer response
seems not to be affected by the size of the matrix blocks,
this is, diffusion into the matrix blocks does
not reach far enough as for matrix boundary
effects tc be felt in the solution. Under these
conditions the system can be described by two
dimensionless parameters, a and Pel’ as seen
from equation (29)

Diffusion of tracer into the matrix is governed
by a. When a <0.01, tracer response is the same
as would be for a=0, which corresponds to the
zero diffusion into the matrix case.

An analytical solution, equation (26), was found
for this limiting case; this is shown in Fig.2
for Pe1=2 and xD=1 along with solutions for a#0,
generated from the numerical inversion of Eq.

(26). As o becomes larger, for a given t con-

s
centration becomes smaller, thus indicatgng that
more tracer has been transferred into the matrix
along the injection path. Also, notice in Fig.2
that instabilities on the solutions, due to the
numerical Laplace space invertor used, become

worst as a —>0 and tp becomes larger.

The effect of Pel on the tracer response
at XD=1, for «=0.01, is presented in Fig. 3.
These results were obtained from the numerical
irversion of Eq. (29). It can be seen that
as Pe1 becomes larger, the time for tracer
breaktrough become also larger. This seems
to be contradictory, note however that both
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a and Pe1 depend on velocity and system Tlength
and that setting o to a constant implies that
changes in Pe1 migth only be produced by
changing the diffusivity of the tracer on the
fractures, Dm. Then, as Dm becomes smaller,
Pe1 becomes larger and so will the breakthrough
time. Fig. 4 shows the same results as Fig.

3 but obtained analytically from Eq. (27).

Figure 5 shows tracer concentration responses
at XD = 1 for the case of a spike injection,

Pe1= 2 and several values of a. These results

were obtained by numerical inversion of Eq.(29)
and as it can be seen, instabilities due to
the inversion algorithm become worse as time
increases and for samll values of a. Dinensionless
concentration values greater than unity were
obtanied for relatively small and large values

of %‘, < 2 and > 20, when o < 0.01. This indicates

that the mathematical treatment of the spike
injection, Cp (o0, tD)= s(tD), must only be
valid under c%rtainconditions. These conditions
are currently being investigated.

NOMENCLATURE

a= Dimensionless constant defined by eq.(24)
a,= Dimensionless constant defined by eq.(28)
C= Concentration, (M/L3)

D= Diffusion coefficient, (L%/t)

E= Fracture spacing, (L)

k= Adsorption constant, (L3/M)

L = Inverse Laplace's operator

m; = Dimensionless grour defined by eq. (23)

P_. = Peclet number, (dimensionless)

R= Dimensionless group defined by eq. (9)

s= Laplace parameter

t= Time, (t)

V= Velocity, (L/t)

W= Fracture half-width, (L)

x= Distance in x-direction, (L)

y= Distance in y-direction, (L)

Greek Symbols

a = Dimensionless group defined by eq. (25)




vy = Dimensionless group defined by eq. (8) 5.
§ = Stangnant fluid film thickness, (L)

£ = Dimensionless group defined by eq. (7)

¢ = Porosity, referred to total-bulk volume, 5.
(dimensionless)
A = Radioactive decay constant, (t'l)
o = Density, (M/L3) 7.
Subscripts
D = Dimensionless variable (distance, time or
concentration)
e = Refers to the immobile (stagnant) region 8.
i = Refers to initial conditions
m = Refers to the mobile (fractured) region
0 = Refers to inlet conditions
1 = Refers to mobile region 9.
2 = Refers to immobile region
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Idealized proposed model for representation
of the naturally fractured medium.




DIMESIONLESS CONCENTRATION, Cp,

DIMESIONLESS CONCENTRATION, Cp,

1.0 SYMBOLS:
] x  ANAL SOL.
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a ALPHALY
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o . 1
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DIMENSIONLESS TIME, tp
Fig. 2. Effect of o on the concentration profile at
XD=1.O. Step up injection case.
1.0 SYMBOLS:
P x PE1(1)=1

o PE1(2)=S

a PE1(3)=10

N

a PE1(4)=20

+ PE1(3)=30

>

u

0.0 TS ) . 7 . ) 1.0
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Fig. 3. Effect of the Peclet number in the mobile region,
pel’ on the concentration profile XD=1.0.

Step injection, «=0.01
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Fig. 5. Tracer concentration responses at XD=1, Pe1=2
and several values of a.
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Spike injection case.

SYMBOLS :
x  PE1(1)=1
o PE1(2)=8
o PEI(3)=10

a PEI(4)=20

SYMBOLS:

x ALPHA = ,001
©  ALPHA = .01
o ALPHA =0.1

A& ALPHA =1

4 ALPHA = 3






