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ABSTRACT

An analytical approximation is developed for purely con-
ductive heat transfer from impermeable blocks of rock
to fluids sweeping past the rocks in fractures. The
method was incorporated into a multi-phase fluid and
heat flow simulator. Comparison with exact analytical
solutions and with simulations using a multiple interact-
ing continua approach shows very good accuracy, with
no increase in computing time compared to porous
medium simulations.

INTRODUCTION

Despite major advances in recent years, the mathemati-
cal modeling of fluid and heat flow in fractured geother-
mal reservoirs remains a difficult problem. Porous
medium approximations have been shown to be inade-
quate for many flow processes in fractured systems
(Pruess, 1983), while double- or multiple-porosity tech-
niques may involve excessive amount of numerical work
or large discretization errors.

Combining finite-difference and analytical techniques, we
have developed a method which can provide an accurate
and eflicient representation of fluid and heat flow in
fractured reservoirs under conditions of strong heat
transfer and insignificant fluid exchange between rock
matrix and fractures. The method is an adaptation of a
technique developed by Vinsome and Westerveld (1980)
to describe heat exchange with impermeable confining
beds in thermally enhanced oil recovery.

THE METHOD OF VINSOME AND WESTERVELD

An important aspect of thermal oil recovery schemes is
the transfer of heat by conduction from the reservoir to
adjacent strata of low permeability. In steam and hot
waterfloods this represents a heat loss which may have
significant effects on process economics. In steam soak
operations (huff-and-puff) heat lost to cap and base rock
during injection can be partially conducted back to the
reservoir during the production cycle, providing
beneficial effects. The heat exchange with impermeable
strata can be large and must be included in numerical
simulations of thermal recovery. At early times the con-
ductive temperature profile has rather steep gradients
near the surface of the conductive zone, while at late
time it extends to large distance from the boundary. A
reasonably accurate representation of heat conduction

by numerical methods (e.g. finite differences) therefore
requires many grid blocks and can greatly increase the
_computational work.

A number of semi-analytical and variational approaches
have been developed which permit modeling of conduc-
tive heat exchange with impermeable strata without
-requiring these strata to be explicitly included in the
domain of a finite difference model (Weinstein, 1972,
1974; Chase and O’Dell, 1973; Vinsome and Westerveld,
1980). Of these the method of Vinsome and Westerveld
is the most attractive due to its elegance and simplicity.
Observing that the process of heat conduction tends to
dampen out temperature variations, Vinsome and
Westerveld suggested that cap- and base-rock tempera-
tures would vary smoothly even for strong and rapid
temperature changes at the boundary of the conductive
zone. Arguing that heat conduction perpendicular to the
conductive boundary is more important than parallel to
“it, they proposed to represent the temperature profile in
a conductive layer by means of a simple trial function,
as follows:

T(X,t) - Ti = (Tf — Ti + px + qx2)e—x/d (1)

Here x is the distance from the boundary, T, is initial
temperature in cap- or base-rock (assumed uniform), T
is the time-varying temperature at cap- or base-rock
boundary, p and q are time-varying fit-parameters, and
d is the penetration depth for heat conduction, defined
by

Vit

d=2

(2)

where k£ = K/pc is the thermal diffusivity, with K the
heat conductivity, p the density of the medium, and c
the specific heat. In connection with a finite-difference
simulation of non-isothermal flow, each grid block in the
top and bottom layers of the computational grid will
‘have an associated temperature profile in the adjacent
impermeable rock as given by Eq. (1). The coefficients p
and g will be different for each grid block; they are
determined concurrently with the flow simulation from
simple physical principles, namely: (1) temperature at
the conductive boundary obeys the heat conduction
equation for the impermeable stratum, and (2) the rate
of change in total cap- or base-rock heat content is equal
to the heat flux at the boundary. Vinsome and Wester-
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veld presented test calculations which showed that their
method was able to accurately represent monotonic as
well as non-monotonic temperature profiles. We incor-
porated their technique into our MULKOM simulator
(Pruess, 1983b, 1988) and verified that it gave accurate
results (Pruess and Bodvarsson, 1984).

HEAT EXCHANGE WITH BLOCKS OF
IMPERMEABLE ROCK

The method of Vinsome and Westerveld treats heat
exchange between a surface with time varying tempera-
ture and a semi-infinite conductive half-space. It can be
easily adapted to the problem of heat exchange between
impermeable rock matrix blocks and fluids flowing in
fractures or porous materials around these blocks. The
required modifications involve the equation of heat con-
duction and the calculation of total heat content in the
blocks, both of which differ from those for a semi-infinite
medium.

Following concepts developed in the method of “multi-
ple interacting continua” or “MINC” (see Fig. 1) we
approximate heat flow in impermeable blocks of rock as
being one-dimensional, with temperatures in the blocks
depending only on the distance x from the nearest sur-
face (i.e. from the nearest fracture; Pruess and
Narasimhan, 1982, 1985). We use the concept of “prox-
imity function” (Pruess and Karasaki, 1982) to describe
one-dimensional flow in blocks of arbitrary shape, as
well as flow in stochastic assemblages of matrix blocks
which are encountered in fractured reservoirs. For
matrix blocks of volume V., having a volume V(x)
within a distance x from the fractures (ie., from the
block surfaces), the proximity function is defined as:

PROX(x) — l(}’fl (3)

m

The interface area for flow in the matrix blocks at dis-
tance x from the surface is

_av

A(x)—a—=de

PROX
dx

(4)

Considering a heat balance for a volume element dV =
A(x) dx, we obtain the following equation for one-
dimensional heat conduction in the blocks:

oT _ X 8°T . IT dlnA
a3t ox2 Ix  Ox

(%)

Choosing the same form Eq. (1) for the temperature
profile in the blocks as was used by Vinsome and
Westerveld for the semi-infinite solid, the condition that
Eq. (5) must be satisfied at the surface of the blocks
gives

Here we have replaced the time derivative by a first-
order forward finite difference, as required for incor-

porating the method into our numerical simulator MUL-
KOM. T(° and T; are temperatures in the fracture at the
beginning and end of the time step At, respectively. 6 is
an abbreviation for Ty - T;. For a semi-infinite solid the
derivative term involving A(x) vanishes, so that Eq. (6)
then reduces to the form given by Vinsome and Wester-
veld. Energy conservation in the blocks is expressed as
follows.

d = KT Ax=
e \"fmdev_ K5 | A=0) (7)

With a slight rearrangement of terms the integral on the
left hand side becomes

p/2
Ity = J My - _i—(%)l dx (8a)

The integration extends to D/2, which for fracture spac-
ing D is the largest distance from the block surfaces.
Inserting from Eq. (1) this integral can be written as

I(t)= Bq + p + 60 (8b)

The coeflicients 5, v and § represent a weighting of the
x-dependent terms x" exp(-x/d) (n = 0, 1, 2) in Eq. (1)
with the function A(x)/A(0) characterizing the matrix
block shapes. Even for irregular blocks and stochastic
assemblages the proximity function and its derivative
A(x) can be written as polynomials in x (Pruess and
Karasaki, 1982), so that the integral in Eq. (8) can be
evaluated by elementary means. Evaluating the spatial
derivative from Eq. (1) the finite difference version of
Eq. (7) becomes

I(t+4¢) - I(t) = kAt (% ~p) 9)

Eqs. (6) and (9) (with the definition Eq. 8) represent two
linear equations for the two unknown time-dependent
parameters p and q. Solution of these is trivial once the
coeflicients B, v, and § in Eq. (8b) have been obtained.
The heat flux from the blocks to the fractures is calcu-
lated as in Vinsome/Westerveld by

a1

= K
Q ax

[/
=K(Z_-
=K(g-» (10)

Calculation of the time-dependent coeflicients p and q
from Egs. (6) and (9), and of heat exchange between the
permeable and the conductive domains from Eq. (10),
has to be done at each time step separately for all grid
blocks which contain purely conductive material. It is
possible to apply the conductive exchange calculation
only for certain grid blocks, while others may be treated
as homogeneous porous media, or as fractured media
with permeable matrix using the MINC method. The
temperature T (x=0,t) at the surface of the conductive
domain is identified with the temperature in the perme-
able portion (fractures) of the grid block. In a fully
implicit scheme this temperature is evaluated at the new
time level t + At, and the heat exchange calculation is
done in a fully coupled manner as part of the iterative
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process to solve the fluid and heat flow equations in the
permeable domain.

To incorporate the above scheme into a numerical simu-
lator we partition grid block volumes into a permeable
and a purely conductive part.

Vn = vn,per + vn,cond (11)
Fluid and heat flow in the permeable portions V, ... of
the grid blocks is handled by numerical simulation. Heat
transferred by conduction from the impermeable portion
Vocond 15 represented by including Eq. (10), properly
scaled for the total conductive interface area in V, as a
source term into the heat balance equation for V, ...

VALUATION

We have implemented the method described in the fore-
going section into our general purpose simulator MUL-
KOM, and have performed several tests and comparis-
ons. For simplicity this was done for matrix blocks of
cubic shape. For cubes the proximity function can be
directly obtained from the definition Eq. (3); it is given
by
6x 12x2 8x%

PROX(x) = 3 - = + 2 (12)

This leads to a particularly simple form for the expres-
sion A(x)/A(0) appearing in the integral Eq. (8), namely,

2
A 2x
K%:[l--l)_ (13)

In order to evaluate the accuracy of the semi-analytical
approximation we have studied a problem for which
exact analytical solutions are available, namely, heat
exchange with a cube of initially uniform temperature,
which at time t = 0 is subjected to a step change in
temperature at the surface. The parameters of the prob-
lem are given in Table 1.

The heat flow rate at the surface of the cube was com-
puted as function of time using the following four
approaches: (1) numerical evaluation of the exact three-

dimensional Fourier series solution (Carslaw and Jaeger,
1959); (2) a one-dimensional approximation to heat flow
in a cube, for which the exact solution is identical to
heat flow in a sphere (Carslaw and Jaeger, 1959); (3) the

Table 1. Parameters for test problem (heat
exchange with unit cube).

side length of cube 1m

rock density 2650 kg/m?3
specific heat 1000 J/kg°C
heat conductivity 21W/m°C
initial temperature 300°C
surface temperature

fort >0 100°C

semi-analytical solution as developed above, incor-
porated into the MULKOM simulator; and (4) method
of multiple interacting continua (“MINC”; Pruess and
Narasimhan, 1985). Results are given in Tables 2 and 3.

The “exact 3-D” and the “exact 1-D” results are virtu-
ally identical, with the exception of very early and very
late times, which have little significance for overall heat
transfer. Heat flow rates calculated in the semi-
analytical approximation agree very well with the exact
results, being typically 1-2 % larger. Cumulative heat
transfer in the semi-analytical approximation is under-
predicted by typically 10% at most times, but it
approaches the correct asymptotic value of 5.3 X 10%J
at late times. It may appear inconsistent that heat flow
rates in the semi-analytical approximation are slightly
on the high side at all times while cumulative heat
transfer is somewhat low. This effect is caused by the
time discretization: In the semi-analytical approach the
heat flow rate is constant during each time step; more-
over, in our fully implicit scheme it is equal to the heat
flow rate at the end of the time step. Because heat flow
rates are monotonically declining this leads to some
underprediction of cumulative heat transfer. The accu-
racy of the semi-analytical calculation could be
improved by taking smaller time steps (we used 4 time
steps per log-cycle), or by using a mid-point weighting in
time (Crank-Nicolson equation; Peaceman, 1977) rather
than a fully implicit treatment. However, in practical
problems one is seldom interested in accurate answers

Table 2. Heat flow rates from unit cube.

Heat Flow Rate (W)

Time
semi-
(s) exact 3-D  exact 1-D  analytical = MINC

1 1.410E6 1.592E6 1.821E8 1.315E6
10 4.987E5 5.000E5 5.038E5 6.122E5
10? 1.534E5 1.547E5 1.546E5 1.683E5
10% 4.429E4 4.547E4 4.514E4 4.913E4
10* 1.020E4 1.093E4 1.063E4 1.207E4
10° 6.354E2 4.414E2 9.478E2 8.372E2
108 4.275E-7 2610E-10 1.021E1  5.676E-2

Table 3. Cumulative heat flows from unit cube.

Cumulative Conductive Heat Transfer (MJ)

Time
semi- :
(s) exact 3-D  exact 1-D  analytical MINC

1 3.285 3.286 2.645 1.22
10 10.04 10.05 9.079 8.52
10? 31.31 31.44 28.40 30.28
10® 94.73 95.97 86.09 93.52
10* 259.6 269.0 235.7 261.8
108 503.0 515.9 453.9 503.3
108 530.0 530.0 524.9 529.9
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over many orders of magnitude in time, so that time
steps do not need to grow as fast as in our test case, and
better time truncation accuracy will be attainable.

Heat flow rates calculated in the MINC approach, using
50 subcontinua of equal volume, differ by as much as 10
- 20% from the exact values. For rates that change with
time by many orders of magnitude this is not a bad
approximation. In terms of cumulative heat transfer the
MINC approximation does extremely well (Table 3).
After a brief period with significant space discretization
effects at very early times the MINC results agree to
better than 19 with the exact solution.

FIVE-SPOT

We have applied the semi-analytical heat exchange
approach to a two-dimensional five-spot
production/injection problem similar to that previously
studied by Pruess (1983a). Problem parameters are given
in Table 4.

The grid used in the numerical simulations represents
1/8 of a five-spot; it has six rows and eleven columns for
a total of thirty-six volume elements (see Fig. 2). We
assume three sets of equidistant, plane, parallel fractures
at right angles, so that the impermeable matrix blocks
are cubes. Calculations were done for two different frac-
ture spacings. In addition to using the semi-analytical
approach we also performed simulations with the MINC
method, and with a uniform porous medium model (with
same total void space, ie., porosity of 1%). The MINC

Table 4. Specifications of five-spot problem.

Formation

rock grain density 2650 kg/m®
specific heat 1000 J/kg° C
heat conductivity 21W/m°C

permeable volume fraction 2%

porosity in permeable domain  50%
impermeable blocks: cubes

with side length 50 m, 250 m
effective permeability 6.0 X 1071%m?
thickness 305 m
relative permeability: Corey

curves with

S, = 0.30, S,, = 0.05

initial temperature 300°C
initial liquid saturation 0.99

initial pressure 85.93 bar
production/injection

pattern area 1 km?
distance between producers

and injectors 707.1 m
production rate (¥) 30 kg/s
injection rate (*) 30 kg/s
injection enthalpy 500 kJ/kg

(*) full well basis

approach uses five subcontinua, with volume fractions of
.02, .08, .20, .35, and .35. Results are given in Figure 3
and in Table 5.

Fig. 3 shows temperature profiles along the line connect-
ing a producer and an injector after 36.5 years,
corresponding to injection of approximately 12.2 pore
volumes. For both fracture spacings the agreement
between the semi-analytical and the MINC simulations
is excellent. The D = 50 m results are indistinguishable
from the porous medium calculation, while at the larger
fracture spacing of D = 250 m the thermal sweep is less
complete and lower temperatures are obtained.
Predicted total heat transfer from the impermeable
rocks to the fluids agrees to better than 19 between the
semi-analytical and MINC approaches at most times (see
Table 5). The semi-analytical approach required the
same amount of computing time as the porous medium
case, while the MINC calculation was approximately five
times slower.

DISCUSSION AND CONCLUSIONS

We have incorporated an analytical heat transfer model
into a numerical simulator for fluid and heat flow to cal-
culate heat exchange between impermeable blocks of
rock and fluids migrating past these blocks in fractures.
For problems in which rock matrix permeability is negli-
gible this offers a means of simulating fluid and heat
flow in fractured media with essentially no increase in
computing work as compared to porous medium simula-
tions. Detailed analysis of heat flow from a cube sug-
gests that the semi-analytical method should provide
acceptable engineering accuracy. We are presently inves-
tigating some variations on the form Eq. (1) which
might achieve even better accuracy. However, simula-
tions for a two-phase production/injection problem with
phase change gave almost perfect agreement with the
MINC method for two different fracture spacings, so
that there may be little need for further improvement.

There are two reasons why the semi-analytical method
performs better on a reservoir problem than might have
been expected from the test results for an individual

Table 5. Cumulative heat transfer from rocks to
fluids in 1/8 of five-spot.

Cumulative Conductive Heat Transfer (16'])

Time

(years) Fracture Spacing 50 m Fracture Spacing 250 m
MINC  Semi-analytical | MINC  Semi-analytical

1 1.07 1.07 .83 .85

2 2.11 2.10 1.77 1.79

5 5.22 5.18 4.64 4.67

10 10.33 10.29 940 9.46

15 15.48 15.44 14.10 14.16

20 20.43 20.38 18.70 18.79

25 25.24 25.19 23.21 23.33

30 30.14 30.10 27.60 27.75

35 35.05 35.00 31.91 32.07
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cube. Firstly, time discretization errors are not as severe
in the reservoir problem, because time steps can be
allowed to settle at At = .5 - 1 year after the initial
rapid transient, while in the single-cube problem they
were kept growing to cover the large time range from
very early transient to late-time temperature
equilibrium. Secondly, the aggregate response of many
rock blocks in a reservoir problem tends to compensate
for whatever inaccuracies may be present in the model-
ing of individual block response. To see how this comes
about, suppose that because of discretization effects the
blocks near the injection well do not deliver heat to the
fluids as rapidly as they should.(This is what actually
happens in the semi-analytical method; see Table 3.) As
a consequence fluids will have lower temperatures when
at later time they sweep past downstream blocks, and
hence they will pick up more heat from those blocks.
This. compensation of inaccuracies in individual block
response from global reservoir mechanisms is completely
analogous to what was observed in analysis of
waterfloods in fractured hydrocarbon reservoirs (Wu and
Pruess, 1986). It indicates that satisfactory accuracy in
reservoir flow problems should be attainable with rather
modest accuracy requirements for individual blocks.

The semi-analytical method for heat transfer presented
here should also be applicable to problems of chemical
transport in fractured media, because chemical transport
in low-permeability blocks of rock can be described in
analogy to heat conduction. Work along these lines is in
progress.
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Figure 1. The concept of multiple interacting continua

for an idealized fracture system.
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Figure 2. Computational grid for five-spot production/

injection problem (I - injector, P - producer).

Figure 3. Temperature profiles for five-spot after 36.5 years.
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