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ABSTRACT 

An analytical approximation is developed for purely con- 
ductive heat transfer from impermeable blocks of rock 
to  fluids sweeping past the rocks in fractures. The  
method was incorporated into a multi-phase fluid and 
heat flow simulator. Comparison with exact analytical 
solutions and with simulations using a multiple interact- 
ing continua approach shows very good accuracy, with 
no increase in computing time compared to porous 
medium simulations. 

INTRODUCTION 

Despite major advances in recent years, the mathemati- 
cal modeling of fluid and heat flow in fractured geother- 
mal reservoirs remains a difficult problem. Porous 
medium approximations have been shown to  be inade- 
quate for many flow processes in fractured systems 
(Pruess, 1983), while double- or multiple-porosity tech- 
niques may involve excessive amount of numerical work 
or large discretization errors. 

by numerical methods (e.g. finite differences) therefore 
requires many grid blocks and can greatly increase the 
computational work. 

A number of semi-analytical and variational approaches 
have been developed which permit modeling of conduc- 
tive heat exchange with impermeable s t ra ta  without 
requiring these s t r a t a  to be explicitly included in the 
domain of a finite difference model (Weinstein, 1972, 
1974; Chase and O’Dell, 1973; Vinsome and Westerveld, 
1980). Of these the method of Vinsome and Westerveld 
is the most attractive due to its elegance and simplicity. 
Observing tha t  the process of heat conduction tends to 
dampen o u t  temperature variations, Vinsome and 
Westerveld suggested tha t  cap- and base-rock tempera- 
tures would vary smoothly even for strong and rapid 
temperature changes at the boundary of the conductive 
zone. Arguing tha t  heat conduction perpendicular to the 
conductive boundary is more important than parallel to  
it,  they proposed to  represent the temperature profile in 
a conductive layer by means of a simple trial function, 
as follows: 

(1)  Combining finite-differencd and analytical techniques, we 
have developed a method which can provide an accurate 

T(x,t) - Ti = (Tr - Ti + px + qx2)e-x/d 

and efficient representation of fluid and heat flow in 
fractured reservoirs under conditions of strong heat 
transfer and insignificant fluid exchange between rock 
matrix and fractures, The  method is an adaptation of a 
technique developed by Vinsome and Westerveld (1980) 
to describe heat exchange with impermeable confining 

Here x is the distance from the boundary, Ti is initial 
temperature in cap- or base-rock (assumed uniform), Tr 
is the time-varying temperature at cap- or base-rock 
boundary, p and q are time-varying fit-parameters, and 
d is the penetration depth for heat conduction, defined 

beds in thermally enhanced oil recovery. by 

T H E  METHOD OF VINSOME AND WESTERVELD 

An important aspect of thermal oil recovery schemes is 
the transfer of heat by conduction from the reservoir to 
adjacent s t r a t a  of low permeability. In steam and hot 
waterfloods this represents a heat loss which may have 
significant effects on process economics. In steam soak 
operations (huff-and-puff) heat lost to cap and base rock 
during injection can be partially conducted back to the 
reservoir during the production cycle, providing 
beneficial effects. The  heat exchange with impermeable 
s t ra ta  can be large and must be included in numerical 
simulations of thermal recovery. A t  early times the con- 
ductive temperature profile has rather steep gradients 
near the surface of the conductive zone, while at late 
time it extends t o  large distance from the boundary. A 
reasonably accurate representation of heat conduction 

where IC = K/pc is the thermal difiusivity, with K the 
heat conductivity, p the density of the medium, and c 
the specific heat. In connection with a 6nite-difference 
aimulation of non-isothermal flow, each grid block in the 
top and bottom layers of the computational grid will 
have an associated temperature profile in the adjacent 
impermeable rock as given by Eq. (1). The  coefficients p 
and q will be different for each grid block; they are 
determined concurrently with the flow simulation from 
simple physical principles, namely: (1) temperature a t  
the conductive boundary obeys the heat conduction 
equation for the  impermeable stratum, and (2) the  rate 
of change in total cap- or base-rock heat content is equal 
to the heat flux a t  the boundary. Vinsome and Wester- 
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veld presented test calculations which showed tha t  their 
method was able to  accurately represent monotonic as 
well as non-monotonic temperature profiles. We incor- 
porated their technique into our MULKOM simulator 
(Pruess, 1983b, 1988) and verified that it gave accurate 
results (Pruess and Bodvarsson, 1984). 

HEAT EXCHANGE WITH BLOCKS OF 
IMPERMEABLE ROCK 

The  method of Vinsome and Westerveld treats heat 
exchange between a surface with time varying tempera- 
ture and a semi-infinite conductive half-space. It can be 
easily adapted to the problem of heat exchange between 
impermeable rock matrix blocks and fluids flowing in 
fractures or porous materials around these blocks. The  
required modifications involve the equation of heat con- 
duction and the calculation of total heat content in the 
blocks, both of which differ from those for a semi-infinite 
medium. 

Following concepts developed in the method of “multi- 
ple interacting continua” or “MINC” (see Fig. 1) we 
approximate heat flow in impermeable blocks of rock as 
being one-dimensional, with temperatures in the blocks 
depending only on the distance x from the nearest sur- 
face (i.e. from the nearest fracture; Pruess and 
Narasimhan, 1982, 1985). We use the concept of “prox- 
imity function” (Pruess and Karasaki, 1982) to describe 
one-dimensional flow in blocks of arbitrary shape, as 
well as flow in stochastic assemblages of matrix blocks 
which are encountered in fractured reservoirs. For 
matrix blocks of volume V, having a volume V(x) 
within a distance x from the fractures (i.e., from the 
block surfaces), the proximity function is defined as: 

PROX(x) = 
Vm 

(3) 

The  interface area for flow in the matrix blocks at dis- 
tance x from the surface is 

( 4 )  

Considering a heat balance for a volume element dV = 
A(x) dx, we obtain the following equation for one- 
dimensional heat conduction in the blocks: 

(5) 

Choosing the same form Eq. (1) for the temperature 
profile in the blocks as was used by Vinsome and 
Westerveld for the semi-infinite solid, the condition tha t  
Eq. (5) must be satisfied at the surface of the blocks 
gives 

Here we have replaced the time derivative by a first- 
order forward finite difference, as required for incor- 

porating the method into our numerical simulator MUL- 
KOM. TC and TI are temperatures in the fracture at the 
beginning and end of the time step At ,  respectively. 0 is 
an abbreviation for TI - Ti. For a semi-infinite solid the 
derivative term involving A(x) vanishes, so tha t  Eq. (6) 
then reduces to the form given by Vinsome and Wester- 
veld. Energy conservation in the blocks is expressed as 
follows. 

With a slight rearrangement of terms the integral on the 
left hand side becomes 

The  integration extends to  D/2, which for fracture spac- 
ing D is the largest distance from the block surfaces. 
Inserting from Eq. (1) this integral can be written as 

I(t) = pq + rp + be (8b) 

The  coefficients p, -j and 6 represent a weighting of the 
x-dependent terms x” exp(-x/d) (n = 0, 1,  2) in Eq. (1) 
with the function A(x)/A(O) characterizing the matrix 
block shapes. Even for irregular blocks and stochastic 
assemblages the proximity function and its derivative 
A(x) can be written as polynomials in x (Pruess and 
Karasaki, 1982), so tha t  the integral in Eq. (8) can be 
evaluated by elementary means. Evaluating the spatial 
derivative from Eq. (1) the finite difference version of 
Eq. (7) becomes 

(9) 
e I(t+At) - I(t) = KAt (d - p) 

Eqs. (6) and (9) (with the definition Eq. 8) represent two 
linear equations for the two unknown time-dependent 
parameters p and q. Solution of these is trivial once the 
coefficients p, 7, and 6 in Eq. (8b) have been obtained. 
T h e  heat flux from the blocks to  the fractures is calcu- 
lated as in Vinsome/Westerveld by 

Q =  K- 

Calculation of the time-dependent coefficients p and q 
from Eqs. (6) and (9), and of heat exchange between the 
permeable and the conductive domains from Eq. (lo),  
has to be done a t  each time s tep  separately for all grid 
blocks which contain purely conductive material. I t  is 
possible to apply the conductive exchange calculation 
only for certain grid blocks, while others may be treated 
as homogeneous porous media, or as fractured media 
with permeable matrix using the MINC method. The  
temperature T (x=O,t) at the surface of the conductive 
domain is identified with the temperature in the perme- 
able portion (fractures) of the grid block. In a fully 
implicit scheme this temperature is evaluated at the new 
time level t + At ,  and the heat exchange calculation is 
done in a fully coupled manner as par t  of the iterative 
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process to  solve the fluid and heat flow equations in the 
permeable domain. 

To incorporate the above scheme into a numerical simu- 
lator we partition grid block volumes into a permeable 
and a purely conductive part. 

Time 

(s) 

1 
10 
lo2 
lo3 
lo‘ 
lo5 
10’ 

Fluid and heat flow in the permeable portions Vn,per of 
the grid blocks is handled by numerical simulation. Heat 
transferred by conduction from the impermeable portion 
Vo,eond is represented by including Eq. (lo), properly 
scaled for the total  conductive interface area in Vu, as a 
source term into the heat balance equation for Vn,per. 

EVALUATION 

Heat Flow Rate (W) 

semi- 
exact 3-D exact I-D analytical MINC 

1.410E6 1.592E6 1.82136 1.315E6 
4.98735 5.000E5 5.038E5 6.122E5 
1.53435 1.54735 1.546E5 1.683E5 
4.42934 4.54734 4.514E4 4.91334 
1.020E4 1.093E4 1.06334 1.207E4 
6.35432 4.41432 9.47832 8.372E2 
4.2753-7 2.610E-10 1.021E1 5.6763-2 

We have implemented the method described in the fore- 
going section into o u r  general purpose simulator MUL 
KOM, and have performed several tests and comparis- 
ons. For simplicity this was done for matrix blocks of 
cubic shape. For cubes the proximity function can be 
directly obtained from the definition Eq. (3); it is given 
by 

Time 

(s) 

1 
10 
lo2 
io3 
lo4 
lo5 
10’ 

(12) 
6x 12x2 I 8x3 
D D2 D3 

PROX(x) = - - - 

Cumulative Conductive Heat Transfer (MJ) 

semi- 
exact 3-D exact 1-D analytical MINC 

3.285 3.286 2.645 1.22 
10.04 10.05 9.079 8.52 
31.31 31.44 28.40 30.28 
94.73 95.97 86.09 93.52 
259.6 269.0 235.7 261.8 
503.0 515.9 453.9 503.3 
530.0 530.0 524.9 529.9 

This leads to  a particularly simple form for the expres- 
sion A(x)/A(O) appearing in the integral Eq. (8), namely, 

(13) 

In order to evaluate the accuracy of the semi-analytical 
approximation we have studied a problem for which 
exact analytical solutions are available, namely, heat 
exchange with a cube of initially uniform temperature, 
which at time t = 0 is subjected to  a step change in 
temperature a t  the surface. The  parameters of the prob- 
lem are given in Table 1. 

The  heat flow rate at the surface of the cube was com- 
puted as function of time using the following four 
approaches: (1) numerical evaluation of the exact three- 
dimensional Fourier series solution (Carslaw and Jaeger, 
1959); (2) a one-dimensional approximation to  heat Row 
in a cube, for which the exact solution is identical to 
heat Row in a sphere (Carslaw and Jaeger, 1959); (3) the 

Table 1. Parameters for test problem (heat 
exchange with unit cube). 

side length of cube 
rock density 2650 kg/m3 
specific heat lo00 J/kg C 
heat conductivity 2.1 W/m C 
initial temperature 300 C 
surface temperature 
for t > 0 1 0 0 ° C  

1 m 

semi-analytical solution as developed above, incor- 
porated into the MULKOM simulator; and (4) method 
of multiple interacting continua (“MINC”; Pruess and 
Narasimhan, 1985). Results are given in Tables 2 and 3. 

The  “exact 3-D” and the “exact 1-D” results are virtu- 
ally identical, with the exception of very early and very 
late times, which have little significance for overall heat 
transfer. Heat flow rates calculated in the semi- 
analytical approximation agree very well with the exact 
results, being typically 1-2 % larger. Cumulative hest  
transfer in the  semi-analytical approximation is under- 
predicted by typically 10% at most times, bu t  it 
approaches the correct asymptotic value of 5.3 X 108J 
at late times. It may appear inconsistent tha t  heat flow 
rates in the semi-analytical approximation are slightly 
on the  high side at all times while cumulative heat 
transfer is somewhat low. This effect is caused by the 
time discretization: In the semi-analytical approach the 
heat flow rate is constant during each time step; more- 
over, in our fully implicit scheme it is equal to the heat 
Row rate a t  the end of the time step. Because heat flow 
rates are monotonically declining this leads to some 
underprediction of cumulative heat transfer. The  accu- 
racy of the semi-analytical calculation could be 
improved by taking smaller time steps (we used 4 time 
steps per log-cycle), or by using a mid-point weighting in 
time (Crank-Nicolson equation; Peaceman, 1977) rather 
than a fully implicit treatment. However, in practical 
problems one is seldom interested in accurate answers 
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over many orders of magnitude in time, so tha t  time 
steps do  not need to  grow as fast as in our test case, and 
better time truncation accuracy will be attainable. 

Heat flow rates calculated in the MINC approach, using 
50 subcontinua of equal volume, differ by as much as 10 
- 20% from the exact values. For rates tha t  change with 
time by many orders of magnitude this is not a bad 
approximation. In terms of cumulative heat transfer the 
MlNC approximation does extremely well (Table 3). 
After a brief period with significant space discretization 
effects at very early times the MINC results agree to 
better than 1% with the exact solution. 

FIVE-SPOT 

We have applied the semi-analytical heat exchange 
approach to a twedimensional five-spot 
production/injection problem similar to tha t  previously 
studied by Pruess (1983a). Problem parameters are given 
in Table 4. 

The  grid used in the numerical simulations represents 
1/8 of a five-spot; it  has six rows and eleven columns for 
a total  of thirty-six volume elements (see Fig. 2). We 
assume three sets of equidistant, plane, parallel fractures 
a t  right angles, so tha t  the impermeable matrix blocks 
are cubes. Calculations were done for two different frac- 
ture spacings. In addition to using the semi-analytical 
approach we also performed simulations with the MINC 
method, and with a uniform porous medium model (with 
same total void space, Le., porosity of 1%). The  MINC 

Table 4. Specifications of five-spot problem 

Formation 

rock grain density 2650 kg/m3 
specific heat 1000 J /kg"  C 
heat conductivity 2.1 W/m C 
permeable volume fraction 2% 
porosity in permeable domain 50% 
impermeable blocks: cubes 
with side length 

thick ness 305 m 
relative permeability: Corey 
curves with 

50 m, 250 m 
effective permeability 6.0 x 1 0 - l ~ ~ ~  

SI, = 0.30, S,, = 0.05 
initial temperature 300°C 
initial liquid saturation 0.99 
initial pressure 85.93 bar 

production/injection 

pattern area 1 km2 
distance between producers 
m d  injectors 707.1 m 
production rate (*) 30 kg/s 
njection rate (*) 30 kg/s 
njection enthalpy 500 k J/kg 

(*) full well basis 

approach uses five subcontinua, with volume fractions of 
.02, .08, .20, .35, and .35. Results are given in Figure 3 
and in Table 5. 

Fig. 3 shows temperature profiles along the line connect- 
ing a producer and an injector after 36.5 years, 
corresponding to injection of approximately 12.2 pore 
volumes. For both fracture spacings the agreement 
between the  semi-analytical and the M N C  simulations 
is excellent. T h e  D = 50 m results are indistinguishable 
from the  porous medium calculation, while at the larger 
fracture spacing of D = 250 m the thermal sweep is less 
complete and lower temperatures are obtained. 
Predicted total  heat transfer from the impermeable 
rocks to the fluids agrees to better than 1% between the 
semi-analytical and MINC approaches at most times (see 
Table 5). T h e  semi-analytical approach required the 
same amount of computing time as the porous medium 
case, while the MINC calculation was approximately five 
times slower. 

D- 

We have incorporated an analytical heat transfer model 
into a numerical simulator for fluid and heat flow to  cal- 
culate heat exchange between impermeable blocks of 
rock and fluids migrating past these blocks in fractures. 
For problems in which rock matrix permeability is negli- 
gible this offers a means of simulating fluid and heat 
flow in fractured media with essentially no increase in 
computing work as compared to porous medium simula- 
tions. Detailed analysis of heat flow from a cube sug- 
gests tha t  the semi-analytical method should provide 
acceptable engineering accuracy. We are presently inves- 
tigating some variations on the form Eq. (1) which 
might achieve even better accuracy. However, simula- 
tions for a twephase  production/injection problem with 
phase change gave almost perfect agreement with the 
MINC method for two different fracture spacings, so 
that there may be little need for further improvement. 

There are two reasons why the semi-analytical method 
performs better on a reservoir problem than might have 
been expected from the test results for an individual 

Table 5. Cumulative heat transfer from rocks to 
fluids in 1/8 of five-spot 

Time 
(years) 

1 
2 
5 

10 
15 
20 
25 
30 
35 

Cumulative Conductive Heat Transfer (1O"J) 

Fracture Spacing 50 m 

MINC Semi-analytical 

1.07 1.07 
2.11 2.10 
5.22 5.18 

10.33 10.29 
15.48 15.44 
20.43 20.38 
25.24 25.19 
30.14 30.10 
35.05 35.00 

Fracture Spacing 250 m 

MINC Semi-analytical 

.83 .85 
1.77 1.79 
4.64 4.67 
9.40 9.46 

14.10 14.16 
18.70 18.79 
23.21 23.33 
27.60 27.75 
31.91 32.07 
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cube. Firstly, time discretization errors are not as severe 
in the reservoir problem, because time steps can be 
allowed to  settle at A t  = .5 - 1 year after the initial 
rapid transient, while in the single-cube problem they 
were kept growing to cover the large time range from 
very early transient to late-time temperature 
equilibrium. Secondly, the aggregate response of many 
rock blocks in a reservoir problem tends to compensate 
for whatever inaccuracies may be present in the model- 
ing of individual block response. To see how this comes 
about, suppose tha t  because of discretization effects the 
blocks near the injection well do not deliver heat to the 
fluids as rapidly as they should.(This is what actually 
happens in the semi-analytical method; see Table 3.) As 
a consequence fluids will have lower temperatures when 
at later time they sweep past downstream blocks, and 
hence they will pick up  more heat from those blocks. 
This compensation of inaccuracies in individual block 
response from global reservoir mechanisms is completely 
analogous to what was observed in analysis of 
waterfloods in fractured hydrocarbon reservoirs (Wu and 
Pruess, 1986). It indicates tha t  satisfactory accuracy in 
reservoir flow problems should be attainable with rather 
modest accuracy requirements for individual blocks. 

The  semi-analytical method for heat transfer presented 
here should also be applicable to  problems of chemical 
transport in fractured media, because chemical transport 
in low-permeability blocks of rock can be described in 
analogy to heat conduction. Work along these lines is in 
progress. 

ACKNOWLEDGEMENT 

This work was supported by the Geothermal Technol- 
ogy Division, U S .  Department of Energy, under Con- 
tract  No. DE-AC03-76SF00098. 

REFERENCES 

Carslaw, H. S., and Jaeger, J. C. (1959), Conduction of 
Heat in Solids, Oxford University Press, Oxford, Eng- 
land, Second Edition. 

Chase, C. A. and O’Dell, P. M.  (1973), “Application of 
Variational Principles to  Cap and Base Rock Heat 
Losses,” Trans. A M E ,  225, 200-210. 

Peaceman, D. W.  (1977), Fundamentals of Numerical 
Reservoir Simulation, Elsevier, Amsterdam. 

Pruess, K. (1983a), “Heat Transfer in Fractured Geoth- 
ermal Reservoirs with Boiling,” Water Resources 
Research, 19, ( l ) ,  201-208, February. 

Pruess, K.  (1983b), “Development of the General 
Purpase Simulator MULKOM,” Annual Report 1982, 
Earth Sciences Division, Report LBL-15500, Lawrence 
Berkeley Laboratory. 

Pruess, K. (1988), “SHAFT, MULKOM, TOUGH,” 
Lawrence Berkeley Laboratory Report LBL-24430, 
Berkeley, Ca., January, (submitted to  Geotermia, Rev. 
Mex. Geoenergia). 

Pruess, K .  and Bodvarsson, G. S. (1984), “Thermal 
Effects of Reinjection in Geothermal Reservoirs with 
Major Vertical Fractures,” Journal of Petroleum Tech- 
nology, 96, (10) 1567-1578, September. 

Pruess, K.  and Karasaki, K. (1982), “Proximity Func- 
tions for Modeling Fluid and Heat Flow in Reservoirs 
with Stochastic Fracture Distributions,” presented at 
Eighth Workshop on Geothermal Reservoir Engineering, 
Stanford University, Stanford, Ca.,  December. 

Pruess, K.  and Narasimhan, T. N. (1982), “On Fluid 
Reserves and the Production of Superheated Steam from 
Fractured, Vapor-Dominated Geothermal Reservoirs,” 
Journal 01 Geophysical Research, 87, ( B l l )  9329-9339. 

Pruess, K. and Narasimhan, T. N. (1985), “A Practical 
Method for Modeling Fluid and Heat Flow in Fractured 
Porous Media,” Society of Petroleum Engineers Journal, 
25, ( l ) ,  14-26, February. 

Vinsome, P .  K. W., and Westerveld, J. (1980), “A Sim- 
ple Method for Predicting Cap and Base Rock Heat 
Losses in Thermal Reservoir Simulators,” J. Canadian 
Petroleum Technology, 87-90, July-September. 

Weinstein, H. G., (1972), “Semi-Analytic Method for 
Thermal Coupling of Reservoir and Overburden,” 
Society Petroleum Engineers Journal, 439-447, October. 

Weinstein, H. G., (1974), “Extended Semi-Analytical 
Method for Increasing and Decreasing Boundary Tem- 
perature,” Society Petroleum Engineers Journal, 152- 
164, April. 

Wu, Y. S. and Pruess, K. (!986), “A Multiple-Porosity 
Method for Simulation of Naturally Fractured 
Petroleum Reservoirs,” paper SPE15129, presented a t  
56th Annual California Regional Meeting of the SPE, 
Oakland, Ca., April (to appear in Society Petroleum 
Engineers Journal). 

-223- 



Fracture Spacing D ___f 

XBL 821 I - 2608 

1 

XBL837-2135 

Figure 1. The  concept of multiple interacting continua Figure 2. Computational grid for five-spot productiod 
for an idealized fracture system. injection problem (I - injector, P - producer). 
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Figure 3. Temperature profiles for five-spot after 36.5 years. 
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