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ABSTRACT

A previously published approximate solution by
Garg is used to develop a practical procedure for
analyzing pressure interference (drawdown) data
from a hot-water geothermal reservoir which
evolves into a two-phase system as a result of
fluid production. The observation well is
assumed to remain in the single-phase (liquid)
part of the reservoir. A numerical geothermal
reservoir simulator is employed in a series of
calculations to test the limits of applicability of
the interpretation procedure. The numerical
results suggest that the accuracy of the
computed reservoir transmissivity depends
somewhat on the size of the induced two-phase
region. Even if the two-phase zone is extensive,
the method can still be used to provide a good
first approximation for the reservoir
transmissivity; forward modeling with a numerical
reservoir simulator may then be employed to
refine the latter estimate for transmissivity.
Numerical results also show that the observation
well pressure buildup data will obey the
superposition principle after the return of the
reservoir to single-phase conditions.

INTRODUCTION

A geothermal system may be two-phase before
production begins or may evolve into a two-
phase system as a result of fluid production.
Theoretical analyses of pressure drawdown and
pressure buildup data for such systems have been
published by Grant (1978), Garg (1980), Garg
and Pritchett (1984), Moench and Atkinson
1978) and Sorey, et al. (1980); Riney and Garg
1985) applied these theoretical methods to
analyze pressure buildup data from several wells
which produced two-phase fluids. In contrast
with these analyses of pressure drawdown and
pressure buildup data from single wells, analysis
of pressure interference data observed in nearby
shut-in wells for two-phase (water/steam) systems
has not yet been treated in the literature.

Pressure interference tests are essential for
establishing reservoir connectivity and for
computing interwell transmissivity. Planning and
executing pressure interference tests in two-phase
systems requires special considerations. As
discussed by Grant and Sorey (1979), the
effective compressibility of a two-phase system

can be 100 to 10,000 times greater than the
compressibilities of either water or steam alone;
conversely, the effective diffusivity for a two-
phase system is some 100 to 10,000 times
smaller than that for single phase systems. This
implies that it will take an inordinately long
time to propagate pressure signals through a
reservoir which is two-phase everywhere.
Consequently, a pressure interference test in a
system which is initially two-phase may well be
impractical. A more interesting and tractable
situation occurs when an initially single-phase
reservoir evolves into a two-phase system as a
result of fluid production. In the latter case, a
boiling front propagates outward (during
drawdown) from the producing wellbore; for all
practical purposes, the boiling front may be
treated as a constant pressure boundary (p =
saturation pressure corresponding to the local
reservoir temperature). The two-phase region is
restricted to the neighborhood of the production
well. Provided that the initial reservoir pressure
is sufficiently high and that the two-phase region
created during the drawdown phase is not too
extensive, the entire reservoir will return to
single-phase conditions sometime after the
cessation of fluid production (see Garg and
Pritchett, 1984).

In this paper, we restrict our attention to an
initially single phase reservoir which evolves into
a two-phase system as a result of fluid
production. In addition, it will be assumed that
the two-phase region is restricted to the
neighborhood of the production well such that
the observation well remains in the single-phase
part of the reservoir. Our goal is to examine
the character of the pressure signal to be
expected at the observation well, and to develop
practical methods for the analysis of this
pressure signal to yield reservoir transmissivity
and compressibility.

MATHEMATICAL MODEL

Garg (1980) considered the pressure response of
an initially single-phase reservoir which evolves
into a two-phase system on production. In this
case, the reservoir is two-phase for r > R [R =
R(t) denotes the location of the flash front] and
is single phase for r > R. Consider a fully
penetrating well located in an infinite reservoir of
thickness h. Assuming that the skin factor is
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zero, the pressure response for flow at a constant
mass rate of production is given by (Garg,

1980):
Mut ) -r2
0<r<R:p=ps+m Ei 4tDt

- Ei (-xz]]

and
R P - Py
r >R p=p.
' " Ei {-2? D,/D,)
x Ei [;:213 } (2)
2
where
R =2 [D, t]1/2 (3)

and X is the root of

Ei [EZ-DI:;DJ x e [0, /o]
= 42:1: T exp (-x2) (4)

In Equations (1) to (4), we have employed the
following notation:

DR, = diffusivity for the liquid region
Dt = diffusivity for the two-phase region
h = formation thickness

k = absolute permeability

kr?.(krg) = liquid (gas) relative permeability
M = rate of mass production

p = pressure

P, = initial formation pressure

Py = saturation pressure

r = radius

t = time

V?_(yg) = liquid (gas) kinematic viscosity
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= two-phase kinematic viscosity
(kp/vp + krg/"g)

The liquid-region diffusivity DP_ is given by:

k
Dy =377+ (5)
R ¢p vy C
where
¢ = porosity
Py = liquid density
C = Cm/¢ + Cﬂ_
Cm— uniaxial formation compressibility

C?_ = liquid compressibility.

The effective diffusivity for the two-phase
reservoir region can be written as:

k

D =1—7——
t ¢ptutCt’

(6)

where p. and C, denote the density of the
flowing mixture and the compressibility of the
two-phase region respectively. Given the flowing
enthalpy H,, the density of the flowing mixture
p, can be evaluated from:

I_:Hz'Ht+Ht'HZ (7)
Py Loy Lo,

where

H (HB,) = Steam (liquid] enthalpy corresponding

g to the measured bottomhole pressure,
and
L = Heat of vaporization.
For practical purposes, the two-phase

compressibility C, is given sufficiently accurately
by the following approximate expression (Grant
and Sorey, 1979)

2
Py - P
¢ C, = <pc> (bo = 7g) (T + 273.15) (8)
t L gy ¢,
where
<pe> = (1-4)poc +¢8pycy (9)

P, = Intrinsic formation density

<, (ca) = Specific heat for rock (liquid), and

T = Reservoir temperature.

For 4t D,/r 25 100 (here r_ denotes the well
radius), Eqﬁvation (1) can be approximated to

give the following expression for bottomhole
pressure, pw(t):



Mv
= —t_ w32
pw(t) =Ps " Irknh El[-)‘ ]
1.15Mut Dt t
-k 119810 7 + 0.351 (10)
w

Equation (10) implies that a plot of p_ versus
log1 t should be a straight line and Yhat the
two-phase kinematic mobility k/ut is given by:

_1.15M
T 2x hm

k/v, (11)

where m denotes the slope of the straight line.

In deriving the above-described solution, Garg
(1980) assumed that the two-phase region can be
characterized by a constant kinematic mobility
k/v, and a constant diffusivity D,. In reality,
the “situation is much more compléx. Both the
kinematic mobility and diffusivity vary
throughout the two-phase region. After an
initial nonlinear period, 18(k/v,)/8rl and 13
D, /8r|l become small in a region’ adjoining the
wellbore; and the bottomhole pressures are closely
approximated by Equation (1). The situation is,
however, completely different for large r (r < R);
I8(k/v,)/8r| and 13 D /8r| remain finite near
the flabh front. It is thus not a priori obvious
if Equation (1) provides an accurate solution for
all values of r less than R. In that D_ is
variable in the two-phase region, Equation (2)
gives only an approximate solution for the
pressure response in the single-phase region of
the reservoir. Finally, it should be noted that
Garg’s solution is only valid for the drawdown
phase. Because of nonlinear effects in two-phase
flow, superposition cannot be used to compute
the buildup respomnse.

Despite the above-mentioned limitations, Garg’s
solution serves as a convenient point of departure
for analyzing the observed pressure interference
signal. In the following, it will be assumed that
the reservoir fluid remains single-phase liquid in
the vicinity of the observation well, and that
in situ boiling is limited to a region surrounding
the production well. Comparison of Equation (2)
with the line source solution for a well producing
a single-phase liquid (constant rate of mass
production = M) shows that the tyo solutions
become identical if [p_ - p.]/Ei {-) Dt/D in
Equation (2) is replacéd by! Vol4r kh. Sg'ated
somewhat differently, the pressure response in the
single-phase region (Equation 2) can be computed
from the single-phase line source solution by

replacing the actual flow rate M by an apparent

flow rate M :
app
P. - P

M - s i
app [-xz D,

/o)

. 4rkh

- (12)
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The apparent mass flow rate M is always
less than the actual flow rate MPPBecause of
the vast difference in the single- and two-phase
compressibilities, & disproportionate share of the
produced fluid comes from the two-phase region
of the reservoir. This in turn implies that for
identical rates of production the pressure
drawdown at the observation well in the presence
of in situ flashing will be less than that obtained
in a liquid reservoir.

The preceding discussion suggests that the
observed pressure interference signal may be
analyzed in a straightforward manner provided a
method was available for estimating the apparent
mass flow rate M Unfortunately, the
calculation of M__2PPequires a knowledge of
single-phase and W& phase diffusivities and the
formation permeability. In that the latter
quantities are the unknown parameters, it is not
feasible to estimate M prior to solving
Equations (1) through (11§88r Dy, D, and k.

A perusal of Garg’s solution suggests the
following procedure for analyzing the pressure
interference data:

Match the observed pressure
interference signal to the line source
type curve (see e.g. Earlougher
(1977) for a discussion of the
matching procedure). The matching
procedure essentially involves (1)
plotting observed pressure change Ap
(= p, - p) versus time t on a log-
log dcale and (2) overlaying the
latter plot on the line source type
curve. The type curve is a log-log
plot of nondimensional pressure p
versus a nQndimensional similarity
variable rp”/tp,

. 2
pp = -0.5 Ei [rp%/4 tpl-

Selei

1.

(13)

t a match point (pry, Ap) and

{ry“/tyy, t), and solve the following
eq%atiolx)ls for X and DL:
2 (p. - p]

-Ex(-X) = #Ap——_s— (14&)

2 2
tp/tp =Dy t/r (14b)
where

2
X =" D,/Dy (14c)

and r denotes the distance of the
observation well from the production
well. Here, it is assumed that the
reservoir temperature T (and hence
saturation pressure p_) and initial
pressure p. are known from other
measurements.




Calculate two-phase kinematic
mobility k/v, from the observed
pressure response in the production
well. Compute two-phase diffusivity
from Equations (6) through (9).
Note that the calculation of D
requires a knowledge of the enthalpy
of the produced fluid in addition to
formation porosity and thermal
capacity.

Given X, D, and Dt’ )\ is computed
from Equation (l4c).

Formation transmissivity kh/ul is
then calculated from

2
AiD exp(X) .
(15)

An examination of the above-described procedure
shows that the analysis of pressure interference
data from two-phase reservoirs requires
information from both the production and
observation wells.

NUMERICAL RESULTS

kh/v, =% exp(-22) e

In order to define the limits of applicability of
the preceding theory, the THOR reservoir
simulator (Pritchett, 1982) was exercised in one-
dimensional radial configuration to generate a
series of drawdown/buildup histories. The
radially infinite reservoir is simulated using a 100

zone (Ar; = Ary, = ... = Ar;q = 0.1 m, Arj, =
115 Arjb. Ar 2 = 1.15 br 05 .., Brion = t.1s
Arg ) rddial grid. The oufer radius 90 the grid
is 922,542 m and is sufficiently large such that

no signal reaches this boundary during the time-
scale of interest. We consider a fully penetrating
well located in a reservoir of thickness h =
100 m. The well is represented as an integral
part of the grid by assigning to the well-block
(Zone 1) sufficiently high permeability and
porosity; fluid production is specified as a mass
sink in the well-block. No attempt is made here
to treat wellbore storage effects; proper treatment
of these effects would require the coupling of
transient wellbore flow with the reservoir
simulator. The reservoir rock properties selected
are given in Table 1. The mixture (rock/fluid)
thermal conductivity is approximated by
Budiansky’s formula (Pritchett, 1982). The
initial fluid state for the three cases considered is
shown in Table 2. The reservoir is produced at
constant rate M (see Table 2 for values of M
used) f%r t =10" s and is then shut in for At
2 x 100 s. In all three cases, the reservoir is
assumed initially to contain single-phase fluid at
a temperature of 300°C; the initial formation
pressure, however, varies from case to case. The
saturation pressure corresponding to a
temperature of 300°C is 8.5917 MPa. Thus, the
initial pressure differs from the saturation
pressure by 8.3 kPa, 108.3 kPa, and 408.3 kPa
for Cases 1, 2 and 3 respectively. The
observation well is assumed to be located at r =
192.202 m (center of grid zone 50).
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TABLE 1

ROCK PROPERTIES EMPLOYED IN
NUMERICAL SIMULATION

Wellblock Rock Matrix
(i=1) 2 ¢i S 100
Porosity, ¢ 0.9999 0.1000
Permeability k, m2 5 x 1011 5 x 10714
Uniaxial Formation
Compfessibility Cm’
MPa 0 0
Rock Gr%in Density
Py kg/m 1 2650
Rock Grain Thermal
Conductivity Kr’
W/m*C 0.00 5.25
Heat Capacity ¢
kJ/kg*C 0.001 1.00
Relative Permeabilities Straight- Straight-
kr?.’ krg line* line*
Residual Liquid
Saturation Sf_r 0.00 0.30
Residual Gas
0.00 0.05

Saturation S
gr

* Ko = (S - 5,)/(1 - 8,) for §, 2§,
= - - 2
rg (Sg Sgr)/(l sgr) for Sg 2 Sgr'
TABLE 2

MASS PRODUCTION RATE M AND
INITIAL FLUID STATE

Case Production Rate Pressure Temperature
No. M (kg/s) MPa °C
1 10 8.600 300
2 10 8.700 300
3 20 9.000 300

Along the saturation line, ASME Steam Tables
(ASME, 1967) give the following values for
liquid-water and steam density and enthalpy:

Liquid-water density Py = 7125 kg/m3
Steam density Pg = 46.20 kg/m3
Liquid-water enthalpy HZ, = 1345 kJ/kg



Steam enthalpy Hg 2749 kJ/kg

Latent heat of vaporization L = 1404 kJ/kg

Assuming that the specific heat for liquid water
at initial reservoir conditions is ~ 5.2 kJ/kg°C,
and employing the rock properties given in Table
1, we have:

<pe> = 0.9 x 2650 x 103 + Q1 x 712.5 x
5.2 10

~ 2,76 10° J/m"°C,
and
2
Pp - P
¢C. = <pc> Lz—g)- (T + 273.15)
t Lopy pg

2
712.5 - 46.2
2.76 [1404 X 712.5 x 46.2] (573.15)

-7 -1
3.29 10 Pa

Simulated drawdown histories at the production
well for the three cases considered are shown in
Figures 1 through 3. The drawdown data are
seen to closely fit a straight-line in every case.
The two-phase kinematic mobilities calculated
from the slope of the straight line and Equation
(11) are listed in Table 3. The simulated
flowing enthalpies H, were used along with
Equations (6) through {8) to compute the flowing
fluid densities p, and two-phase diffusivities Dt
(see Table 3 for numerical values).

Figures 4 through 6 display the simulated
pressure drawdown (i.e. pressure interference) at
the observation well; the simulated pressure
interference data are seen to match the line-
source solution closely. The match point in each
case was used to compute the nondimensional
parameter X (Equation 14a), the single-phase
diffusivity D, (Equation 14b), and the
nondimensional parameter A (Equation 14c); the
calculated values are displayed in Table 3.

Equation (3) implies that the flash-front
propagates into the reservoir according to

R = At0'5,
where
A =2 D05 (16)

Figures 7 through 9 show that ’cbe5 flash-front
radius is indeed proportional to t '°. Table 3
compares the calculated values of A (Equation
16) with those obtained directly from Figures 7
through 9. The divergence between the
computed (cf Equation 16) and actual values for
A provides a measure of the adequacy of the
theoretical solution. In view of the relatively
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Figure 1. Simulated drawddown history
(production well) for Case No. 1. Initial
reservoir pressure and mass production rate are
8.600 MPa and 10 kg/s respectively.
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Figure 2. Simulated drawdown history

(production well) for Case No. 2. Initial
reservoir pressure and mass production rate are
8.700 MPa and 10 kg/s respectively.
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Figure 3. Simulated drawdown history
(production well) for Case No. 3. Initial
reservoir pressure and mass production rate are
9.000 MPa and 20 kg/s respectively.
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TABLE 3

COMPUTATION OF RESERVOIR TRANSMISSIVITY kh/x/ AND
APPARENT MASS FLOW RATE M

Two-Phase Flowing Flowing Two-Phase Single-Phase 2 X Aol Anct Single-Phase
Kinematic Enthalpy Density Diffusivity Diffusivity X Dt/ DL 05 05 Kinematic
Mobility H, A D, D, Nondim. (m/s™"}) (m/s"") Transmissivity Mupp/M
Case kfv, 3 2 2 A kh/v,
No. (s) (kJ/kg) (kg/m") {m*/s) {m*/s) * Nondim. bt (m~s” b
1 333107 13743  547.7 185 100 2.364 0235 100 1733  0.149  0.140 261 10° 005
3.43 107 1360.0 617.4 1.69 10° 2.364 0.356 10~ 0.7057 0.0580 0.0510 3.29 10-5 0.61
3 3.46 10 1346.5 701.7 1.50 10° 2.438 0.1622 10 0.1624 0.0126 0.0114 3.97 107 0.97
*  Sec Equations (14a) and (14c) !
# A =21D0°
cal. t
*** Equation (12)
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Figure 4. Match of the simulated pressure Figure 6. Match of the simulated pressure

response at the observation well (r = 192.202 m)
to the line-source solution (Case 1).
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Figure 5. Match of the simulated pressure

response at the observation well (r

‘ = 192.202 m)
to the line-source solution {Case 2

response at the observation well (r = 192.202 m)
to the line-source solution (Case 3).
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time for Case No. 1.
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Figure 8. Flash-front radius versus drawdown
time for Case No. 2.
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Figure 9. Flash-front radius versus drawdown
time for Case No. 3.

small error in A (10 = 4 percent), one may be
tempted to conclude that the linear solution
should be sufficient for analyzing pressure
interference data. This is, however, not always
true. In that the nondimensional parameter X
occurs in the exponential term in Equation (15),
a small error in A (and hence XA) can lead to a
relatively large error in the calculated reservoir
transmissivity.

Finally, the kinematic transmissivities kh/v

(Equation 15) and the ratio of apparent flow
rate M to the actual flow rate (Equation 12)
are alsgpglven in Table 3. A comparison of the
calculated transmissivities (Table 3) with the
input value of 4.02 10°° m-s shows that the
agreement between the computed and the input
values gets progressively worse as the two-phase
effects become more pervasive. In Case 1, the
computed value is only two-thirds of the actual
transmissivity; note that in this case the
apparent mass flow rate M is only ~ 5
percent of the input mass rat2PR1.  The latter
results are to be contrasted with those for Case
3 wherein M___ /M ~ 0.97, and the computed
value of kh/ﬁppls in close agreement with the
input value. hese numerical results suggest
that the theoretical method of Section II can
always be used (even in the presence of a large
two-phase zone) to provide a first estimate for
reservoir transmissivity. In cases wherein an
extensive two-phase zone develops as a result of
fluid production, it would seem prudent to check
the computed value of kh/v, by a forward
simulation using a numerical reservoir simulator.

For a single-phase reservoir, superposition can be
utilized to construct solutions for pressure
buildup response. Thus, for a constant rate of
mass production, the shutin pressure Ap_ at a
time At after the cessation of prodl?ction
operations is given by:

Ap = Ap (t + At) - Ap (At), (17)

s
where Ap (t + At) and Ap(At) are the pressure
drawdowns at times (t + At) and At,
respectively, computed from the line-source
solution. Assuming that a match of the
drawdown data to the line source solution is
available, Equation (17) implies that

Ap (At) = Ap (t + At) - bp, . (18)

should also lie on the line source curve.
Because of nonlinear effects in two-phase flow,
superposition does not, strictly speaking, apply.
Nevertheless, we decided to compute Ap (At)
(Equation 18) and to test the applicability (or
lack thereof) of superposition empirically.
Figures 5 and 6 (Cases 2 and 3) show that
about omne-half log cycle after the return of
reservoir to single-phase conditions, the buildup
data are closely approximated by the line-source
solution. (In Case 1, the reservoir did not
return to single-phase conditions during the time
scale of interest. As a matter of fact, the two-
phase zone advanced farther into the reservoir
and engulfed the observation well. The buildup
pressures in this case are quite different from
those implied by Equation (18).) These results
suggest that superposition may be used to model
the pressure response of the observation well
after the return of reservoir to single-phase
conditions.
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CONCLUDING REMARKS

The principal purpose of this paper is to develop
a practical procedure for analyzing pressure
interference data from a two-phase (water/steam)
geothermal reservoir. It is assumed that the
geothermal reservoir is initially all liquid and
that the two-phase zone is created on initiation
of production operations. The observation well
is, however, assumed to always remain in the
single-phase region of the reservoir. Garg (1980)
derived an approximate solution for the pressure
(drawdown)} response of hot water reservoirs
which undergo flashing on production. A
numerical reservoir simulator was employed to
test the applicability of the latter solution for
analyzing pressure interference data. Application
of the analysis procedure discussed in this paper
requires pressure data from both the production
and the observation wells in addition to
information regarding the thermomechanical
properties (i.e. specific heat, temperature,
porosity, density, etc.) of the reservoir rocks. As
far as the pressure drawdown response of the
observation well is concerned, the effect of the
two-phase zone can be represented by a reduced
(or apparent) mass flow rate. The calculation of
this apparent mass flow rate can, however, only
be made after solving for reservoir transmissivity
and diffusivity. If the two-phase zone created
during drawdown is very large, then the
apparent mass flow rate will be a small fraction
of the actual production rate. In the latter case,
the analytical method will yield only a first
rough estimate of reservoir transmissivity; a more
accurate estimate may then be obtained by
forward modeling (history-matching) using a
numerical reservoir simulator.

Because of nonlinear effects in two-phase flow,
the superposition principle does not usually apply
in two-phase problems. More specifically, Garg
and Pritchett (1984) showed that the buildup
response of the production well cannot be
constructed from the drawdown solution. The
numerical results in this paper, however, suggest
that the buildup response of the observation well,
subsequent to the return of the reservoir to
single-phase conditions, does obey the
superposition principle. The buildup data can,
therefore, be used to check the consistency of
formation properties derived from an analysis of
drawdown pressures.
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