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ABSTRAa 

Fluid and heat flow at temperatures approaching or exceed- 
ing that at the critical point (374OC for pure water, higher 
for saline fluids) may be encountered in deep zones of 
geothermal systems and above cooling intrusives. Labora- 
tory experiments have demonstrated strong enhancements in 
heat transfer at near-critical conditions (Dunn and Hardee. 
1981). 

We have developed special numerical techniques for model- 
ing porous flow at near-critical conditions, which can handle 
the extreme non-linearities in water properties near the criti- 
cal point. Our numerical experiments show smng enhance- 
ments of convective heat transfer at near-critical conditions; 
however, the heat transfer rates obtained in the numerical 
simulations are considerably smaller than those seen in the 
laboratory experiments by Dunn and Hardee. We discuss 
possible reasons for this discrepancy and develop sugges- 
tions for additional laboratory experiments. 

MTRODUCTION 

Fluid conditions approaching or exceeding the critical point 
(374OC. 221 bars for pure water; higher temperatures and 
pressures for saline brines) may be reached in the deep ends 
of geothermal systems such as Mofete (Facca, 1985) and 
Larderello (Cappetti et al., 1985), as well as above crustal 
magma bodies. Yet, little is known about how heat and 
fluid flows rn affected by critical conditions. In order to 
better evaluate geothermal reservoirs with critical conditions 
at depth, and to estimate heat and fluid flows in critical 
wnes above magma bodies, we need to better understand 
the behavior of geothermal fluids near the critical point. 

Previous studies include one by Cathles (1977) who used a 
finite difference model to study cooling igneous intrusives 
and the formation of liquid- and vapor-dominated geother- 
mal systems, as well as the formation of porphyiy-type ore 
deposits. He concluded that fluids circulate around the criti- 
cal point of water to become gaseous without boiling, and 
that these wnes are potentially exploitable. Norton and 
f igh t  (1977) also performed finite difference simulations of 
cooling plutons; they found that the style oft circulation was 
controlled by the critical fluids and that the total heat flow 
calculations can be significantly in e m r  if these convecting 
wnes are not considered. 

Laboratory experiments of natural convection of ‘critical 
fluids in a porous medium were performed by Dunn and 
Hardee (1981) for water, and by Hadley (1982) for carbon 

dioxide. Dunn and Hardee found that heat transfer rates 
increased by factors of up to 70 when compared to conduc- 
tive heat flow near the critical point of water, and attributed 
this enhancement to the extreme behavior of fluid properties 
(especially density and heat capacity) in the critical region. 
Hadley (1982) found substantial heat transfer enhancement 
(Nusselt number of 12) for carbon dioxide, and concluded 
that thermal dispersion was very important because of high 
fluid velocities generated near the critical point. 

Above critical temperatures and pressures, there are no 
longer distinct liquid and gas phases, but instead a continu- 
ous variation from liquid-like fluid to gas-like fluid. This 
supercritical fluid has an enhanced ability to transport heat 
by convection because of the extreme behavior of fluid pro- 
perties such as density and heat capacity. Contours of den- 
sity and of internal energy at near-critical temperatures and 
pressures are plotted in Figures la  and lb. These plots were 
made by using a table generated from the Haar equation of 
state for water (Haar et al., 1984). The rapid changes in 
values indicated by the bands of compression of contours 
show one of the many problems occuning when trying to 
model a system with such non-linear behavior. 

NUMERICAL MODELING OFNEAR-CRITICALFLOW 

Simulations were performed with the geothermal reservoir 
simulator m K O M  (Rums, 1983), u i k i n g  the Haar 
equation of state for water (Haar et al., 1984). Non- 
linearities in the water properties yar the critical point 
create problems for numerical models, necessitating the 
development of new techniques., One of the modifications 
made in MULKOM was the use of a table of densities and 
intemal energies h functions of temperature and pressure in 
the critical @$on: For every lime step, these values are 
called, and used as starting values for the energy and mass 
flow calculations. A bi-linear interpolation scheme is used 
to estimate values between table values. 

A second problem red’tkd from large pressures near the 
critical point (of the order lo’ Pa) which are accompanied 
by very small’pp&k d i f f e r e m  (of the order 10 Pa) 
betkeen neighboririg volume elements in a finite difference 
8 d .  This‘problem was ovemme by using a floating refer- 
ence pressure (average pressure in the flow system at each 
t h e  step) so that more significant figures could be retained. 

A third problem was encountered when a thermal convection 
problem was initialized with uniform temperature every- 
where except at the heat source. This method of initializa- 
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tion gave rise to many transient flow reversals and was very 
slow and costly in computer time. In the present work we 
are only interested in the steady state attained after all tran- 
sient changes have disappeared. To speed up the approach 
to steady state, we initialized the simulations by generating a 
set of temperatures corresponding to pure conduction 
between the heat source and the outer constant temperatun: 
boundary. This conductive steady state initialization greatly 
improved the efficiency of the simulations. 

There is still a need to incorporate further modifications into 
MULKOM for near-critical convection. Thermal dispersion, 
flow channeling, and near-critical phase transitions may all 
be important, depending on the type of problem studied. 

CODE VALIDATION AND NUMERICAL EXPERIMENTS 

Before the simulator can be used to model geologic systems, 
it needs to be validated against some experimental data. The 
only available experimental work on near-critical porous 
convection of water is the one performed at Sandia National 
Laboratories (DUM and Hardee, 1981). A conceptual sketch 
of the experimental setup is shown in Figure 2. A 1 liter 
cylindrical vessel filled with a fine silica sand was heated 
with electrical tape heaters on the cylinder mantle, and along 
a thin platinum wire in the center of the vessel. The outside 
of the cylinder was kept at a somewhat lower temperature 
than the wire, and the top and bottom of the cylinder were 
insulated. The steady-state temperatures were measured 
with embedded thermocouples, and a measure of the total 
heat transfer divided by conductive heat transfer (Nusselt 
number, Nu) was estimated. The experimenters found an 
enhancement in heat transfer over a broad temperature range 
from 360 to 400"C, which near the critical point reached a 
peak of about 70 times that for pure conduction. 

Dunn and Hardee (1981) presented calculations of Rayleigh 
numbers (Ra) for parameters representative of their experi- 
ment, using a hypothetical temperature difference of 2°C 
between the wire and the cylinder mantle. They found a 
narrow peak centered at 374°C with maximum Rayleigh 
number of Ra = 700. The experimental measurements, 
when plotted as rate of heat transfer per unit temperature 
drop between two measurement points in the vessel, showed 
a temperature dependence similar to that of the calculated 
Rayleigh numbers. This correspondence led Dunn and Har- 
dee to suggest that the enhanced heat transfer near the criti- 
cal point was in fact brought about by the enhanced convec- 
tive heat transport. However, this correspondence (Ra-Nu) 
should be viewed in a qualitative rather than quantitative 
sense because the calculated Ra are much too small to 
explain the observed heat transfer enhancements by factors 
up to 70 (Prasad et al.. 1985; Reda, 1986). 

Furthermore. a Rayleigh number based on temperatule 
differences between hot and cold boundaries is not a very 
meaningful measure of convective heat transfer in a flow 
system with cylindrical symmetry, because temperature 
behaves in a singular fashion near the symmetry axis. We 
believe that fairly large temperature differences (substantially 
larger than 2°C) must have been present in the experiments. 
The precise location of the temperature sensors is not given 
by Dunn and Hardee, but from the sketch in the paper, it 
appears that the temperature measurements were made at the 

mid-height of the vessel, and none were made next to the 
wire. When convection occurs, a thin boundary layer would 
form next to the wire, and the pattern of convection would 
be asymmetrid in the vertical, so that measuring tempera- 
ture differences at mid-height and away from the wire would 
not give quantitatively accurate estimates of the Nusselt 
number. A second reawn for believing that temperature 
differences in the experiment must have been substantially 
larger than 2°C is that measured heat transfer is strongly 
enhanced Over a rather broad temperature interval (from 360 
to 400°C). while the peak in the Rayleigh numbers (for a 
2°C temperature difference) is very narrow and steep right at 
the critical temperature. 

We conclude that the Sandia experiment does not provide a 
sufficiently detailed definition of thermodynamic conditions 
to permit a careful code validation. Using the flow 
geometry shown in Figure 2, we performed a series of 
numerical experiments Qables 1 and 2) to study various 
issues relating to near-critical heat transfer, such as the 
effects of boundary conditions, aspect ratio of convecting 
cells, discretization, and size of temperature interval. Our 
initial simulations gave rather weak enhancements in overall 
heat transfer, and specific efforts were made to obtain a 
more enhanced heat transfer, using flow geometry and 
parameters similar to those of the experiment. The two- 
dimensional axisymmetric computational grid is shown in 
Figure 3. The convection flow directions were similar in all 
simulations and an example is given in Figure 4. 

Boundary Conditions 

For most of the simulations the following boundary condi- 
tions were imposed: all boundaries are impervious, with con- 
stant temperature along the innermost elements and on the 
cylinder mantle, and insulated (no heat flow) boundaries on 
top and bottom of the vessel. Typical isotherm patterns for 
conduction only, and for convection, are shown in Figures 
5a and 5b, respectively. We also examined the case of con- 
stant temperature at the top and bottom boundaries, and 
although the isotherms are different (Figures 5c and 5d), the 
average heat flow is not very much changed Vable 2. Figure 
6). Another variation in boundary conditions was the use of 
uniform heat flux at the wire heater instead of constant tem- 
perature. We found no significant difference compared to 
constant temperature boundary conditions. 

Aspect Ratio 

We ran some cases with a different aspect ratio, since the 
actual geometry of the convecting cells is unknown. These 
results are shown in Figure 6 and Table 2. For a permeabil- 
ity of 40 darcies, the Nusselt number for a radius to height 
ratio of 1:6 (that of the experiment) was 2.2. while for a 
ratio of 2:1, the Nusselt number was 4.8, over twice as 
large. Thus heat transfer increases considerably with aspect 
ratio. especially for small aspect ratios (Figure 7). 

Size of Temperature Interval 

Another variation which we tried was to use a 10°C tem- 
perature difference rather than 2°C. The Nusselt number 
resulting from this case for a permeability of 40 dmies. was 
only 1.5, considerably less than had been obtained with the 
smaller temperature difference. This seems logical, since for 
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a larger temperature interval across the system the,region 
with strongest convective enhancement near the critical point 
is reduced in volume. 

Discretization Effects 

Discretization effects result from two soufces: from the 
spacing of the grid points, and from the interpolation of den- 
sities and internal energies from tabular data for discrete 
pressure and temperature values. We found that the first 
type of discretization effects were not a problem for our 
simulation. Cases 1 and 2 (Table 2) were identical, except 
that case 2 had an extra grid point next to the hot wire, to 
provide improved spatial resolution in the region where 
discretization effects are strongest. The addition of the extra 
grid point actually decreased the Nusselt number slightly 
(Table 2). 

Discretization effects resulting from table interpolations were 
not very great either, but could be significant for a small 
temperature interval at the critical point. For most of the 
cases, a table with 1 bar pressure intervals and 0.05OC tem- 
perature intervals was used. Another table was constructed 
with 0.1 bar pressure intervals and 0.loC temperature inter- 
vals, and case 3 (see Table 2) was rerun with this table. For 
a permeability of 40 darcies, the Nusselt number was 2.2 
instead of 2.1. For the case with the 10~temperature 
difference, use of the higher resolution table gave nearly 
identical results. 

DISCUSSION 

We have developed special numerical techniques to model 
convective heat transfer at near-critical conditions. Stable 
steady states were achieved for model systems with linear 
dimensions of the order of 10 cm, with spatial resolutions 
better than 1 mm and pressure differences of order 10 Pa 
between neighboring finite difference grid points. 

No validation of the numerical model was possible because 
the only available experiment on near-critical flow of water 
in a porous medium (Dunn and Hardee. 1981) lacks 
sufficiently detailed definition of thermodynamic conditions. 
Numerical experiments for a flow system similar to that stu- 
died by Dunn and Hardee showed significantly enhanced 
heat transfer near the critical point. However, the enhance- 
ments seen in the simulations (up to a factor 5 over pure 
conduction) are substantially smaller than what was reported 
from the experiments (up to a factor 70). While we did not 
expect detailed agreement, a discrepancy that large is 
surprising and unexplained at the present time. Possible 
mechanisms for enhanced heat transfer not included in the 
simulations are thermal dispersion, and flow in channels of 
high permeability near the wire heater (perhaps generated by 
dissolution of quartz). In particular, transverse dispersion 
(Kvemvold and Tyvand, 1980; Hadley, 1982) might have 
very significant effects for the cylindrical flow geometry 
considered here, because it produces a component of velo- 
city in the direction of heat transfer (radial). 

We suggest that additional carefully controlled and instru- 
mented laboratory experiments should be undertaken to 
better define the physical conditions and mechanisms for 
near-critical heat transfer. The cylindrical geometry 
employed by Dunn and Hardee (1981) is complicated by 

singular behavior at small radius, and has the undesirable 
feature that flow behavior may be strongly influenced by 
conditions (heterogeneities, etc.) on a very small spatial 
scale. From the standpoint of ease of interpretation a linear 
flow geometry would be most desirable, but this appears 
difficult to realize experimentally. The best geometric 
contiguration for experimental studies may be a porous 
annulus (Prasad et al., 1985; Reda, 1986). where the inner 
radius is not very much smaller than the outer radius, so that 
the flow geometry is non-singular and approximately linear. 
After validation of the numerical model has been achieved. 
we can look at natural hydrothermal and magma systems 
and incorporate additional effects such as salinity, fluid-rock 
interaction, and non-condensible gases. 
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Table 1. Parameters used in Simulations 

Parameter Value 

porosity 0.25 

permeability 1 to 40 darcies 

thermal conductivity 3.35 W h " C  

temperature of wire 377°C 

temperature of outer wall 375°C 

average pressure 225 bar 
cylinder radius 0.0381 m 

cylinder height 0.2286 m 

aspect ratio (radius : height) 

computational grid (see Fig. 3) 

top and bottom boundaries insulating 

1:6 

21 x 15 

Table 2. Results of Critical Convection Simulations 

Nusselt number 
Case Modifications Permeability, darcies Nu 

1 coarser mesh* 1 1.039 

temperature interval: 377-379°C 20 1.399 
40 1.694 

average pressure = 230 bars 10 1.211 

2 h e r  mesh (21 x 15) 40 1.493 
average pressure = 230 bars 
temperature interval: 377-379°C 

3 Average pressure = 225 bars 20 1.854 
temperature interval: 375377°C 40 2.056 
h e r  resolution (T,P) table 40 2.221 

4 top and bottom boundaries at 20 1.738 
constant temperature 40 2.077 

5 aspect ratio 1:3 10 1.795 
20 2.182 
40 2.742 

6 aspect ratio 1:2 10 
20 
40 

1.945 
2.428 
3.150 

aspect ratio 1:l l 7  10 
20 
40 

2.198 
2.895 
3.956 

aspect ratio 2: 1 I 8  10 
20 
40 

2.313 
3.227 
4.794 

9 temperature interval: 370-380°C 1 1.007 
10 1.150 
20 1.290 
40 1.537 

finer resolution (T,P) table 40 1.53 1 

*the two columns of grid blocks closest to the heater wire were combined 
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Figure 2. Cylindrical geometry for heat transfer study. 
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Figure 5. Isotherms for (a) case 2, conduction only (b) case 2, convection, (c) case 4, con- 
duction only and (d) case 4. convection. The radial dimension is exaggerated 6 
times. 
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