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ABSTRACT

Fluid and heat flow at temperatures approaching or exceed-
ing that at the critical point (374°C for pure water, higher
for saline fluids) may be encountered in deep zones of
geothermal systems and above cooling intrusives. Labora-
tory experiments have demonstrated strong enhancements in
heat transfer at near-critical conditions (Dunn and Hardee,
1981).

We have developed special numerical techniques for model-
ing porous flow at near-critical conditions, which can handle
the extreme non-linearities in water properties near the criti-
cal point. Our numerical experiments show strong enhance-
ments of convective heat transfer at near-critical conditions;
however, the heat transfer rates obtained in the numerical
simulations are considerably smaller than those seen in the
laboratory experiments by Dunn and Hardee. We discuss
possible reasons for this discrepancy and develop sugges-
tions for additional laboratory experiments.

INTRODUCTION

Fluid conditions approaching or exceeding the critical point
(374°C, 221 bars for pure water; higher temperatures and
pressures for saline brines) may be reached in the deep ends
of geothermal systems such as Mofete (Facca, 1985) and
Larderello (Cappetti et al., 1985), as well as above crustal
magma bodies. Yet, little is known about how heat and
fluid flows are affected by critical ‘conditions. In order to
better evaluate geothermal reservoirs with -critical conditions
at depth, and to estimate heat and fluid flows in critical
zones above magma bodies, we need to better understand
the behavior of geothermal fluids near the cnthal point.

Previous studies include one by Cathles (1977) who used a
finite difference model to study cooling igneous intrusives
and the formation of liquid--and vapor-dominated geother-

mal systems, as well as the formation of porphyry type ore:

deposits. He concluded that fluids circulate:atound the criti-

cal point of water. to become: gaseous without boiling, ‘and

that these zones are potentially exploitable.: Norton and
Knight (1977) also performed finite difference simulations of
cooling plutons; they found that the style oficirculation was
controlled by the critical fluids and that the total heat flow
calculations can be significantly in ermr if these convecting
zones are not considered.

Laboratory experiments of natural convection of critical
fluids in a porous medium were performed by Dunn and
Hardee (1981) for water, and by Hadley (1982) for carbon
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dioxide. Dunn and Hardee found that heat transfer rates
increased by factors of up to 70 when compared to conduc-
tive heat flow near the critical point of water, and attributed
this enhancement to the extreme behavior of fluid properties
(especially density and heat capacity) in the critical region.
Hadley (1982) found substantial heat transfer enhancement
(Nusselt number of 12) for carbon dioxide, and concluded
that thermal dispersion was very important because of high
fluid velocities generated near the critical point.

Above critical temperatures and pressures, there are no
longer distinct liquid and gas phases, but instead a continu-
ous variation from liquid-like fluid to gas-like fluid. This
supercritical fluid has an enhanced ability to transport heat
by convection because of the extreme behavior of fluid pro-
perties such as density and heat capacity. Contours of den-
sity and of internal energy at near-critical temperatures and
pressures are plotted in Figures 1a and 1b. These plots were
made by using a table generated from the Haar equation of
state for water (Haar et al., 1984). The rapid changes in
values indicated by the bands of compression of contours
show one of the many problems occurring when trying to
model a system with such non-linear behavior.

NUMERICAL MODELING OF NEAR—CRITICAL FLOW

Simulations were performed with the geothermal reservoir
simulator MULKOM (Pruess, 1983), uilizing the Haar
equation of state for water (Haar et al., 1984). Non-
linearities in the ‘water properties near the critical point
create problems for numerical models. necessitating the
development of new techmques _One of the modifications
made in MULKOM was the use of a table of densities and
intemal energ1es as functions of temperature and pressure in
the’ critical reglon For every time step, these values are
called, and used as starting valués for the energy and mass
flow calculations. A bl-lmear interpolation scheme is used
to estimate values between table values.

A second pmblem resulted from ‘large pressures near the
critical point (of the order 107 Pa) which are accompanied
by very small pressure dxfferences (of the order 10 Pa)
between nelghbonng volume elements in a finite difference
grid. Thxs “problem was overcome by using.a floating refer-
ence pressure (average pressure in the flow system at each
time step) so that more significant figures could be retained.

A third problem was encountered when a thermal convection
problem was initialized with uniform temperature every-
where except at the heat source. This method of initializa-




tion gave rise to many transient flow reversals and was very
slow and costly in computer time. In the present work we
are only interested in the steady state attained after all tran-
sient changes have disappeared. To speed up the approach
to steady state, we initialized the simulations by generating a
set of temperatures corresponding to pure conduction
between the heat source and the outer constant temperature
boundary. This conductive steady state initialization greatly
improved the efficiency of the simulations.

There is still a need to incorporate further modifications into
MULKOM for near-critical convection. Thermal dispersion,
flow channeling, and near-critical phase transitions may all
be important, depending on the type of problem studied.

CODE VALIDATION AND NUMERICAL EXPERIMENTS

Before the simulator can be used to model geologic systems,
it needs to be validated against some experimental data. The
only available experimental work on near-critical porous
convection of water is the one performed at Sandia National
Laboratories (Dunn and Hardee, 1981). A conceptual sketch
of the experimental setup is shown in Figure 2. A 1 liter
cylindrical vessel filled with a fine silica sand was heated
with electrical tape heaters on the cylinder mantle, and along
a thin platinum wire in the center of the vessel. The outside
of the cylinder was kept at a somewhat lower temperature
than the wire, and the top and bottom of the cylinder were
insulated. The steady-state temperatures were measured
with embedded thermocouples, and a measure of the total
heat transfer divided by conductive heat transfer (Nusselt
number, Nu) was estimated. The experimenters found an
enhancement in heat transfer over a broad temperature range
from 360 to 400°C, which near the critical point reached a
peak of about 70 times that for pure conduction.

Dunn and Hardee (1981) presented calculations of Rayleigh
numbers (Ra) for parameters representative of their experi-
ment, using a hypothetical temperature difference of 2°C
between the wire and the cylinder mantle. They found a
narrow peak centered at 374°C with maximum Rayleigh
number of Ra 700. The experimental measurements,
when plotted as rate of heat transfer per unit temperature
drop between two measurement points in the vessel, showed
a temperature dependence similar to that of the calculated
Rayleigh numbers. This correspondence led Dunn and Har-
dee to suggest that the enhanced heat transfer near the criti-
cal point was in fact brought about by the enhanced convec-
tive heat transport. However, this correspondence (Ra-Nu)
should be viewed in a qualitative rather than quantitative
sense because the calculated Ra are much too small to
explain the observed heat transfer enhancements by factors
up to 70 (Prasad et al., 1985; Reda, 1986).

Furthermore, a Rayleigh number based on temperature
differences between hot and cold boundaries is not a very
meaningful measure of convective heat transfer in a flow
system with cylindrical symmetry, because temperature
behaves in a singular fashion near the symmetry axis. We
believe that fairly large temperature differences (substantially
larger than 2°C) must have been present in the experiments.
The precise location of the temperature sensors is not given
by Dunn and Hardee, but from the sketch in the paper, it
appears that the temperature measurements were made at the
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mid-height of the vessel, and none were made next to the
wire. When convection occurs, a thin boundary layer would
form next to the wire, and the pattem of convection would
be asymmetrical in the vertical, so that measuring tempera-
ture differences at mid-height and away from the wire would
not give quantitatively accurate estimates of the Nusselt
number. A second reason for believing that temperature
differences in the experiment must have been substantially
larger than 2°C is that measured heat transfer is strongly
enhanced over a rather broad temperature interval (from 360
to 400°C), while the peak in the Rayleigh numbers (for a
2°C temperature difference) is very narrow and steep right at
the critical temperature.

We conclude that the Sandia experiment does not provide a
sufficiently detailed definition of thermodynamic conditions
to permit a careful code validation. Using the flow
geometry shown in Figure 2, we performed a series of
numerical experiments (Tables 1 and 2) to study various
issues relating to near-critical heat transfer, such as the
effects of boundary conditions, aspect ratio of convecting
cells, discretization, and size of temperature interval. Our
initial simulations gave rather weak enhancements in overall
heat transfer, and specific efforts were made to obtain a
more enhanced heat transfer, using flow geometry and
parameters similar to those of the experiment. The two-
dimensional axisymmetric computational grid is shown in
Figure 3. The convection flow directions were similar in all
simulations and an example is given in Figure 4.

Boundary Conditions

For most of the simulations the following boundary condi-
tions were imposed: all boundaries are impervious, with con-
stant temperature along the innermost elements and on the
cylinder mantle, and insulated (no heat flow) boundaries on
top and bottom of the vessel. Typical isotherm pattemns for
conduction only, and for convection, are shown in Figures
5a and 5b, respectively. We also examined the case of con-
stant temperature at the top and bottom boundaries, and
although the isotherms are different (Figures Sc and 5d), the
average heat flow is not very much changed (Table 2, Figure
6). Another variation in boundary conditions was the use of
uniform heat flux at the wire heater instead of constant tem-
perature. We found no significant difference compared to
constant temperature boundary conditions.

Aspect Ratio

We ran some cases with a different aspect ratio, since the
actual geometry of the convecting cells is unknown. These
results are shown in Figure 6 and Table 2. For a permeabil-
ity of 40 darcies, the Nusselt number for a radius to height
ratio of 1:6 (that of the experiment) was 2.2, while for a
ratio of 2:1, the Nusselt number was 4.8, over twice as
large. Thus heat transfer increases considerably with aspect
ratio, especially for small aspect ratios (Figure 7).

Size of Temperature Interval

Another variation which we tried was to use a 10°C tem-
perature difference rather than 2°C. The Nusselt number
resulting from this case for a permeability of 40 darcies, was
only 1.5, considerably less than had been obtained with the
smaller temperature difference. This seems logical, since for



a larger temperature interval across the system the region
with strongest convective enhancement near the critical point
is reduced in volume.

Discretization Effects

Discretization effects result from two sources: from the
spacing of the grid points, and from the interpolation of den-
sities and intemal energies from tabular data for discrete
pressure and temperature values. We found that the first
type of discretization effects were not a problem for our
simulation. Cases 1 and 2 (Table 2) were identical, except
that case 2 had an extra grid point next to the hot wire, to
provide improved spatial resolution in the region where
discretization effects are strongest. The addition of the extra
grid point actually decreased the Nusselt number slightly
(Table 2).

Discretization effects resulting from table interpolations were
not very great either, but could be significant for a smail
temperature interval at the critical point. For most of the
cases, a table with 1 bar pressure intervals and 0.05°C tem-
perature intervals was used. Another table was constructed
with 0.1 bar pressure intervals and 0.1°C temperature inter-
vals, and case 3 (see Table 2) was rerun with this table. For
a permeability of 40 darcies, the Nusselt number was 2.2
instead of 2.1. For the case with the 10% temperature
difference, use of the higher resolution table gave nearly
identical results.

DISCUSSION

We have developed special numerical techniques to model
convective heat transfer at near-critical conditions. Stable
steady states were achieved for model systems with linear
dimensions of the order of 10 cm, with spatial resolutions
better than 1 mm and pressure differences of order 10 Pa
between neighboring finite difference grid points.

No validation of the numerical model was possible because
the only available experiment on near-critical flow of water
in a porous medium (Dunn and Hardee, 1981) lacks
sufficiently detailed definition of thermodynamic conditions.
Numerical experiments for a flow system similar to that stu-
died by Dunn and Hardee showed significantly enhanced
heat transfer near the critical point. However, the enhance-
ments seen in the simulations (up to a factor 5 over pure
conduction) are substantially smaller than what was reported
from the experiments (up to a factor 70). While we did not
expect detailed agreement, a discrepancy that large is
surprising and unexplained at the present time. Possible
mechanisms for enhanced heat transfer not included in the
simulations are thermal dispersion, and flow in channels of
high permeability near the wire heater (perhaps generated by
dissolution of quartz). In particular, transverse dispersion
(Kvemnvold and Tyvand, 1980; Hadley, 1982) might have
very significant effects for the cylindrical flow geometry
considered here, because it produces a component of velo-
city in the direction of heat transfer (radial).

We suggest that additional carefully controlled and instru-
mented laboratory experiments should be undertaken to
better define the physical conditions and mechanisms for
near-critical heat transfer. The cylindrical geometry
employed by Dunn and Hardee (1981) is complicated by

singular behavior at small radius, and has the undesirable
feature that flow behavior may be strongly influenced by
conditions (heterogeneities, etc.) on a very small spatial
scale. From the standpoint of ease of interpretation a linear
flow geometry would be most desirable, but this appears
difficult to realize experimentally. The best geometric
configuration for experimental studies may be a porous
annulus (Prasad et al., 1985; Reda, 1986), where the inner
radius is not very much smaller than the outer radius, so that
the flow geometry is non-singular and approximately linear.
After validation of the numerical model has been achieved,
we can look at natural hydrothermal and magma systems
and incorporate additional effects such as salinity, fluid-rock
interaction, and non-condensible gases.
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Table 1. Parameters used in Simulations

Parameter Value
porosity 0.25
permeability 1 to 40 darcies
thermal conductivity 3.35 W/m°C
temperature of wire 377°C
temperature of outer wall 37s5°C
average pressure 225 bar
cylinder radius 0.0381 m
cylinder height 0.2286 m
aspect ratio (radius : height) 1:6
computational grid (see Fig. 3) 21x 15

top and bottom boundaries insulating

Table 2. Results of Critical Convection Simulations

Nusselt number

Case Modifications Permeability, darcies Nu
1 coarser mesh* 1 1.039
average pressure = 230 bars 10 1211
temperature interval: 377-379°C 20 1.399
40 1.694
2 finer mesh (21 x 15) 40 1.493

average pressure = 230 bars
temperature interval: 377-379°C

3 Average pressure = 225 bars 20 1.854
temperature interval: 375-377°C 40 2.056

finer resolution (T,P) table 40 2227

4 top and bottom boundaries at 20 1.738
constant temperature 40 2077

5 aspect ratio 1:3 10 1.795
20 2.182

40 2.742

6 aspect ratio 1:2 10 1.945
20 2.428

40 3.150

7 aspect ratio 1:1 10 2.198
20 2.895

40 3.956

8 aspect ratio 2:1 10 2.313
20 3.227

40 4.794

9 temperature interval: 370-380°C 1 1.007
10 1.150

20 1.290

40 1.537

finer resolution (T,P) table 40 1.531

*the two columns of grid blocks closest to the heater wire were combined
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Figure 1. Contours of (a) density (kg/m®) and (b) internal energy (k/kg) for pure water in
the critical region.
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