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ABSTRACT

This study presents drawdown and buildup pressure
derivative type-curves for a well producing at a constant rate
from the center of a finite, circular reservoir. Early time
response (wellbore storage and skin effects) is correlated by
Cpe”, and late time response (outer boundary effects) by
r’p/Cp. The outer boundary may be closed, or at a constant
pressure. Design relations are developed for the time to the
beginning and the end of infinite-acting radial fiow. Produc-
ing time effects on buildup responses are also discussed.

INTRODUCTION

Transient pressure response for a well producing from a
finite reservoir of circular, square, and rectangular drainage
shapes has been studied by van Everdingen and Hurst
(1949); Miller et al. (1954); Aziz and Flock (1963), Ear-
lougher et al. (1968); Ramey and Cobb (1971); Kumar and
Ramey (1974); Cobb and Smith (1975); and Chen and Brig-
ham (1978) among others. Mishra and Ramey (1987)
presented a buildup derivative type-curve for a well with
storage and skin, and producing from the center of a closed,
circular reservoir. Their type-curve applies for large produc-
ing times such that ¢,p > tp,,. This work presents drawdown
and buildup pressure derivative type-curves for a well pro-
ducing at a constant rate from the center of a finite, circular
reservoir. The outer boundary may be closed, or at a con-
stant pressure. The differences between the responses for a
well in a closed, circular reservoir (fully developed field),
and a well in a circular reservoir with a constant-pressure
outer boundary (active edgewater drive system, or developed
five-spot fluid-injection pattern) are discussed. Des1gn rela-
tions are developed to estimate the time period which
corresponds to infinite-acting radial flow, or to a semi-log

straight line on a pressure vs. logarithm of time graph. Pro- .

ducing time effects on buildup responses are studied using

the slope of a dimensionless Agarwal (1980) buildup graph.

THEORY

The dimensionless wellbore pressure drop for a
constant-rate well with storage and skin may be expressed as
(van Everdingen and Hurst, 1949):

2rkh (p; = puy)
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where L is the inverse Laplace transform operator. In Eq.
(1), pp refers to the dimensionless wellbore pressure drop in
Laplace space without storage or skin. For the case of a
constant-rate well producing from the center of a closed cir-
cle, the expression for pp is (van Everdingen and Hurst,
1949):

L
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For the case of a constant-rate well producing from the
center of a circular reservoir with a constant-pressure outer
boundary, the expression for pp is (van Everdingen and
Hurst, 1949).
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The dimensionless wellbore pressure drop from Eq. (1) was
obtained by inverting the Laplace space solution numerically
with the Stehfest (1970) algorithm.

DRAWDOWN RESPONSE

Table 1 shows the dimensionless wellbore pressure
drop and the semi-log pressure derivative expressions for a
well in a finite, circular reservoir during specific flow

_periods. All expressions in Table 1 may be written as com-

binations of 1p/Cp, Cpe®, and r2,/Cp. For example,
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Thus, if the dimensionless drawdown pressure and the pres-
sure derivative responses are graphed against ¢/Cp, the
parameters Cpe” and r2/Cp may be selected as the correlat-
ing parameters. The verification of Cpe” and r2,/C), as the




Table 1 - Dimensionless wellbore drawdown pressure and derivative
expressions for a well in a finite, circular reservoir

Flow period Pw Pwp=dp,p/dIntp
Wellbore storage tp/Cp tn/Cp
Infinite-acting 0.5 [In (1p/Cp) + €] 0.5
radial flow
Pseudosteady state
(No wellbore storage, 2 tpu + C, 2% tp,
and closed reservoir)
Steady state
(Constant-pressure In(rp) +s 0
outer boundary )

€y = In (Cpe™) + 0.80907 , and Cy=051n [2.2;5; A] Y
A'w

correlating parameters is also shown in Fig. 1 for both closed
and constant-pressure outer boundary cases. The individual
values of Cp, s, and r,p used to generate the pressure deriva- Cuve [ Symbol | Cp_[ s 1 rp |
tive responses are shown on Fig. 1. 100 !

Figure 2 shows the drawdown pressure derivative type- a
curve developed in this study. Both closed and constant- ps
pressure outer boundary cases are shown. The dimensioniess o
times by which the semi-log pressure derivative is within 2% =

e?
=l
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of 0.5 are:
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Fig. 1. Verification of Cpe* and r%/Cp as the correlating
Design Eqgs. (6) and (7) apply for both closed and constant- parameters for the drawdown responses.
pressure outer boundaries. Equations (6) and (7) yield the
condition for the development of at least half a log cycle of
semi-log straight line as:

Pp/Cp > 2710 + 3600 log (Cpe®) . ®) 1000
100
BUILDUP RESPONSE
The dimensionless buildup pressure is: f .
= 1
' o
2nkh (pm' - P»{) =
 (Atp) = ———2 o 2
Pwps (Btp) 2B -8? 1
= puwd (tad) + Pup (Alp) — pup (tep + Atp) (9) ol
P
and the slope of a dimensionless MDH (Miller, Dyes, and 001
Hutchinson, 1950) buildup graph is: oo 10 I W00 e et
% /Co
dwa: dwa: (AID)
MDH Slope = = ) ap — G (10) Fig. 2: Drawdown pressure derivative type-curve.
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For large producing times such that ¢,p > tp,.,, Mishra
and Ramey (1987) presented a type-curve as a log-log graph
of MDH slope vs. Atp/Cp, with the correlating parameters as
Cpe” and r2/Cp. Their type-curve applies for a well in the
center of a closed, circular reservoir. For large producing
times such that 1p > tp,, Fig. 3 shows the verification of the
correlating parameters Cpe” and r2,/Cp for the buildup pres-
sure derivative responses of a well in the center of a circular
reservoir with a constant-pressure outer boundary. Figure 4
presents a buildup derivative type-curve for a well in the
center of a circular reservoir with a constant-pressure outer
boundary. The dimensionless times by which the semi-log
buildup pressure derivative is within 2% of 0.5 on Fig. 4 are:

A
i] = 150 + 200 log (Cpe®) , and (11)
Co begin
At 0.175 4
2o 2P 12)
Cp end CD

Equations (11) and (12) yield the condition for the develop-
ment of at least half a log cycle of semi-log straight line as:

r2p/Cp > 2710 + 3600 log (Cpe™) . (13)

which is the same as Eq. (8).

Figure 5 shows the buildup derivative responses for a
well in a circular reservoir with two different outer boundary
conditions: closed and constant-pressure. Figure 5 applies
for Cpe® = 1000 and 2/Cp, = 10°. Figure 5 shows that for
the same values of Cpe* and r2,/Cp, the semi-log straight line
is longer for a well in a circular reservoir with a constant-
pressure outer boundary than for a closed outer boundary.

The dimensionless times by which the slope of a
dimensionless MDH buildup graph for a well in a closed
reservoir is within 2% of 0.5 are;

A
-2] = 150 + 200 log (Cpe®) | (14)
CD begin
Al 01 7
_’2] 00w P2/Cp < 10° , and
Cp Jena Cp
005 72
=M2ﬁ for r2p/Cp 2 10° as)
D

Equation (14) is the same as Eq. (11). The criterion for
Atpy/Cp pegin presented by Mishra and Ramey (1987)

corresponds to the dimensionless time by which the slope of
a dimensionless MDH buildup graph-is approximately within
14% of 0.5. A comparison of Eqs. (12) and (15) shows that
a semi-log straight line on a MDH buildup graph for a
constant-pressure outer boundary is about one to one-and-a-
half log cycles longer than a semi-log straight line on a MDH
buildup graph for a closed reservoir, with all other conditions
being same. Thus, if the buildup pressure derivative data for
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Fig. 4: Buildup pressure derivative type-curve (Constant-
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Fig. 5: .Comparison of buildup derivative responses.

a well in a circular reservoir with a' constant-pressure outer
boundary is matched on. a- type-curve for a closed reservoir
(Fig.- 2 of Mishra .and Ramey, 1987), the value for r2,/Cp
may be overestimated. Similarly, if the buildup pressure
derivative data for a well in a closed reservoir is matched on
a type-curve shown in Fig. 4, r2y/Cp may be underestimated.




PRODUCING TIME EFFECTS ON BUILDUP RESPONSE

The Horner (1951) method has been recommended in
the literature to analyze buildup data obtained after short pro-
ducing times. The slope of a dimensionless Horner (1951)
graph is:

dwa:
fw + Atp
Alp

Horner Slope = ——
dln

.

- (tw + Atp)Atp  dpup, (Alp)
Lo d (A1p)

(16)

Agarwal (1980) developed the concept of an equivalent
drawdown time to analyze buildup data using drawdown
type-curves for a well in an infinite reservoir. The dimen-
sionless equivalent drawdown time is:

Lo Atp
p = ————

T Lo+ Al an

Agarwal (1980) showed that a graph of p,p, vs. Aty
correlated buildup responses of a well in an infinite reservoir
with the drawdown response. The correlation was good for
all producing times larger than the time for storage effects to
become negligible. For producing times less than the time
for storage effects to become negligible, early time buildup
responses did not correlate well. Also, the slope of a dimen-
sionless Agarwal (1980) buildup graph is:

dwa:

Agarwal Slope = m

- (tp + Atp)Atp  dp,ps (Alp)
d (Atp)

(18)
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Equations (16) and (18) show that the Horner slope is equal,
but opposite in sign to the Agarwal slope. Thus, producing
time effects on buildup responses may be studied by using
either the Agarwal or the Horner slope.

Aarstad (1987) presents the Agarwal (1980) slope as a
function of the dimensionless shut-in time, Atp,, for several
producing times, 4,54, for wells without storage or skin, and
located in a square or a rectangle. Aarstad (1987) shows that
a graph of the Agarwal slope vs. A1, does not result in a
single curve for all producing times,-if a well is located in a
square or a rectangle. Therefore, Aarst‘ad (1987) used 1,p, as
a parameter to present the producing time effects on buildup
responses for a well in a square or a rectangle.

Figure 6 shows an investigation of 1,54 as a correlating
parameter for the buildup behavior of a well in the center of
a closed, circular reservoir. Figure 6 applies for Cpe? = 10*
and r2/Cp =105 The values of Cp, s, fp, and rp used for
various responses are shown on Fig. 6. Figure 6 shows that
the early time responses for t,p4 < 10~ do not form a single
curve with the responses for t,5, = 10%. For #,p4 < 1075, the
producing time is less than the time for storage effects to
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Fig. 6: Producing time effects on the buildup responses for

a w:611 in a closed reservoir (Cpe® = 104, and r2,/Cp
= 10°).

become negligible. Thus, the lack of correlation at early
times is consistent with Agarwal’s (1980) finding. At late
times, the buildup responses for all producing times do not
form a single curve which is consistent with the work by
Aarstad (1987). The lack of correlation at late times is due
to the finite reservoir size.

For buildup derivative data analysis, a log-log graph of
d (P ~ puy¥d In (Ar,) vs. Ar may be matched with a type-
curve such as Fig. 2 of Mishra and Ramey (1987). But Fig. 6
shows that a type-curve matching without considering pro-
ducing time effects may yield an overestimated r2,/Cp, for
smaller producing times.

Figure 7 shows an investigation of ,,, as a cormrelating
parameter for the buildup behavior of a well in the center of
a circular reservoir with a constant-pressure outer boundary.
Figure 7 applies for Cpe” = 10° and r2)/Cp=10% The
remarks for Fig. 6 also apply to Fig. 7. Thus, producing
time effects may not be ignored in a type-curve matching
analysis of buildup derivative data obtained from a well in a
finite, circular reservoir.
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Fig. 7. Producing time effects on the buildup responses for

a well in a reservoir with a constant-pressure outer
boundary (Cpe* = 10%, and r2,/Cp = 10°).



SUMMARY

New drawdown and buildup derivative type-curves for
a well with storage and skin, and located in the center of a
finite, circular reservoir have been presented. Design equa-
tions for the time to the beginning and the end of the semi-
log straight line have been developed. The drawdown and
the buildup responses for a well in a closed reservoir are
compared with the responses for a well in a reservoir with a
constant-pressure outer boundary. Producing time effects and
outer boundary condition should be considered for a proper
type-curve matching analysis of buildup derivative data
obtained from a well in a finite, circular reservoir.
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NOMENCLATURE

A Area
B Formation volume factor
(o Wellbore storage coefficient
Cy Shape factor
Cp Dimensionless wellbore storage coefficient =

Dimensionless exterior radius = r/r,,
Skin = 2rkh(Ap,)/gB)L
Time
i Dimensionless time = ki/dppcr
Dpes Dimensionless time to reach pseudosteady state =
Ky /ducyr,
Dss Dimensionless time to reach steady state = kt,/éucs2
Lo Dimensionless producing time = kr,/¢ucs2
[ Dimensionless producing time based on area =
kt Jouc A
Ap, Pressure drop due to skin
At Shut-in time
Atp Dimensionless shut-in time = k Ar/iucs?
Alpa Dimensionless shut-in time based on area = k AtvdjcA
Ar, Equivalent drawdown time = ¢, A/(t, + A7)
As,p Dimensionless equivalent drawdown time [Eq. (17)]

CI2ngc hrl,
c, Total system compressibility
h Thickness
1, Modified Bessel function of first kind of order n
K, Modified Bessel function of second kind of order n
k Permeability
! Laplace transform variable
p Pressure
Pp Dimensionless pressure drop in the Laplace space
q Well flow rate
r Radius
Ten
s
t

Greek symbols

¢ Porosity
u Viscosity
Subscripts

D Dimensionless
e Exterior, or equivalent
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f Flowing
i Initial
p Producing
pss Pseudosteady state
s Shut-in
s5 Steady state
t Total
w Wellbore
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