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ABSTRACT

A parallel fractures model, having equal width and
spacing, has been developed to study the flow of tracers
through naturally fractured geothermal reservoirs. The
model is capable of handling either a single fracture or a
system of two or more parallel fractures, interacting with
associated porous bodies. The reservoir is treated as being
composed of two regions; a mobile region where diffusion
and convection are allowed and a stagnant or immobile re-
gion where only diffusion and adsorption are allowed.
Both regions are interconnected by means of a very thin
fluid film contained within the immobile region which con-
trols the fluid and mass transfer between both regions. The
mobile region represents the system of fractures, where
tracer is free to flow reaching high velocities, whereas
non-homogeneities of the reservoir rock, such as microfrac-
tures and dead-end fractures are represented by means of
an equivalent porous body where fluid remains immobile.
The boundary-value problem for the system is stated and
its solution into Laplace’s space is presented. Numerical
inversion of this solution was performed by means of the
Stehfest algorithm. Preliminary results showing results ob-
tained from the proposed model are included. Further
work is underway to apply the model for interpretation of
actual tracer flow field data.

INTRODUCTION

In the past few years, reinjection of separated brine
back into the producing formation for pressure maintenance
purposes has been a major issue for an adequate develop-
ment of liquid-dominated geothermal resources. To date,
some practical experience on reinjection of geothermal
brine into the reservoir has been gained. This experience
seems to indicate that rapid inter-well movement of inject-
ed fluid has occurred, causing an undesirable early thermal
breakthrough (Horne, 1982). Therefore, careful selection
of injection-production wells schemes are required in order
to reduce the risks of having this early temperature drop in
the production wells (Rivera et al., 1982). Tracer flow
testing is an appropriate technique for obtaining a good
idea on how injected fluids travel in the reservoir and a
correct interpretation of the tracer return curves at produc-
tion wells provides with parameters that can be used to
study the heat and mass transfer processes taking place in
the reservoir.

Since geothermal reservoirs are known to-be highly-
naturally fractured reservoirs, standard tracer interpretation
techniques developed for flow through porous media in the
hydrogeology and petroleum technical literature are not ap-
plicable. Most of the models published to date for in-
terpretation of tracer return curves in geothermal reservoirs
allow mostly qualitative estimation of reservoir parameters

(Fossum, 1983, Tester et al., 1982, Jensen, 1983) and only
few of them allow quantitative determination of basic reser-
voir parameters (Walkup and Horne, 1985).

In this study a parallel fractures model was developed
to quantitatively determine basic geothermal reservoir
parameters from tracer return curves. This model seems to
be simpler than that proposed by Walkup and Horne since
it only requires one Laplace’s inversion and four fitting
parameters; meanwhile the former requires two numerical
inversions and has five parameters to adjust.

PARALLEL FRACTURES MODEL

The proposed model is shown in Figure 1. The frac-
tured heterogeneous medium is represented by means of a
system of equally spaced parallel fractures alternated with
porous blocks. As shown in Fig. 1, this system is made up
of two connected regions; a mobile region constituted by
the fracture itself, where diffusion and convection
processes are taking place and an immobile region where
only diffusion and adsorption are allowed. These later
processes go first through the very thin stagnant fluid layer
of & thickness, spreading then into the porous body. The
idea of dividing the flow system into two interconnected
regions has already been used by several authors (Deans,
1963; Walkup and Horne, 1985, Maloszewski and Zuber,
1985 among others).
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Figure 11 Proposed paralle! fractures model.
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Taking a mass balance on the mobile region and as-
suming the following: a) no production or reaction of the
chemical species within the control volume; b) continuous
injection of tracer into the fracture system; ¢) flow in the
fractures is fast enough so that only steady convective flow
in the x direction takes place; d) tracer distribution across
the fracture width can be assumed constant due to efficient
transverse diffusion and dispersion; e) constant density, the
governing equation for the mobile region is as follows:
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Taking a mass balance on the immobile region and
assuming that only diffusion in the y— direction is impor-
tant and that reversible adsorption with a linear adsorption
isotherm is taking place, the governing equation for this re-
gion is given by :
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In order to complete the problem, the following initial
and boundary conditions are defined:

Initial conditions:

Cp (x,y,0) = C; 3)
Ce (x,)’,o) = Cl' (4)

Boundary conditions:

Cp(0)=C, (5)
C. x,W-3,) = C, (x,0) ©®
Cm (Nvt) = Ci (7)
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Equations (1) through (8) can be simplified by means
of the following dimensionless variables:
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Equations (1) and (2) can then be written as follows:
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Equations (14) and (15) can be solved by means of
the Laplace’s transform. Solution for concentration distri-
bution in the mobile and immobile regions in Laplace’s
space are as follows:
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Numerical inversion by means of the Stehfest algo-
rithm is used in order to compute concentration distribution
in real space from equations (20) and (21).

As it was pointed out by Walkup and Horne, the
solution of an spike-input is the time derivative of a step
input. Therefore, to obtain the solution for a spike-input
all that is needed is to multiply the expression for the step



input in (x,y,s) space (eq. (20)) by s before it is inverted to

(x,y,t) space. Thus:
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For a detailed derivation of equations (20) and (21)
the reader should refer to the report by Ramirez (1987).
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Preliminary Results

Further work to extend the model’s applicability to
include field data is still in progress. Thus far only prelim-
inary results had been obtained from the model. Table 1
includes data used to obtain results shown on Figures 2
through 4. Figure 2 illustrates concentration profiles for
the mobile region with dimensionless time going from 0.1
to 1000 for a velocity of 0.01 (m/day). Figures 3 and 4
show the effect of velocity on concentration profiles in the
mobile region for two different times, 0.12 and 1.2 hours.

Table 1

Data used to test the model. (Some data were taken from
Example 1, Hugakorn et al., 1983).

V,, =0.01 (m/day)

A =0.000154 (day)™!

W =5x10" m)

5 =107 m)

Yy =1

e =118775

D, =1.382x 1077 (m%day)

D,, =1975x 107 (m¥day)
<o . —————— .
2 o§o\o v=0.0/(m/d)
; ©. O~ -
A NS NS
I o o O\O\
é u: o] D\ \0 © 100
2 o o |
; 00- \\\ N o <
IR Moo ;
g L \QQ ,\“\A 1:1\1:)\ﬂ

0 76 20 30 40 80 60 7o 86 95 100

OIMENSIONLESS DISTANCE, Xn
Figure 2:  Dimensionless concentration profiles at
tp = 0.1, 10, 100, 1000,
V,, = 0.01 (m/day).
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Figure 3:  Effect on velocity on dimensionless concen-
tration profile. V, = 0.01, 0.1, 1, 10 (m/day).

t=0.12 hr.
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Figure 4: Effect on velocity on dimensionless concen-
tration profile. V, = 0.01, 0.1, 1, (m/day).
t=0.12 hr.

NOMENCLATURE

C = Concentration, (M/L%)

D = Diffusion coefficient, (L2/t)
E = Fracture spacing, (L)

k = Adsorpton constant, (L3/M)
L' = Inverse Laplace’s operator
P, = Peclet number, (dimensionless)
s = Laplace operator

t = Time, (£)

V = Velocity, (L/t)

W = Fracture half-width, (L)

= Distance in x-direction, (L)
= Distance in y-direction, (L)

x
y

Greek Symbols
B = Dimensionless group defined by eq. (22)

Y = Dimensionless group defined by eq. (19)
O = Stagnant fluid film thickness, (L)
€ = Dimensionless group defined by eq. (18)




¢ = Porosity, referred to total-bulk volume, (dimension-

less)

A = Radioactive decay constant, Y

p = Density, (M/L3)

Subscripts

D = Dimensionless variable (distance, time or concentra-

tion)

e = Refers to the immobile (stagnant) region

i = Refers to initial conditions

m = Refers to the mobile (fractured) region

o = Refers to inlet conditions

1 = Refers to mobile region

2 = Refers to immobile region
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