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ABSTRACT 
A pressure transient analysis method is presented for 

interpreting breakthrough time between a constant rate well 
and a constant pressure well. The wells are. modeled as two 
line sources in an infinite reservoir where the first well 
injects at a constant pressure and the second well produces 
at a constant rate. The effects of transient pressure 
conditions, the distance between the wells, the flowrate, 
and the tracer injection time on breakthrough time are 
examined. The first arrival of injected fluid at the 
production well is significantly longer under transient 
condition than under steady state condition for. the rate- 
pressure model when the injection pressure is equal to 
initial reservoir pressure. An injection pressure larger than 
initial reservoir pressure significantly reduces the 
breakthrough time, and may yield a breakthrough time 
significantly smaller than the breakthrough time for the 
steady state case. 

INTRODUCTION 
Pressure transient analysis methods are used to esti- 

mate reservoir properties so that exploitation schemes may 
be evaluated. Well-to-well tracer tests yield information 
about preferential flow paths and about reservoir hetero- 
geneity. One of the important parameters in a well-to-well 
tracer test is the time of first arrival of the tracer at the pro- 
duction well, or the breakthrough time. The method 
presented in this paper permits the interpretation and design 
of a special case, which will be referred to as the rate- 
pressure doublet. In this two-well system, one well pro- 
duces at a constant rate and the other well injects at a con- 
stant pressure. The two time dependent parameters in the 
rate-pressure doublet model are the pressure response of 
the producing well and the rate response of the injecting 
well. These parameters and ensuing equations will be 
described further in the Theory section 

A constant rate well is approximated as a line source, 
since the reservoir and the interwell distance are much 
larger than the finite radius of the well. The constant rate 
production or injection line source well has been used as a 
building block for calculating the response of various reser- 
voir systems. Theis (1935) presented the line source pres- 
sure solution in an infinite domain. Carslaw and Jaeger 
(1960) and Van Everdingen and Hurst (1949) presented the 
pressure solution for a finite radius well in an infinite sys- 
tem. Mueller and Witherspoon (1965) showed the 
geomemcal and time conditions under which the line 
source and the finite radius solutions are practically identi- 
cal. They concluded that for observation wells located at a 
distance twenty times the wellbore radius the line source 
approximation is applicable. Also, this approximation is 
applicable for any observation well after a dimensionless 
time of ten. 

Since the diffusivity equation describing *e flow in 
the system is linear, superposition in space of constant rate 
line sources may be used. Srallmun (1952) presented the 
superposition of two constant rate line sources replicating 
the effects of constant pressure or impermeable linear 
boundaries. In the same way, superposition of arrays of 
rate sources (Krusemun and De R i d e r  1970, and R m e y  et 
a1 1973) were used to generate the effects of combinations 
of rectangular boundaries around a well. By using the 
method of superposition, the line source approximation, 
and fluid flow particle tracking, transient breakthrough time 
from the injecting well to the producing well is calculated 
for the rate-pressure well doublet. This transient break- 
through time is then compared to the analytical steady state 
solution for breakthrough time, and to the transient rate-rate 
solution for transient breakthrough time presented by Men- 
ninger and Sageev (1986). 

THEORY 
In the case of the steady state rate-rate well doublet, 

the velocity map is only a function of space, and is con- 
stant with respect to time. In the case of the transient 
rate-rate model, the velocity map is a function of space and 
time. This is true for the rate-pressure well doublet as 
well. In this section we present a summary of the various 
methods used for computing the velocity along the shortest 
stream line between the two wells (See Figure I.) In the 
following derivations, we assume that the pressure behavior 
in the reservoir is governed by the diffusivity equation, and 
that the reservoir is homogeneous with isotropic properties. 
Also, we assume a unit mobility ratio and piston-like dis- 
placement 

We consider two independent well configurations in 
this section. In the first configuration, we have a well pro- 
ducing at a constant rate and an injection well that main- 
tains a constant pressure equal to the initial pressure of the 
system, pi. This configuration is termed the rate-pressure 
model, and was developed by Sageev and Horne (1983), 
and Sageev and Horne (1985a). The Second configuration 
includes a constant pressure injection well in an infinite 
reservoir, and is termed the constant pressure model. This 
configuration was described by Carslaw and Jaeger 
(1960), Van Everdingen and Hurst (1949), and by Ferko- 
vich (1980). The superposition of the rate-pressure and the 
constant pressure models is presented in Figure 2, and was 
discussed by Sageev and Home (1985b). The results of 
this superposition are presented in the Results section. 

Velocity for the Rate-Pressure Model 
The velocity for the rate-pressure model is a function 

of space and time. Sageev and Horne (1985a) presented 
the interference dimensionless pressure solution in Laplace 
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Figure 1: Schematic of a rate-pressure well doublet. 

Principle of Superposition 

Pi q 

+ - W 

2 
- - 

AP q - W 

Figure 2: Schematic of the superposition for the rate- 
pressure well doublet. 

space. Along the line between the two wells, the dimen- 
sionless Laplace pressure. solution is: 

where: 
n = 0,1,2,3 ,..... 
E,, = 1 for n = 0 
E. = 2 for n > 0 
The variables are defined in the Nomenclature. The 

dimensionless Laplace spatial derivative of the pressure 
along the line between the two wells is: 

Finally, the. velocity along the line between the two wells 
is: 

Equation (2) involves an infinite summation on the order of 
modified Bessel functions, and is not readily inverted 
numerically to real time. Instead of using the Laplace velo- 
city of Equation (3), we discretize the rate history at the 
constant pressure well, and use the. superposition of con- 
stant rate line sources. This is described in the next two 
sections. 

Velocity for the Constant Rate Case 
The radial velocity field created by a constant rate 

well in an infinite reservoir is related to the derivative of 
pressure with respect to radius.. In this study, the constant 
rate well is approximated by the Theis (1935) line source 
model. The dimensionless pressure solution for this model 
is: 

L 

where a positive dimensionless pressure is associated with 
pressures below the initial pressure pi, and 

and the dimensionless terms are defined as: 

rD = - 
‘W 

(7) 

The rest of the terms are defined in the Nomenclature. We 
are interested in computing the breakthrough time for the 
well doublet presented in Figure 1. The origin of the coor- 
dinate system is located at the injection well, hence, the 
tracer front moves along the straight line between the two 
wells. The distance between the two wells is denoted by d,  
and the distance between the location of the tracer front 
and the injection well is denoted by I. The Darcy velocity 
at a point I away from the injector caused by the constant 
rate production well is given by: 

a P D  The calculation of - is performed using the formula for 

the derivative of the exponential integral: 
ax, 

(9) 

In terms of the coordinate system centered at the injection 
well, the dimensionless pressure and the spatial derivative 
of the dimensionless pressure are: 
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The particle velocity, V,, is calculated using Equations (8) 
and (11). 

Velocity for the Constant Initial Pressure Well 
Since the pressure at the injection well is constant 

and is equal to the initial pressure pi. the time dependent 
variable is the injection rate. Sageev and Horne (1985b) 
presented the dimensionless Laplace rate solution for the 
injection well: 

where q D  is defined as: 

(13) 
(linjection 

qD = qprduction 
The dimensionless rate at the injector starts with a value of 
zero and increases with time. At late time, the injection 
rate approaches the production rate and the dimensionless 
rate approaches unity. Figure 3, after Sageev and Horne 
(1985a), shows the rate response for various distances 
between the two wells. It takes a long time for the rate 
response at the constant pressure well to increase. The 
curves in Figure 3 were generated by numerically inverting 
Equation (12) using an algorithm developed by Srehfesr 
( 1970). 

For a given system, we can generate the rate response 
of the constant pressure well using Equation (12). We 
discretize the time domain and assume that during a given 
time step, the injection rate is constant. Hence, after n time 
steps, we have n flow rates and we apply the method of 
superposition of constant rate line. sources. The dimension- 
less pressure derivative at point xD is related to the dimen- 
sionless rate by: 

where AqDi and rDi are the rates and beginning injection 
times of each hypothetical new well, respectively, and 
XD = dr,. This method is visualized in Figure 4, where only 
two different Aqi's are used. A Aqi of 0.08 is used before 
tracer injection, and a Aqi of 0.05 is used after tracer injec- 
tion. With such a method for discretizing the injection rate 
into a set of constant rate changes, we can now calculate 
the velocity, v(x,r), of any fluid particle. Combining this 
result with the one for the constant rate well, we can use 
superposition to calculate the velocity of h y  particle on the 
straight line path between the two wells, and thus we can 
use fluid flow front tracking to calculate the breakthrough 
time for the rate-pressure model. 

Velocity for a Constant Pressure Well 
In this section we present the velocity as a function 

of space and time caused by a constant pressure well in an 
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Figure 3: The dimensionless injection rate for various 
interwell distances. After Sageev and Home 
(1985a). 

Dimensionless Time 

Figure 4: Discretized dimensionless rate curve, using 
different values of Aq before and after initial 
injection time. 

infinite reservoir. The Laplace space solution, that was 
presented by Carslaw and Jaeger (1960), Van Everdingen 
and Hurst (1949), or by Ferkovich (1980) is: 

where rD is the dimensionless distance from the constant 
pressure source, and p~ is the dimensionless pressure, 
defined by 

where p i  is the initial reservoir pressure. Differentiating 
Equation (15) with respect to rD yields: 

Equation (17) is numerically inverted to real space using 
the inversion algorithm developed by Srehfest (1970). 

-51- 



Hence, the velocity caused by the constant pressure well is: 

The Steady State Solution 
The steady state solution to a rate-pressure well doub- 

let is just the same as that for a rate-rate well doublet, 
however, approaching steady state is a much slower pro- 
cess for the rate-pressure configurations. This slow 
approach to steady state is due to the slow rate at which 
the constant pressure well approaches a steady state injec- 
tion rate. From Menninger and Sageev (1986), the solution 
to the steady state breakthrough time for either rate-rate or 
rate-pressure doublets is: 

2ah4)d2 
t& = - 

64 

This resulting breakthrough time for the steady state well 
doublet can now be compared to transient breakthrough 
times. 

RESULTS 
In this section, we describe the effects of the distance 

between the two wells, the rate of injection, the time of 
tracer injection, and the additional pressure drop at the in- 
jection well on the transient breakthrough time. In the first 
portion of the discussion, we concentrate on the rate- 
pressure model, where the injection well remains at the ini- 
tial reservoir pressure pi.  In the second portion of the dis- 
cussion, we consider the effects of the additional pressure 
rise at the injection well on the breakthrough time. 

The Rate-Pressure Model 
Consider a rate-pressure model with the following 

properties: cI = 6 x lod PSI-', h = 20f4 k = 100 md, 4 = 0.15, 
r, = O S f i ,  and p = 1 cp. The effects of the rate of injec- 
tion, q, the distance between the wells, d, and the initial 
tracer injection time, t i ,  are examined in the next few 
figures. Figure 5 presents the effects of tracer injection 
time. Here, the time from tracer injection is graphed as a 
function of the position of the leading front of the tracer. 
The plot is Cartesian. The top curve represents front uack- 
ing of a single constant rate producing well in an infinite 
reservoir, and the bottom curve represents a steady state 
doublet system. These extreme cases are used for com- 
parison. We note that breakthrough time for the steady 
state case is at 120 days, and is much shorter than the 
breakthrough time for just a single constant rate producing 
well, that is 330 days. The second curve from the top 
represents a case where the tracer is injected at time zero 
into the rate-pressure doublet system with a breakthrough 
time of 160 days. As the the tracer injection time is de- 
layed, the injection rate at the constant pressure well in- 
creases, and the breakthrough time decreases. However, 
even waiting for IO'* days before injecting the tracer, does 
not reduce the tracer breakthrough time to the steady state 
case (See Figure 5). 

The top curve in Figure 5,  representing the front posi- 
tion between the two wells caused by only the production 
well has an ever reducing slope. Hence, the velocity of the 
front increases with time along the particle flow path. The 
curves for the rate-pressure doublet have an inflection 
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point. At short times after tracer injection, the slope of the 
curves is small, indicating a high velocity caused by the in- 
jection well. As the front moves away from the injector, 
the velocity decreases, and goes through a minimum about 
midway between the wells. As the front approaches the 
production well, the front velocity increases. The high 
front velocity at late time is caused by the large pressure 
gradients caused by the production well. 

In Figure 6, we have the breakthrough times graphed 
as a function of the initial injection time in a semi-log for- 
mat for the same example previously considered. As the 
tracer injection time is delayed, the breakthrough time de- 
creases. The bars extending from the breakthrough time 
curve represent the time span for which the tracer front 
moves from the injection well to the production well along 

! 
i 

/ 102 11 
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Front Position (ft) 

Figure 5: Front position for a rate-pressure doublet as a 
function of time for different tracer injection 
times. Reservoir parameters are: 4 = 0.15, 

r, = 0.5 ft. 
p = lcp, cI = 6x1Od PSI-', h = 20p, k = lo0 md, 
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Figure 7: Breakthrough times as a function of produc- 

tion rate for various interwell distances with a 
zero tracer injection time. Reservoir parame- 
ters are: I$ = 0.15, p = lcp, c, = 6x104 p d ,  
h = 20f1, k = 100 md, r, = 0.5 ft. 
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Figure 8: Percent error of the breakthrough times as a 
function of production rate for various in- 
tenvell distances with a zero tracer injection 
time. Reservoir parameters are: 0 = 0.15, 
p = lcp, cy = 6 ~ 1 0 ~  p s i ' ,  h = 20p, k = 100 md, 
r, = 0.5 fI. 

the straight line between them. Also the dimensionless rate 
of the constant pressure well is graphed in Figure 6. 
Points A and B represent the injection time and the arrival 
time respectively, for an initial tracer injection time of one 
day. As the initial tracer injection time increases, the aver- 
age value of qD under the bars representing the duration of 
the tracer test increases, and we get a corresponding reduc- 
tion in breakthrough time. Hence, the time of tracer injec- 
tion has a significant effect on tracer breakthrough time. 

Figure 7 is a log-log presentation of the breakthrough 
time as a function of production rate for various values of 
the interwell distance. All the responses presented in Fig- 
ure 7 are for the case where the tracer is injected at time 
zero, for the same reservoir properties discussed before. 
The lowermost curve in Figure 7 is for d = SOP.  As the 
production rate increases, the breakthrough time decreases. 

loo00 
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a 

0 I I I I 
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Production Rate (b/d) 
M 

Figure 9: Percent error of the breakthrough times as a 
function of production rate for various tracer 
injection time and an interwell distance 
d = l00fI. Reservoir parameters are: I$ = 0.15, 
p = lcp, cy = 6X1O4 psi-', h = 20 ft, k = 100 md, 
r, = 0.5 fI. 

For a fixed production rate, the breakthrough time increases 
as the interwell distance increases. 

In Figure 8, we see that the early time percent error 
from the steady state breakthrough times depends both on d 
and on q. We define the percent error as: 

As the production rate increases or as the interwell distance 
increases, the deviation from the steady state solution in- 
creases. Figure 9 presents the combined effects of the pro- 
duction rate and the tracer injection time with a constant 
distance between the wells, d =  l00fI. The dependence of 
the precent error on the flowrate q reduces as the initial in- 
jection time increases. As initial injection time increases, 
the rate of the constant pressure well changes less during 
the time that the tracer moves from the injector to the pro- 
ducer as demonstrated in Figure 6. For example, at 
ti = 100 days (about where point B is in Figure 6), qD 
changes less and less over the length of the bars, until the 
bars become so short that they look like a point on the di- 
mensionless rate curve, and the rate of the constant pres- 
sure well can be considered constant over the duration of 
the breakthrough time. When ti = loo00 days, as Figure 9 
shows, the precent error from the steady state case does not 
depend on the production rate. 

since the shape of the dimensionless rate curves 
varies for each interwell distance, as shown in Figure 3, the 
error dependence on d does not disappear as ti increases. 
Asfigure 10 shows, the error curves change shape, but do 
not become horizontal, for the error depends on where ii 
crosses each dimensionless rate curve (See Figure 3). For 
larger d, a constant ti line crosses the rate curves in Figure 
3 at lower rate values, yielding a transitionary flow period. 
Hence, the injection rate varies significantly during the 
tracer test, and the precent error from the steady state case 
increases. This is also demonshated in Figure 11, that is a 
semi-log graph showing error dependence on initial injec- 
tion time for varying d. The error levels off as ti gets 
larger, and, as explained before, the injection rate varies 
less during the breakthrough process. 
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Figure 10: Percent error of the breakthrough times as a 
function of interwell distance and tracer injec- 
tion time for a constant production rate 
q = 100 bld. Reservoir parameters are: 
I) = 0.15, p = lcp, c, = 6XlO4 PSI-', h = 20J7, 
k =  100 md, r, = 0.5 ft. 
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The devi'ation of the breakthrough time for the rate- 
pressure model from the steady state breakthrough time is 
significant. This deviation is mainly attributed to the tran- 
sient flow conditions around the production well, and to the 
slow response of the injection rate at the constant pressure 
well. Hence, the first injected tracer particle at the constant 
pressure well starts moving in the direction of the produc- 
tion well at a lower velocity in comparison to the steady 
state case, yielding a longer breakthrough time. One way 

, in which to increase particle throughput and decrease 
breakthrough times in a rate-pressure doublet system is to 
create a pressure rise at the constant pressure well. This is 
described in the next section. 

q = 500 b/d 
- -0Days 

Irn IY) 200 

Front Position (ft) 

Figure 12: Front position for rate-pressure doublet as a 
function of pressure rise at the injection well 
for q = 500 Md and zero tracer injection time. 
Reservoir parameters are.: I) = 0.2, p = 0.5cp, 
cI = 5X1O4 psi-', k = 50 md, 
r, = 0.33. 

h = 20J7, 

The Rate-Pressure Doublet 
The rate-pressure doublet differs from the rate- 

pressure model in the boundary condition at the constant 
pressure well. In the rate-pressure. doublet, we impose a 
sudden pressure rise at the constant pressure well. Hence, 
the rate of injection at the constant pressure well is a func- 
tion of the magnitude of the pressure rise imposed at the 
well, and of the response to the constant rate production 
well. The rate of injection caused by a constant pressure 
well in an infinite reservoir decreases with time, and was 
described by Ferkovich (1980). The rate of injection 
caused by the constant rate production well increases with 
time, as shown in Figure 3. 

Figure 12 presents the time from tracer injection as a 
function of the tracer front position between the hvo wells 
for various pressure increases at the injection well, denoted 
by Ap. The reservoir parameters for the responses present- 
ed in Figure 12 are: c l =  5x104psi-', h=20fr, k =  50 md, 
Cp = 0.2, r, = 0.3 f t ,  q = 500 bld, d = 100~7, and p = 0.5 cp. 
All the curves in Figure 12 are for a tracer injection time 
of zero. The highlighted curve in the middle represents the 
steady state rate-rate doublet case. The uppermost curve is 
for a small pressure rise at the injector of 0.03 psi, yield- 
ing a breakthrough time of about 60% larger than the 
steady state case. As the initial pressure rise at the injection 
well increases, the breakthrough time decreases 
significantly. For a Ap of 9.49 psi, the breakthrough time 
is just under the sready state case, For a Ap of 94.9 psi, 
the breakthrough time is mainly controlled by the injection 
well, and is about 20% of the steady state case. 

Figure 13 presents similar curves as presented in Fig- 
ure 12, with the tracer injection time at 10 days. The 
breakthrough times are slightly lower than the breakthrough 
times presented in Figure 12, and the main controlling 
parameter remains the magnitude of the pressure rise at the 
injection well. 

The effects of the initial injection pressure rise at the 
injection well is summarized in Figure 14. In this figure, 
breakthrough times as a function of the injection pressure 
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Figure 13: Front position for rate-pressure doublet as a 
function of pressure rise at the injection well 
for q = 500 Md and for a tracer injection time 
of 10 days. Reservoir parameters are: + = 0.2, 
p = OScp, cy = 5 ~ 1 0 ~ p s i ' ,  h = Z O j i ,  
k = 5 0 m d ,  r w = O . 3 f f .  
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Figure 14: Breakthrough time as a function of pressure 
rise at the injection well for various tracer in- 
jection times, and q = 500 bld and d = l00P. 
Reservoir parameters are: + = 02, p = OScp, 
cy = 5 ~ 1 0 ~  PAT-', k = 50 md, 
rv = 0.3 ft. 

h = Z O j ,  

I 
rise for various tracer injection times are presented. The 
horizontal line represents the steady state breakthrough 
time. For pressure rises smaller than 7.66 psi (for reservoir 
properties described in this section) breakthrough times are 
larger than the steady state breakthrough time by about 
60%. The effects of the tracer injection time up to 100 
days from the start of production is not significant. For 
pressure rises greater than 7.66 psi the breakthrough times 
for the rate-pressure doublet are smaller than for the steady 

'state case. Large imposed pressure rises at the injection 
well dominate the tracer movement along the line between 
the two wells. 

CONCLUSIONS 
In the following conclusions we consider two well 

configurations: the rate-pressure model and the rate- 
pressure doublet. These two configurations differ in the 
imposed constant pressure, Ap, at the injection well. For 
the rate-pressure model Ap = 0 and for the rate-pressure 
doublet Ap > 0. In general, the rate-pressure model yields a 
breakthrough time larger than the steady state case. In the 
examples considered in this study, we observed that the 
breakthrough time may be 50%-100% larger than for the 
steady state case. The rate-pressm doublet may yield 
breakthrough times that are smaller or larger than the 
steady state case depending on the magnitude of the 
imposed pressure rise at the injection well. In the 
examples considered in this study, we found that the 
breakthrough time may be as low as 1/5 of the 
breakthrough time for the steady state case. 

Rate-Pressure Model: 
1. The breakthrough time reduces as the tracer injection 

time, and the production rate increase. 
2. The percent error of the breakthrough time from the 

steady state case increases as the production rate and 
the interwell distance increase. 
The percent error of the breakthrough time from the 
steady state case decreases as the tracer injection time 
increases. 
The percent error of the breakthrough time from the 
steady state case for the rate-pressure model can be as 
high as 50%-100% for practical cases. 

3. 

4. 

Rate-Pressure Doublet: 
5. Small imposed pressure rises at the injection well 

yield breakthrough times similar to the breakthrough 
times for the rate-pressure model. 
For small imposed pressure rises at the injection well, 
the breakthrough times are affected by the tracer 
injection time. As tracer injection time is increased, 
the breakthrough time decreases. 
Large imposed pressure rises at the injection well 
dominate the space-time velocity of the tracer, and 
yield significantly smaller breakthrough times than the 
breakthrough times for the steady state model. 

8. The effect of the tracer injection time is not 
significant when the imposed pressure rise at the 
injection well is large in comparison to the steady 
state pressure rise. 

6.  

7. 
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NOMENCLATURE 

Ei = Exponential Integral 
I ,  = 
K,, = 
V, = 
X = Exponential Integral argument 

Modified Bessel function, first kind, n'th order 
Modified Bessel function, second kind, n'th order 
Velocity in the x direction 

c, = total system compressibility 
h = Formationthickness 
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Permeability 
Pressure 
Dimensionless pressure, 2xkh@,-p)lqp 
Laplace transformation of pD 
Initial pressure 
Imposed injection well pressure rise 
Volumetric rate 
Dimensionless rate, q(t)/qm- 
Laplace transformation of 40 
Radius 
Dimensionless radius, rlr, 
Wellbore radius 
Laplace variable 
Time 
Breakthrough time 
Steady state breakthrough time 
Dimensionless time, kt/@pc& 
Distance from injector 
Dimensionless distance, x/rw 

Viscosity 
Porosity 
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