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ABSTRACT

A pressure transient analysis method is presented for
interpreting breakthrough time between a constant rate well
and a constant pressure well. The wells are modeled as two
line sources in an infinite reservoir where the first well
injects at a constant pressure and the second well produces
at a constant rate. The effects of transient pressure
conditions, the distance between the wells, the flowrate,
and the tracer injection time on breakthrough time are
examined. The first arrival of injected fluid at the
production well is significantly longer under transient
condition than under steady state condition for the rate-
pressure model when the injection pressure is equal to
initial reservoir pressure. An injection pressure larger than
initial reservoir pressure significantly reduces the
breakthrough time, and may yield a breakthrough time
significantly smaller than the breakthrough time for the
steady state case.

INTRODUCTION

Pressure transient analysis methods are used to est-
mate reservoir properties so that exploitation schemes may
be evaluated. Well-to-well tracer tests yield information
about preferential flow paths and about reservoir hetero-
geneity. One of the important parameters in a well-to-well
tracer test is the time of first arrival of the tracer at the pro-
duction well, or the breakthrough time. The method
presented in this paper permits the interpretation and design
of a special case, which will be referred to as the rate-
pressure doublet. In this two-well system, one well pro-
duces at a constant rate and the other well injects at a con-
stant pressure. The two time dependent parameters in the
rate-pressure doublet model are the pressure response of
the producing well and the rate response of the injecting
well. These parameters and ensuing equations will be
described further in the Theory section.

A constant rate well is approximated as a line source,
since the reservoir and the interwell distance are much
larger than the finite radius of the well. The constant rate
production or injection line source well has been used as a
building block for calculating the response of various reser-
voir systems. Theis (1935) presented the line source pres-
sure solution in an infinite domain. Carslaw and Jaeger
(1960) and Van Everdingen and Hurst (1949) presented the
pressure solution for a finite radius well in an infinite sys-
tem.  Mueller and Witherspoon (1965) showed the
geometrical and time conditions under which the line
source and the finite radius solutions are practically identi-
cal. They concluded that for observation wells located at a
distance twenty times the wellbore radius the line source
approximation is applicable. Also, this approximation is
applicable for any observation well after a dimensionless
time of ten.
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Since the diffusivity equation describing the flow in
the system is linear, superposition in space of constant rate
line sources may be used. Srallman (1952) presented the
superposition of two constant rate line sources replicating
the effects of constant pressure or impermeable linear
boundaries. In the same way, superposition of arrays of
rate sources (Kruseman and De Ridder 1970, and Ramey et
al 1973) were used to generate the effects of combinations
of rectangular boundaries around a well. By using the
method of superposition, the line source approximation,
and fluid flow particle tracking, transient breakthrough time
from the injecting well to the producing well is calculated
for the rate-pressure well doublet. This transient break-
through time is then compared to the analytical steady state
solution for breakthrough time, and to the transient rate-rate
solution for transient breakthrough time presented by Men-
ninger and Sageev (1986).

THEORY

In the case of the steady state rate-rate well doublet,
the velocity map is only a function of space, and is con-
stant with respect to time. In the case of the transient
rate-rate model, the velocity map is a function of space and
time. This is true for the rate-pressure well doublet as
well. In this section we present a summary of the various
methods used for computing the velocity along the shortest
stream line between the two wells (See Figure 1.) In the
following derivations, we assume that the pressure behavior
in the reservoir is governed by the diffusivity equation, and
that the reservoir is homogeneous with isotropic properties.
Also, we assume a unit mobility ratio and piston-like dis-
placement.

We consider two independent well configurations in
this section. In the first configuration, we have a well pro-
ducing at a constant rate and an injection well that main-
tains a constant pressure equal to the initial pressure of the
system, p;. This configuration is termed the rate-pressure
model, and was developed by Sageev and Horne (1983),
and Sageev and Horne (1985a). The Second configuration
includes a constant pressure injection well in an infinite
reservoir, and is termed the constant pressure model. This
configuration was described by Carslaw and Jaeger
(1960), Van Everdingen and Hurst (1949), and by Fetko-
vich (1980). The superposition of the rate-pressure and the
constant pressure models is presented in Figure 2, and was
discussed by Sageev and Horne (1985b). The results of
this superposition are presented in the Results section.

Velocity for the Rate-Pressure Model

The velocity for the rate-pressure model is a function
of space and time. Sageev and Horne (1985a) presented
the interference dimensionless pressure solution in Laplace
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pressure well doublet.

space. Along the line between the two wells, the dimen-
sionless Laplace pressure solution is:
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where:
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The variables are defined in the Nomenclature. The
dimensionless Laplace spatial derivative of the pressure
along the line between the two wells is:
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Finally, the velocity along the line between the two wells
is:
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Equation (2) involves an infinite summation on the order of
modified Bessel functions, and is not readily inverted
numerically to real time. Instead of using the Laplace velo-
city of Equation (3), we discretize the rate history at the
constant pressure well, and use the superposition of con-
stant rate line sources. This is described in the next two
sections.

Velocity for the Constant Rate Case

The radial velocity field created by a constant rate
well in an infinite reservoir is related to the derivative of
pressure with respect to radius.- In this study, the constant
rate well is approximated by the Theis (1935) line source
model. The dimensionless pressure solution for this model
is:

Pp=- 'é‘ E(-X) 4

where a positive dimensionless pressure is associated with
pressures below the initial pressure p;, and

0
X=-4-t; (5

and the dimensionless terms are defined as:
kt
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The rest of the terms are defined in the Nomenclature. We
are interested in computing the breakthrough time for the
well doublet presented in Figure 1. The origin of the coor-
dinate system is located at the injection well, hence, the
tracer front moves along the straight line between the two
wells. The distance between the two wells is denoted by d,
and the distance between the location of the tracer front
and the injection well is denoted by x. The Darcy velocity
at a point x away from the injector caused by the constant
rate production well is given by:
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The calculation of % is performed using the formula for

D
the derivative of the exponential integral:
dE(u
AEW) _ 1 ®
du u

In terms of the coordinate system centered at the injection
well, the dimensionless pressure and the spatial derivative
of the dimensionless pressure are:
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The dimensionless rate at the injector starts with a value of ;52 gg
zero and increases with time. At late time, the injection @ 100
rate approaches the production rate and the dimensionless 8 250
rate approaches unity. Figure 3, after Sageev and Horne 5 o~ —{500
(1985a), shows the rate response for various distances ‘A 1000
between the two wells. It takes a long time for the rate 5 2500
response at the constant pressure well to increase. The E 5000
curves in Figure 3 were generated by numerically inverting a
Equation (12) using an algorithm developed by Stehfest
(1970).
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discretize the time domain and assume that during a given Dimensionless Time
time step, the injection rate is constant. Hence, after n time )
steps, we have n flow rates and we apply the method of Figure 41 Discretized dimensionless rate curve, using

different values of Ag before and after initial
injection time.

superposition of constant rate line sources. The dimension-
less pressure derivative at point x, is related to the dimen-
sionless rate by:

p n Agp; o= infinite reservoir. The Laplace space solution, that was
_Q_(X )=Y 29D, Aot (14) presented by Carslaw and Jaeger (1960), Van Everdingen
oxp DD Y xp and Hurst (1949), or by Fetkovich (1980) is:
where Aqp; and fp; are the rates and beginning injection © Pp = M (15)
times of each hypothetical new well, respectively, 'and sKo(‘f;)

xp = x/r,,. This method is visualized in Figure 4, where only
two different Ag;’s are used. A Ag; of 0.08 is used before
tracer injection, and a Ag; of 0.05 is used after tracer injec-
tion. With such a method for discretizing the injection rate

where rp is the dimensionless distance from the constant
pressure source,. and pp is the dimensionless pressure,
defined by

into a set of constant rate changes, we can now calculate P~ Dp;
the velocity, v(x,f), of any fluid particle. Combining this Pp=- (16)
result with the one for the constant rate well, we can use . . Ap

superposition to calculate the velocity of any particle on the
straight line path between the two wells, and thus we can
use fluid flow front tracking to calculate the breakthrough
time for the rate-pressure model. '

where p; is the initial reservoir pressure. Differentiating
Equation (15) with respect to rp yields:

Pp - VsK,(rps)
T sKo(Vs)

7

Velocity for a Constant Pressure Well orp

In this section we present the velocity as a function
of space and time caused by a constant pressure well in an
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Equation (17) is numerically inverted to real space using
the inversion algorithm developed by Stehfest (1970).




Hence, the velocity caused by the constant pressure well is:
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The Steady State Solution

The steady state solution to a rate-pressure well doub-
let is just the same as that for a rate-rate well doublet,
however, approaching steady state is a much slower pro-
cess for the rate-pressure configurations. This slow
approach to steady state is due to the slow rate at which
the constant pressure well approaches a steady state injec-
tion rate. From Menninger and Sageev (1986), the solution
to the steady state breakthrough time for either rate-rate or
rate-pressure doublets is:

2
ty = ——Z"gqq’d 19)

This resulting breakthrough time for the steady state well
doublet can now be compared to transient breakthrough
times.

RESULTS

In this section, we describe the effects of the distance
between the two wells, the rate of injection, the time of
tracer injection, and the additional pressure drop at the in-
jection well on the transient breakthrough time. In the first
portion of the discussion, we concentrate on the rate-
pressure model, where the injection well remains at the ini-
tial reservoir pressure p;. In the second portion of the dis-
cussion, we consider the effects of the additional pressure
rise at the injection well on the breakthrough time.

The Rate-Pressure Model

Consider a rate-pressure model with the foliowing
properties: ¢, = 6 X 107 psi™!, h =20 ft, k = 100 md, ¢ = 0.15,
r.=05ft, and u=1cp. The effects of the rate of injec-
tion, ¢, the distance between the wells, 4, and the initial
tracer injection time, #, are examined in the next few
figures. Figure 5 presents the effects of tracer injection
time. Here, the time from tracer injection is graphed as a
function of the position of the leading front of the tracer.
The plot is cartesian. The top curve represents front track-
ing of a single constant rate producing well in an infinite
reservoir, and the bottom curve represents a steady state
doublet system. These extreme cases are used for com-
parison. We note that breakthrough time for the steady
state case is at 120 days, and is much shorter than the
breakthrough time for just a single constant rate producing
well, that is 330 days. The second curve from the top
represents a case where the tracer is injected at time zero
into the rate-pressure doublet system with a breakthrough
time of 160 days. As the the tracer injection time is de-
layed, the injection rate at the constant pressure well in-
creases, and the breakthrough time decreases. However,
even waiting for 10'® days before injecting the tracer, does
not reduce the tracer breakthrough time to the steady state
case (See Figure 5).

The top curve in Figure 5, representing the front posi-
tion between the two wells caused by only the production
well has an ever reducing slope. Hence, the velocity of the
front increases with time along the particle flow path. The
curves for the rate-pressure doublet have an inflection
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Time from Injection (Days)

point. At short times after tracer injection, the slope of the
curves is small, indicating a high velocity caused by the in-
jection well. As the front moves away from the injector,
the velocity decreases, and goes through a minimum about
midway between the wells. As the front approaches the
production well, the front velocity increases. The high
front velocity at late time is caused by the large pressure
gradients caused by the production well.

In Figure 6, we have the breakthrough times graphed
as a function of the initial injection time in a semi-log for-
mat for the same example previously considered. As the
tracer injection time is delayed, the breakthrough time de-
creases. The bars extending from the breakthrough time
curve represent the time span for which the tracer front
moves from the injection well to the production well along
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Figure 5: Front position for a rate-pressure doublet as a

function of time for different tracer injection
times. Reservoir parameters are: ¢ = 0.15,
u=1cp, ¢, = 6x107 psi™!, k=20 f1, k = 100 md,

r.=05ft.
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Figure 6: Breakthrough times and the dimensionless

rate as a function of initial injection time. The
bars represent the duration of the break-
through time. Reservoir parameters are:
=015 p=1cp, ¢, =6x108psit, h=20f,
k=100 md, r,, = 0.5 f1.
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Figure 7: Breakthrough times as a function of produc-
tion rate for various interwell distances with a
zero tracer injection time. Reservoir parame-
ters are: ¢ =0.15, u=lcp, ¢, = 6x107 psi?,
h=20ft, k=100 md, r,=0.5f1.
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Figure 8: Percent error of the breakthrough times as a

function of production rate for various in-
terwell distances with a zero tracer injection
time. Reservoir parameters are: ¢ =0.15,
1= lep, c,= 6x107 psi”!, h =20 f1, k = 100 md,
r, =05 fr.

the straight line between them. Also the dimensionless rate
of the constant pressure well is graphed in Figure 6.
Points A and B represent the injection time and the arrival
time respectively, for an initial tracer injection time of one
day. As the initial tracer injection time increases, the aver-
age value of gp under the bars representing the duration of
the tracer test increases, and we get a corresponding reduc-
tion in breakthrough time. Hence, the time of tracer injec-
tion has a significant effect on tracer breakthrough time.

Figure 7 is a log-log presentation of the breakthrough
time as a function of production rate for various values of
the interwell distance. All the responses presented in Fig-
ure 7 are for the case where the tracer is injected at rime
zero, for the same reservoir properties discussed before.
The lowermost curve in Figure 7 is for d= 50 fr. As the
production rate increases, the breakthrough time decreases.
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Figure 9: Percent error of the breakthrough times as a

function of production rate for various tracer
injection time and an interwell distance
d =100 fr. Reservoir parameters are: ¢ = 0.15,
W= lcp, ¢, = 6x1078 psi™!, h =20 fr, k = 100 md,
r,=05ft.

For a fixed production rate, the breakthrough time increases
as the interwell distance increases.

In Figure 8, we see that the early time percent error
from the steady state breakthrough times depends both on 4
and on q. We define the percent error as:

Ipy — Uy
___i XIOO

%Error = (20)

tbl,ss

As the production rate increases or as the interwell distance
increases, the deviation from the steady state solution in-
creases. Figure 9 presents the combined effects of the pro-
duction rate and the wacer injection time with a constant
distance between the wells, d = 100 fr. The dependence of
the precent error on the flowrate ¢ reduces as the initial in-
jection time increases. As initial injection time increases,
the rate of the constant pressure well changes less during
the time that the tracer moves from the injector to the pro-
ducer as demonstrated in Figure 6. For example, at
t; = 100 days (about where point B is in Figure 6), ¢p
changes less and less over the length of the bars, until the
bars become so short that they look like a point on the di-
mensionless rate curve, and the rate of the constant pres-
sure well can be considered constant over the duration of
the breakthrough time. When ¢; = 10000 days, as Figure 9
shows, the precent error from the steady state case does not
depend on the production rate.

since the shape of the dimensionless rate curves
varies for each interwell distance, as shown in Figure 3, the
error dependence on d does not disappear as ¢ increases.
As Figure 10 shows, the error curves change shape, but do
not become horizontal, for the emror depends on where ¢;
crosses each dimensionless rate curve (See Figure 3). For
larger d, a constant ¢; line crosses the rate curves in Figure
3 at lower rate values, yielding a transitionary flow period.
Hence, the injection rate varies significantly during the
tracer test, and the precent error from the steady state case
increases. This is also demonstrated in Figure 11, that is a
semi-log graph showing error dependence on initial injec-
tion tdme for varying 4. The error levels off as 1 gets
larger, and, as explained before, the injection rate varies
less during the breakthrough process.
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Figure 10:  Percent error of the breakthrough times as a
function of interwell distance and tracer injec-
tion time for a constant production rate
q =100 b/d. Reservoir  parameters are:
¢=015 u=1ep, ¢ = 6x107¢ psit, h= 20 f1,
k=100 md, r,, = 0.5 fr.

i T T I T T T
2
S =
@
> \
_g \
2
w

g 0 \—

S

bt

E {2500 \
LE |- 1000
e 0 . 500 d (ft) n
Q
g - 100
a. L. 50 q=100b/d
. | ! I ! L1
1e-08 0.0001 0.001 001 0.1 1 10 100 1000 10000
Initial Injection Time (Days)
Figure 11:  Percent error of the breakthrough times as a

function of tracer injection time for various
interwell distances and for a constant produc-
tion rate ¢ =100 b/d. Reservoir parameters
are: ¢=0.15 p=1lep, ¢ =6x100psit,
h=20f1, k=100 md, r,=05f1.

The deviation of the breakthrough time for the rate-
pressure model from the steady state breakthrough time is
significant. This deviation is mainly attributed to the tran-
sient flow conditions around the production well, and to the
slow response of the injection rate at the constant pressure
well. Hence, the first injected tracer particle at the constant
pressure well starts moving in the direction of the produc-
tion well at a lower velocity in comparison to the steady
state case, yielding a longer breakthrough time. One way
in which to increase particle throughput and decrease
breakthrough times in a rate-pressure doublet system is to
create a pressure rise at the constant pressure well. This is
described in the next section.
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Figure 12:  Front position for rate-pressure doublet as a

function of pressure rise at the injection well
for ¢ = 500 bid and zero tracer injection time.
Reservoir parameters are: ¢ =0.2, p = 0.5cp,
= 5%x1076 psz_l, h=20f, k=50 md,
r, =03 fr.

The Rate-Pressure Doublet

The rate-pressure doublet differs from the rate-
pressure model in the boundary condition at the constant
pressure well. In the rate-pressure doublet, we impose a
sudden pressure rise at the constant pressure well. Hence,
the rate of injection at the constant pressure well is a func-
tion of the magnitude of the pressure rise imposed at the
well, and of the response to the constant rate production
well. The rate of injection caused by a constant pressure
well in an infinite reservoir decreases with time, and was
described by Fetkovich (1980). The rate of injection
caused by the constant rate production well increases with
time, as shown in Figure 3.

Figure 12 presents the time from tracer injection as a
function of the tracer front position between the two wells
for various pressure increases at the injection well, denoted
by Ap. The reservoir parameters for the responses present-
ed in Figure 12 are: ¢, = 5x107° psi”!, h=20ft, k= 50 md,
$=02, rn,=03ft, g=500 b/id, d=100f, and pu=0.5cp.
All the curves in Figure 12 are for a tracer injection time
of zero. The highlighted curve in the middle represents the
steady state rate-rate doublet case. The uppermost curve is
for a small pressure rise at the injector of 0.03 psi, yield-
ing a breakthrough time of about 60% larger than the
steady state case. As the initial pressure rise at the injection
well  increases, the breakthrough time decreases
significantly. For a Ap of 9.49 psi, the breakthrough time
is just under the steady state case. For a Ap of 94.9 psi,
the breakthrough time is mainly controlled by the injection
well, and is about 20% of the steady state case.

Figure 13 presents similar curves as presented in Fig-
ure 12, with the tracer injection time at 10 days. The
breakthrough times are slightly lower than the breakthrough
times presented in Figure 12, and the main controlling
parameter remains the magnitude of the pressure rise at the
injection well.

The effects of the initial injection pressure rise at the
injection well is summarized in Figure 14. In this figure,
breakthrough times as a function of the injection pressure
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Figure 13:  Front position for rate-pressure doublet as a
function of pressure rise at the injection well
for ¢ = 500 b/d and for a tracer injection time
of 10 days. Reservoir parameters are: ¢ = 0.2,
1= 0.5cp, ¢, = 5x10° psit, h=20fi,
k=50md,r,=03fi.
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Figure 14:  Breakthrough time as a function of pressure
rise at the injection well for various tracer in-
jection times, and ¢ = 500 b/d and d =100 ft.
Reservoir parameters are: ¢ =02, p=0.5cp,
¢, = 5x107¢ psi!, =20 fr, k=50 md,
r,=03 1.

rise for various tracer injection times are presented. The
horizontal line represents the steady state breakthrough
time. For pressure rises smaller than 7.66 psi (for reservoir
properties described in this section) breakthrough times are
larger than the steady state breakthrough time by about
60%. The effects of the tracer injection time up to 100
days from the start of production is not significant. For
pressure rises greater than 7.66 psi the breakthrough times
for the rate-pressure doublet are smaller than for the steady
‘state case. Large imposed pressure rises at the injection
well dominate the tracer movement along the line between
the two wells.

CONCLUSIONS

In the following conclusions we consider two well
configurations: the rate-pressure model and the rate-
pressure doublet. These two configurations differ in the
imposed constant pressure, Ap, at the injection well. For
the rate-pressure model Ap=0 and for the rate-pressure
doublet Ap > 0. In general, the rate-pressure model yields a
breakthrough time larger than the steady state case. In the
examples considered in this study, we observed that the
breakthrough time may be 50%-100% larger than for the
steady state case. The rate-pressure doublet may yield
breakthrough times that are smaller or larger than the
steady state case depending on the magnitude of the
imposed pressure rise at the injection well. In the
examples considered in this study, we found that the
breakthrough time may be as low as 1/5S of the
breakthrough time for the steady state case.

Rate-Pressure Model:

1.  The breakthrough time reduces as the tracer injection
time, and the production rate increase.

2. The percent error of the breakthrough time from the
steady state case increases as the production rate and
the interwell distance increase.

3. The percent error of the breakthrough time from the
steady state case decreases as the tracer injection time
increases.

4. The percent error of the breakthrough time from the
steady state case for the rate-pressure model can be as
high as 50%-100% for practical cases.

Rate-Pressure Doublet:

5.  Small imposed pressure rises at the injection well
yield breakthrough times similar to the breakthrough
times for the rate-pressure model.

6.  For small imposed pressure rises at the injection well,
the breakthrough times are affected by the tracer
injection time. As tracer injection time is increased,
the breakthrough time decreases.

7. Large imposed pressure rises at the injection well
dominate the space-time velocity of the tracer, and
yield significantly smaller breakthrough times than the
breakthrough times for the steady state model.

8. The effect of the tracer injection time is not
significant when the imposed pressure rise at the
injection well is large in comparison to the steady
state pressure rise.
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NOMENCLATURE

E; =  Exponential Integral

I, =  Modified Bessel function, first kind, n’th order
K, = Modified Bessel function, second kind, n’th order
Ve, = Velocity in the x direction

X = Exponential Integral argument

¢, =  total system compressibility

k =  Formation thickness




k = Permeability
p = Pressure
pp = . Dimensionless pressure, 2rkh(p—p)qp
pp =  Laplace transformation of pp
pi = Initial pressure
Ap =  Imposed injection well pressure rise
g =  Volumetric rate
qp = Dimensionless rate, ¢(t)/quwurc,
gp =  Laplace transformation of ¢,
r =  Radius
rp = Dimensionless radius, r/r,,
r, = Wellbore radius
s =  Laplace variable
t = Time
t,, =  Breakthrough time
- Steady state breakthrough time
tp =  Dimensionless time, kvducs?
x = Distance from injector
xp =  Dimensionless distance, x/r,,
w = Viscosity
¢ =  Porosity
REFERENCES

Carslaw, H.S. and Jaeger, J.C..Conduction of Heat in
Solids, 2nd ed. Oxford University Press, 1960.

Fetkovich, M.J.: "Decline Curve Analysis Using Type
Curves," J. Pet. Tech (June 1980) 1065-1077.

Kruseman, G.P., and De Ridder, N.A.: "Analysis and
Evaluation of Pumping Test Data," International In-
sttute of Land Reclamaton and Improvement,
Wageningen, The Netherlands (1970).

Menninger, W., and Sageev, A.: "Breakthrough Time for
the Source-Sink Well Doublet,” Presented at the
11th Workshop on Geothermal Reservoir Engineer-
ing, Stanford, CA. (1986).

-56-

Mueller, T.D., and Witherspoon, P.A.: "Interference Effects
Within Reservoirs and Aquifers," J. Pet. Tech. (Oct.
1965) 1803-1812.

Ramey, H.J, Jr., Kumar, A. and Gulati, M.S., Gas Well
Test Analysis Under Water Drive Conditions,
American Gas Association, Arlington, VA, (1973).

Sageev, A., and Horne, R.N.: "Pressure Transient Analysis
of Reservoirs with Linear or Internal Linear Boun-
daries,” SPE 12076, Presented at the 58th Annual
Technical Conference and Exhibition, San Fran-
cisco, California (Oct. 1983).

Sageev, A., and Horne, R.N.: "Interference Between Con-
stant Rate and Constant Pressure Wells," Geother-
mal Resources Council, Transactions, v. 9, Part 1I,
573-577. (1985a).

Sageev, A., and Horne, R.N.: "Interference Between Con-
stant Rate and Constant Pressure Reservoirs Sharing
a Common Aquifer," Soc. Pet. Eng. J., 419-426
(1985b)

Stallman, R.W., "Nonequilibrium Type Curves Modified
for Two-Well Systems”, U.S. Geol. Surv,, Ground-
water Note 3, (1952).

Stehfest, H.: "Algorithm 368, Numerical Inversion of La-
place Transforms," Communications of the ACM,
D-5 13, No. 1, 47-49, (Jan. 1970).

Theis, C.V., "The Relationship Between the Lowering of
Piezometric Surface and Rate and Duration of
Discharge of Wells using Groundwater Storage,"
Trans., AGU, 2, 519, (1935).

Van Everdingen, A.F. and Hurst, W.: "The Application of
the Laplace Transformation Flow Problems in
Reservoirs,” Trans., AIME (Dec. 1949) 186, 305-
324.



