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ABSTRACT 

Tracer tests have been an important technique for 
determining the flow and reservoir characteristics in various 
rock mamx systems. While the interwell tracer tests are 
aimed at the characterization of the regions between the 
wells, single-well injection-backflow tracer tests may be 
useful tools of preliminary evaluation, before implementing 
long term interwell tracer tests. 

This work is concerned with the quantitative evalua- 
tion of the tracer return profiles obtained from single well 
injection-backllow tracer tests. First, two mathematical 
models of tracer transport through fractures, have been re- 
viewed. These two model are based on two different prin- 
ciples: Taylor Dispersion along the fracture and simultane- 
ous diffusion in and out of the adjacent matrix. Then the 
governing equations for the transport during the injection- 
backflow tests have been solved. Finally the results were 
applied to field data obtained from Raft River and East 
Mesa geothermal fields. In order to determine the values of 
the parameters of the models that define the transport 
mechanisms through fractures a non-linear optimization 
technique was employed. 

INTRODUCTION 
Reinjection of waste hot water has been commonly 

practiced in many geothermal reservoirs either as a means 
of disposal or as a way to maintain the reservoir pressure 
and liquid volume. In some cases, however, it has been 
observed that the process had detrimental effects such as 
early breakthrough of the injected fluids and reduction in 
the enthalpy ( Home 1982). 

Since both beneficial and detrimental effects are pos- 
sible, for the design of a successful reinjection program, 
the mechanisms of the fluid flow in the reservoir have to 
be understood. Tracer tests have been one of the impor- 
tant tools of studying the flow characteristics of various 
rock matrix systems. The quantitative interpretation of the 
test results can be accomplished through studying the mix- 
ing curves by using mathematical models describing the 
transport mechanism in the reservoir. 

As far as the flow of tracer through porous media is 
concerned, a fairly large number of research results have 
been published ( Ogata and Banks, 1961; Deans, 1963; 
Perkins and Johnston, 1963; Coats and Smith, 1964; Len- 
da and Zuber, 1970; Brigham, 1974; van Genuchten and 
Wieranga, 1976; lvanovich and Smith, 1978; Antunez and 
Brigham, 1984 ). The models developed for the porous 

media flow, however, are not necessarily applicable to 
geothermal reservoirs which are usually highly fractured in 
nature. Recent studies on flow through fractured media led 
to the development of new models describing the physics 
of the tracer transport through fractures. 

Grisak and Pickens (1980) formulated a double 
porosity model combining a convective-dispersive transport 
in the fractures and a diffusive transport in the unfractured 
matrix. A finite element method was developed for simu- 
lating non-reactive and reactive solute transport by convec- 
tion, mechanical dispersion and diffusion in a unidirectional 
flow field. 

In 1981, Rodriguez and Horne presented a theoretical 
study of the one-dimensional convective-dispersive flow 
through fractures. In that work, they derived an expression 
for for the dispersivity in flow through a fracture. Fosswn 
and Horne (1982) applied this model to interwell tracer test 
data obtained from Wairakei, New Zealand with some suc- 
cess. They used a non-linear optimization technique to 
match the model to field data. 

In 1982, from the studies of migration of radionu- 
clides in bedrock surrounding nuclear waste repositories, 
Neretnieks, Erikien and Tahtinen developed a mamx 
diffusion model describing the tracer movement in a single 
fissure in granitic rock. Using this matrix diffusion model 
Jensen and Horne (1983) were able to obtain a better 
match to the data obtained from Wairakei, New Zealand as 
compared to the dispersion model used by Fossum and 
Home (1982). 

So far, interwell tracer tests have been a useful tech- 
nique in determination of the interconnections between the 
injectors and the producers. The single well (injection- 
backflow) tests, on the other hand, have been proposed as 
tools for characterizing the flow field within the radius of 
influence around the injectors. Even though the injection- 
backflow tests are proposed as preliminary evaluation tools 
before the employment of long term interwell tests, the 
amount of information that can be recovered from these 
tests is potentially as much as that can be obtained from in- 
terwell tracer tests. 

In 1982, Downs and his coworkers presented a prel- 
iminary study of the injection-backflow tests conducted at 
Raft River Geothermal Field. Later in 1983, Capuano et 
al. presented the qualitative analysis of the tests conducted 
at both Raft River and East Mesa fields. It was concluded 
that the injection-backflow tracer tests can be successfully 
used to characterize the flow in the near well-bore environ- 
ment. 
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In this work, a theoretical study of the return profiles 
from injection-backflow tracer tests is presented. Both 
convection-dispersion and mamx diffusion models are em- 
ployed in the analysis of the return profiles of both con- 
tinuous injection and spike injection cases. In addition, the 
theoretical results of the continuous injection case are ap- 
plied to the field data from Raft River and East Mesa 
geothermal fields by using a non-linear least squares optim- 
ization technique, in order to determine the effective 
parameters of the tracer transport. 

MATHEMATICAL DEVELOPMENTS 

The injection-backflow tests can be divided into three 
stages (Antunez and Brigham, 1984) : a) Injection period , 
b) Shut-in period, c) Backflow period. However, if the test 
is not aimed at the determination of regional flow beyond 
the test well's radius of influence, it may be completed in 
only two stages, injection and immediate backflowing. 

Since the transport of tracers through geothermal 
reservoirs is primarily through fractures, the success of in- 
terpretive analysis of the return curves depends on the 
understanding the physics of the mixing process during the 
flow. In this work; two mathematical models based on two 
principal mechanisms, dispersion in fracture and the 
diffusion into the matrix, were employed to analyze the 
tracer return profiles from injection and immediate. 
backflowing tests. 

The injection-backflow tests can be conducted by ei- 
ther injecting a tracer fluid of concentration C, continuously 
during the injection period (continuous injection case) or 
injecting a tracer slug followed by the untraced fluid (slug 
or spike injection case ). Here, both continuous injection 
and spike injection cases for both convection-dispersion 
and mamx diffusion models will be considered. 

A- CONVECTION DISPERSION MODEL 

In a fracture, under either laminar or turbulent flow 
the fluid will be transported faster in the center of the frac- 
ture than near the walls. The result of this non-uniform 
"convective" transport is the dispersion of the tracer over 
the region of the transport. Although this convective 
smearing of the tracer gives rise to large concentration gra- 
dients across the narrow width of the fracture, molecular 
diffusion tends to rapidly equalize the tracer concentration 
across the fracture, thus counteracting the effect of convec- 
tive dispersion (Horne and Rodriguez, 1983). 

The combination of the transverse diffusion and con- 
vective dispersion in the flow channel is known as "Taylor 
Dispersion" and was derived by Tayfor (1953) for pipe 
flow. The net result of the Taylor Dispersion is that the 
tracer front propagates with the mean speed of the 
flow. The expression for the net longitudinal dispersivity 
for the flow in a fracture is given by Horne and Rodriguez 
(1983). 

A.l- Continuous Injection Case 

Taylor (1953) presents the equation governing 
effective longitudinal dispersion in an infinite medium. 

azc ac 
fl3=z 

The boundary and initial conditions are: 

c=o at r = O  

c 3 c, as z + - m  

c 3 0  (1s L + -  

The solution to Eq.1 with the above boundary and 
initial conditions is given by Taylor (1953): 

Eq.2 represents the concentration profile during the 
injection period and it is symmetric about x = ut which is 
the average distance traveled by the front. Also the point 
x = ut corresponds to position of the 50 percent concentra- 
tion contour. If L, is the zone of transition in which C, 
changes from 0.9 C, to 0.1 C, , the expression for L, , is 
given by Tayfor (1953): 

L, = 3.62 6 (3) 

Taylor also mentioned that as t increases L, increase pro- 
portionally to 6 whereas the distance traveled by the parti- 
cles of fluid are proportional to r .  Eventually as t increases 
L, become small compared with L = ut which is the distance 
traveled by the moving plane uaveling with the mean speed 
of flow, u. Therefore there is a minimum injection time re- 
quirement for the theory to be applicable. To obtain the 
concentration profile at the end of the injection period, the 
variable r in Eq. 2 is replaced by 9 

The analysis of the injection-bacMow tests is not a 
simple one-dimensional problem, because of the change in 
flow direction during the backflow period. There is also a 
possibility of change in the average flow velocity during 
the backflow period. For these reasons, to obtain the 
backflow period profile the governing equations have to be 
solved with appropriate initial and boundary conditions. 
However, for this specific problem, we will apply a simple 
technique developed by Antunez and Brigham (1983), to 
obtain the solutions. 

In this case, first with the assumption of equal aver- 
age flow velocities during the injection and backflow 
periods, the problem is simplified. The concentration 
profile at the and of the injection period is given by the 
middle curve in Fig. 1. 

The 50 percent concentration point is at a distance of 
x = L to the injection point x = 0, and the profile is sym- 
memc about this point. At this point, first of all, we have 
to remember that the front propagates with the mean speed 
of the flow. To obtain the backflow period solution we 
utilize both the equal injection and backflow average velo- 
cities and the symmeny of the profile. During the 
backflow period we imagine a pseudo-front going away 
from the injection point as if the injection period is con- 
tinuing, while the real front approaches the well. Since the 
injection and backflow velocities are imagined to be equal 
for both real and pseudo fronts, the distance traveled by 
them will also be equal as it is seemin Fig. 1. 

Then the concentration of the pseudo-profile at any 
distance x is given by: 

(4) 
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Figure 1: Dispersion of a sharp interface caused by 
Taylor dispersion. 

If the concentrations of the pseudo-profile are to be calcu- 
lated at x = 2L = 2u5, then when the 50 percent concentra- 
tion of the pseudo-front reaches to x = 2L , the same con- 
centration of the real front will reach to the well which is 
taken as the measurement point. Therefore, the concentra- 
tions measured at the well can be calculated by using the 
pseudo-front concentrations evaluated at x = 2L. The pseu- 
do concentration C, is related to the actual concentration 
C, by: 

where 

A.2- Spike Injection Case 

Using the assumption of equal injection and bacldlow 
velocities and the symmetry of the injection period profile, 
we can find the spike injection case solution as: 

B- MATRIX DIFFUSION MODEL 

When a tracer fluid flows in a fracture, the tracer will 
diffuse into the porous matrix adjacent to the fracture. As- 
suming the porosity $, and the apparent diffusion 
coefficient D, are constant throughout the matrix contacted 
by the fluid the one-dimensional form of the equation of 
the diffusion into the porous matrix is given by: 

When the source of the tracer fluid is discontinued the 
effect will be to flush the fracture and reverse the concen- 
tration gradient causing tracer to migrate from the matrix 
into the fracture. 

Assuming the concentration profile across the fracture 
is evened out due to molecular diffusion, the flow and 
sorption from the water in fracture is represented by: 

The two diffusion coefficients D, and D, in Eq. 7 and Eq. 8 
are related by: 

D e = $ D a  (9) 

Equations 7 and 8 are the system of equations 
describing the physical situation of one-dimensional con- 
vective flow through a fracture with simultaneous tracer 
diffusion into the surrounding porous matrix (Neretnieks, 
1980; Neretnieks et. al. 1982; Jensen. 1983). 

B.l- Continuous Injection Case 

For a constant solute source of C, at x = 0, initially 
the media are saturated with fluids free from the tracer, the 
boundary and initial conditions are given as: 

Cf=C,= 0 at r = O  

Cf = c, ar x = o  

c, = Cf at y = o  

c, + 0 a3 y + -  

If we assume C,, = 1 then the solutions obtained will be the 
concentrations normalized by C,,. At the end of the injec- 
tion period of time 5 , the solutions representing the 
profiles in the fracture and in the porous matrix respective- 
ly are: 

c,= 0 for 'j < 2 
U 

c, = 0 for 9 < 

The injection period profile in the fracture will be as 

U 

in Fig. 2. 
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Figure 2: Dispersion of a sharp interface caused by ma- 
trix diffusion. 
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To account for the change in the direction of the 
velocity vector in the backflow period, the governing 
differential equations have to be modified. The modification 
will be done by utilizing the nature of the injection period 
solution and making a simple coordinate change. 

Looking at the profile at the end of the injection 
period we see that the concentration in the fracture is zero 
after a distance of x = ut, = L, (see Fig. 2). When the origin 
of the new coordinate system is chosen at x = L  and the 
new space variable is defined as z, the injection period 
profile can be expressed in terms of z, by simply replacing 

Now with the new coordinate system, the governing 
x by L - Z. 

differential equation of flow in the fracture becomes: 

where T is the time coordinate, starting from the beginning 
of the backflow period. 

As far as the diffusion of tracer into or out of the ma- 
trix is concerned, there is no change in the conditions for 
constructing the governing equation. Hence, the equation 
remains the same, except for the time variable. 

The boundary conditions are: 

c,=o at z = O  7 2 0  
C,=Cf at y = O  7 2 0  
C p + -  as y-t.0 T t O  

and the initial conditions are given by Eq. 10 and Eq. 1 1  
However, attempts to obtain the real space solutions 

to Equations 12 and 13 failed because of the complexity 
introduced by the initial conditions. Hence, the Laplace 
transformed forms of the initial conditions will be 
preserved, and a solution in the Laplace space will be ob- 
tained. 

The initial conditions in Laplace space are: 

where 
x = L-2 

Now the initial conditions are given by Equations 14 
and 15. Taking the Laplace transform of Eq. 13 with 
respect to the time variable, T, we obtain : 

where 

Eq. 16 is a linear nonhomogeneous differential equa- 
tion and the solution of Eq. 16 is given by: 

- -  
- e  17) C, = Cf e 

Laplace transform of Eq. 12 yields a term containing 
the derivative of Eq. 17 with respect to y. Therefore 
differentiating Eq. 17 with respect to y at y = 0, and substi- 
tuting its derivative into the Laplace transform of Eq. 12, 
we obtain : 

Eq. 18 is also a linear nonhomogeneous differential 
differential equation representing the flow in the fracture, 
and the solution of Eq. 18 is given by: 

where 

m a=- 
6 

B.2- Spike Injection Case 

Applying the same technique .--at was used for the 
continuous injection case, we can find the spike injection 
case solution as: 

APPLICATIONS 

In the previous section, tracer transport models 
through fractures have been discussed and extended for the 
analysis of the return profiles from the single well 
injection-backflow tracer tests. 

Now, the results from the application of the models 
to field data will be presented. Both models were curve 
fitted to four sets of data obtained from two wells in two 
different geothermal fields. The curve fining was done by 
using a non-linear optimization program based on the work 
of G o l d  and Pereyu((1973). Each model has only one 
non-linear parameter to be determined through curve fitting. 
Equations 13 and 20 are analytic only in (z,sp)-space 
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which is two Laplace transformations away from the real 
space. Therefore, three function subprograms were utilized 
to perform a double numerical inversion process by using 
(Srehfesr. 1970) algorithm. 

The first two sets of data were from a well in Raft 
River geothermal field. One of the sets of data was a 4- 
hour injection test and the other was a 48.5-hour injection 
test. The other two sets of data were from a well in East 
Mesa geothermal field. The first one of these sets was a 
7.22-hour injection test and the injection period for the 
second one was 14.22 hours. From the analysis of these 
sets we were able to compare the ability of the models to 
represent the flow in the reservoir, as well as analyze the 
effect of the injection period on the return profiles. 

The results of the curve fittings are shown in figures 
from Fig. 3 to Fig. 10 at the end of this paper. 

Observe that the mamx diffusion model gives better 
fits than the convection-dispersion model does. Also note 
that the convection-dispersion model gives far better results 
on the small injection period tests than it does on the long 
injection period tests. The matrix diffusion model, on the 
other hand, fits all sets of the data equally well and the fits 
are excellent 

One important point to note is that the values of the 
non-linear parameters differed even though they were 
recovered from data on the same well. The non-linear 
parameter of the matrix diffusion model is given by: 

The effective diffusivity D, is a function of temperature, 
porosity, molecular diffusivity and the geometry of the 
rock We assumed that the temperature. the porosity and 
the fracture apermre are constant along the path traveled by 
the tracer fluid. Therefore, the values of the non-linear 
parameters obtained from the analysis of the data sets of 
the same well have to be the same. The reason for the 
differing numerical values can be found in the effects of 
the injection periods. Since the assumption of constant 
fracture aperture and uniform porosity is not absolutely 
hue, the non-linear parameter, a, recovered from the fits 
represents an average value over the distance traveled by 
the fluid. Therefore, the longer the injection period the 
longer the distance traveled by the tracer fluid and, of 
course, the closer the results to the average values of the 
whole domain. 

The poor fits obtained from the application of the 
convection-dispersion model may be explained as follow. 
If the injection time is short, then the amount of the tracer 
diffusing into the fracture will not be high, so the length of 
diffusion. Hence, the main contribution to the dispersion 
within the fracture will come from Taylor Dispersion. As 
the injection period increases, the effect of the interaction 
between the adjacent matrix and the fluid in the fracture 
becomes the dominant mechanism of dispersion. Hence, 
the convection-dispersion model fails to give a good fit to 
the data obtained from the long injection period tests. 

The last point to be considered is the non-unit nor- 
malized concentration value even at the beginning of the 
backflow period, rp = 0, for the fit of convection-dispersion 

model to the data of well 2C which is shown in Fig. 6. In 
order to explain this we need to check the injection time 
constraint explained in section A.l of the mathematical 
developments. Now let’s look at the condition for the in- 
jection time to be satisfied so that the infinite medium solu- 
tion is applicable. From the point of view of numerical 
calculations the argument of the error function must be 
greater than or equal to 2, for the value of the error func- 
tion to be 1. Therefore, to be able to get a unit CD at the 
injection point, the following has to be satisfied. 

If we look at the values given in Fig. 6 we see that: 

a$= 1.33 < 4 (23) 

Now there is two possible explanations can be given for 
this result: 

1) The injection time is not enough for the theory to be 

2) The model itself is not applicable. 
applicable 

Of course, the second explanation is the logical one 
because of the inability of the model to represent the long 
injection period tests as explained above. 

CONCLUSIONS 

This study showed that the injection-backflow tracer 
tests can be used in determining the dispersion characteris- 
tics of the area within the radius of influence of the test 
well. In this study, two mathematical models describing the 
tracer transport in fractured medium were extended to suit 
for the quantitative analysis of the return profiles of 
injection-bacldlow tracer tests. Then the models were used 
to match six sets of field data. From these fits it was seen 
that most of the profiles can be successfully matched by 
the matrix diffusion model, whereas only short term injec- 
tion tests could be fitted by the convection-dispersion 
model. In a short injection-backflow test, the time might 
not be sufficient for the tracer to diffuse far enough into 
the porous matrix to produce an asymmetric and long tailed 
profile. Hence, return profiles of the short injection period 
tests can be matched by the convection-dispersion model as 
well as by the matrix diffusion model. In the case of rela- 
tively high porosity or long injection periods, however, the 
return profiles are, expected to be asymmetric and long 
tailed, therefore, can be matched well only by the mamx 
diffusion model. 

It was observed that the non-linear parameters of 
models determined from fits to different data sets obtained 
from the same well gave different results. The differences 
between the two values of the same parameter were small 
if the differences between the injection periods were not 
large. In the long injection period tests, the information is 
obtained from a larger domain than in the short injection 
period tests. Therefore, the fits to the long injection 
period test data are expected to give better estimations of 
the governing parameters of the transport models. 
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NOMENCLATURE 

Convection-Dispersion Model 

6 : average velocity 
D : molecular diffusivity 
q : dispersivity coefficient 
C : concentration ( mass per unit volume) 
C, : normalized concentration 
x : distance along the flow direction 

: total injection time 
'p : time variable of production period 
ii : slug injection time 
z = x-UI : moving space coordinate 
a : nonlinear parameter of the solution equation 

Matrix Diffusion Model 

C, : concentration in matrix adjacent to fracture 
C, : concentration in fracture 
C, : initial concentration of the traced fluid 
D, : apparent diffusion coefficient 
D, : effective diffusion coefficient 
cp : porosity of adjacent matrix 
x : distance in the flow direction in injection period 
y : distance normal to the flow direction 
z : distance in the flow direction in backflow period 
L = UI, : distance of the front from injection point at 

M : mass of tracer material 
A : area open to flow 
Q : volumetric injection rate of traced fluid 
I, : total injection time 
z : time variable of production period 
p : Laplace parameter corresponding to z 
s : Laplace parameter corresponding to I, 
a : nonlinear parameter of the solution equation 

the end of the injection period 
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Figure 3: The result of curve fitting the convection- 
dispersion model to the data from Well #19 - 
Test 4. 
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dispersion model to the data from Well #19 - 
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dispersion model to the data from Well #2 - 
Test c. 
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Figure 7: The result of curve fitting the mamx diffusion 
model to the data from Well #19 - Test 4. 
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Figure 8: The result of curve fitting the matrix diffusion 
model to the data from Well #I9 - Test 6. 
Correlation between dimensionless boundary 
distance and dimensionless departure time. 
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Figure 9: The result of curve fitting the mamx diffusion 
model to the data from Well #2 - Test a. 
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Figure 10: The result of curve fitting the mamx diffusion 
model to the data from Well #2 - Test c. 
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