PROCEEDINGS, Twelfth Workshop on Geothermal Reservoir Engineering

Stanford University, Stanford, California, January 20-22, 1987
SGP-TR-109

Analysis of Injection-Backflow Tracer Tests
in Fractured Geothermal Reservoirs

I. Kocabas and R.N. Horne

Stanford University, Stanford, CA

ABSTRACT

Tracer tests have been an important technique for
determining the flow and reservoir characteristics in various
rock matrix systems. While the interwell tracer tests are
aimed at the characterization of the regions between the
wells, single-well injection-backflow tracer tests may be
useful tools of preliminary evaluation, before implementing
long term interwell tracer tests.

This work is concerned with the quantitative evalua-
tion of the tracer return profiles obtained from single well
injection-backflow tracer tests. First, two mathematical
models of tracer transport through fractures, have been re-
viewed. These two model are based on two different prin-
ciples: Taylor Dispersion along the fracture and simultane-
ous diffusion in and out of the adjacent matrix. Then the
governing equations for the transport during the injection-
backflow tests have been solved. Finally the results were
applied to field data obtained from Raft River and East
Mesa geothermal fields. In order to determine the values of
the parameters of the models that define the transport
mechanisms through fractures a non-linear optimization
technique was employed.

INTRODUCTION

Reinjection of waste hot water has been commonly
practiced in many geothermal reservoirs either as a means
of disposal or as a way to maintain the reservoir pressure
and liquid volume. In some cases, however, it has been
observed that the process had detrimental effects such as
early breakthrough of the injected fluids and reduction in
the enthalpy ( Horne 1982).

Since both beneficial and detrimental effects are pos-
sible, for the design of a successful reinjection program,
the mechanisms of the fluid flow in the reservoir have to
be understood. Tracer tests have been one of the impor-
tant tools of studying the flow characteristics of various
rock matrix systems. The quantitative interpretation of the
test results can be accomplished through studying the mix-
ing curves by using mathematical models describing the
transport mechanism in the reservoir.

As far as the flow of tracer through porous media is
concerned, a fairly large number of research results have
been published ( Ogata and Banks, 1961; Deans, 1963;
Perkins and Johnston, 1963; Coats and Smith, 1964, Len-
da and Zuber, 1970; Brigham, 1974, van Genuchten and
Wieranga, 1976, Ivanovich and Smith, 1978, Antunez and
Brigham, 1984 ). The models developed for the porous
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media flow, however, are not necessarily applicable to
geothermal reservoirs which are usually highly fractured in
nature. Recent studies on flow through fractured media led
to the development of new models describing the physics
of the tracer transport through fractures.

Grisak and Pickens (1980) formulated a double
porosity model combining a convective-dispersive transport
in the fractures and a diffusive transport in the unfractured
matrix. A finite element method was developed for simu-
lating non-reactive and reactive solute transport by convec-
tion, mechanical dispersion and diffusion in a unidirectional
flow field.

In 1981, Rodriguez and Horne presented a theoretical
study of the one-dimensional convective-dispersive flow
through fractures. In that work, they derived an expression
for for the dispersivity in flow through a fracture. Fossum
and Horne (1982) applied this model to interwell tracer test
data obtained from Wairakei, New Zealand with some suc-
cess. They used a non-linear optimization technique to
match the model to field data.

In 1982, from the studies of migration of radionu-
clides in bedrock surrounding nuclear waste repositories,
Neretnieks, Eriksen and Tahtinen developed a mauwix
diffusion model describing the tracer movement in a single
fissure in granitic rock. Using this matrix diffusion model
Jensen and Horne (1983) were able to obtain a better
match to the data obtained from Wairakei, New Zealand as
compared to the dispersion model used by Fossum and
Horne (1982).

So far, interwell tracer tests have been a useful tech-
nique in determination of the interconnections between the
injectors and the producers. The single well (injection-
backflow) tests, on the other hand, have been proposed as
tools for characterizing the flow field within the radius of
influence around the injectors. Even though the injection-
backflow tests are proposed as preliminary evaluation tools
before the employment of long term interwell tests, the
amount of information that can be recovered from these
tests is potentially as much as that can be obtained from in-
terwell tracer tests.

In 1982, Downs and his coworkers presented a prel-
iminary study of the injection-backflow tests conducted at
Raft River Geothermal Field. Later in 1983, Capuano et
al. presented the qualitative analysis of the tests conducted
at both Raft River and East Mesa fields. It was concluded
that the injection-backflow tracer tests can be successfully
used to characterize the flow in the near well-bore environ-
ment.




In this work, a theoretical study of the return profiles
from injection-backflow tracer tests is presented. Both
convection-dispersion and matrix diffusion models are em-
ployed in the analysis of the return profiles of both con-
tinuous injection and spike injection cases. In addition, the
theoretical results of the continuous injection case are ap-
plied to the field data from Raft River and East Mesa
geothermal fields by using a non-linear least squares optim-
ization technique, in order to determine the effective
parameters of the tracer transport.

MATHEMATICAL DEVELOPMENTS

The injection-backflow tests can be divided into three
stages (Antunez and Brigham, 1984) : a) Injection period ,
b) Shut-in period, ¢) Backflow period. However, if the test
is not aimed at the determination of regional flow beyond
the test well’s radius of influence, it may be completed in
only two stages, injection and immediate backflowing.

Since the transport of tracers through geothermal
reservoirs is primarily through fractures, the success of in-
terpretive analysis of the return curves depends on the
understanding the physics of the mixing process during the
flow. In this work, two mathematical models based on two
principal mechanisms, dispersion in fracture and the
diffusion into the matrix, were employed to analyze the
tracer return profiles from injection and immediate
backflowing tests.

The injection-backflow tests can be conducted by ei-
ther injecting a tracer fluid of concentration C, continuously
during the injection period (continuous injection case) or
injecting a tracer slug followed by the untraced fluid (slug
or spike injection case ). Here, both continuous injection
and spike injection cases for both convection-dispersion
and matrix diffusion models will be considered.

A- CONVECTION DISPERSION MODEL

In a fracture, under either laminar or .turbulent flow
the fluid will be transported faster in the center of the frac-
ture than near the walls. The result of this non-uniform
"convective" transport is the dispersion of the tracer over
the region of the transport. Although this convective
smearing of the tracer gives rise to large concentration gra-
dients across the narrow width of the fracture, molecular
diffusion tends to rapidly equalize the tracer concentration
across the fracture, thus counteracting the effect of convec-
tive dispersion (Horne and Rodriguez, 1983).

The combination of the transverse diffusion and con-
vective dispersion in the flow channel is known as "Taylor
Dispersion" and was derived by Taylor (1953) for pipe
flow. The net result of the Taylor Dispersion is that the
tracer front propagates with the mean speed of the
flow. The expression for the net longitudinal dispersivity
for the flow in a fracture is given by Horne and Rodriguez
(1983).

A.1- Continuous Injection Case

Taylor (1953) presents the equation governing the
effective longitudinal dispersion in an infinite medium.
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The boundary and initial conditions are:

C=0 at t=0
cC-C, as z-—-—oo
C->0 as 200

The solution to Eq.1 with the above boundary and
initial conditions is given by Taylor (1953):

)

Eq.2 represents the concentration profile during the
injection period and it is symmetric about x = wt which is
the average distance traveled by the front. Also the point
x = ut corresponds to position of the 50 percent concentra-
tion contour. If L, is the zone of transition in which Cp
changes from 0.9 Cp to 0.1 Cp , the expression for L, , is
given by Taylor (1953):

Ly=3.62 V¢ 3)
Taylor also mentioned that as t increases L, increase pro-
portionally to Vr whereas the distance traveled by the parti-
cles of fluid are proportional to +. Eventually as t increases
L, become small compared with L = u¢t which is the distance
traveled by the moving plane traveling with the mean speed
of flow, u. Therefore there is a minimum injection time re-
quirement for the theory to be applicable. To obtain the
concentration profile at the end of the injection period, the
variable ¢ in Eq. 2 is replaced by ¢

The analysis of the injection-backflow tests is not a
simple one-dimensional problem, because of the change in
flow direction during the backflow period. There is also a
possibility of change in the average flow velocity during
the backflow period. For these reasons, to obtain the
backflow period profile the governing equations have to be
solved with appropriate initial and boundary conditions.
However, for this specific problem, we will apply a simple
technique developed by Antunez and Brigham (1983), to
obtain the solutions.

In this case, first with the assumption of equal aver-
age flow velocities during the injection and backflow
periods, the problem is simplified. The concentration
profile at the and of the injection period is given by the
middle curve in Fig. 1.

The 50 percent concentration point is at a distance of
x=L to the injection point x=0, and the profile is sym-
metric about this point. At this point, first of all, we have
to remember that the front propagates with the mean speed
of the flow. To obtain the backflow period solution we
utilize both the equal injection and backflow average velo-
cities and the symmetry of the profile. During the
backflow period we imagine a pseudo-front going away
from the injection point as if the injection period is con-
tinuing, while the real front approaches the well. Since the
injection and backflow velocities are imagined to be equal
for both real and pseudo fronts, the distance traveled by
them will also be equal as it is seen.in Fig. 1.

Then the concentration of the pseudo-profile at any
distance x is given by: ’

C 1 x - ut; +t,)
L = - Pty BN 4 4
Co Z”fc[ 2V + 1) ] @
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Figure 1: Dispersion of a sharp interface caused by

Taylor dispersion.

If the concentrations of the pseudo-profile are to be calcu-
lated at x = 2L = 2ut;, then when the 50 percent concentra-
tion of the pseudo-front reaches to x = 2L , the same con-
centration of the real front will reach to the well which is
taken as the measurement point. Therefore, the concentra-
tions measured at the well can be calculated by using the
pseudo-front concentrations evaluated at x = 2L. The pseu-
do concentration C, is related to the actual concentration

C, by:
_ G G 11 oty — t,)
Cp= 0—1 C,—2+2e’f[2 ey )
where
= 4
S

A.2- Spike Injection Case

Using the assumption of equal injection and backflow
velocities and the symmetry of the injection period profile,
we can find the spike injection case solution as:

~a? (-1 )?
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B- MATRIX DIFFUSION MODEL

When a tracer fluid flows in a fracture, the tracer will
diffuse into the porous matrix adjacent to the fracture. As-
suming the porosity ¢, and the apparent diffusion
coefficient D, are constant throughout the matrix contacted
by the fluid the one-dimensional form of the equation of
the diffusion into the porous matrix is given by:

»c, i,
Da—a-yz' =3 @)

When the source of the tracer fluid is discontinued the
effect will be to flush the fracture and reverse the concen-
tration gradient causing tracer to migrate from the matrix
into the fracture.

Assuming the concentration profile across the fracture
is evened out due to molecular diffusion, the flow and
sorption from the water in fracture is represented by:
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The two diffusion coefficients D, and D, in Eq. 7 and Eq. 8
are related by:

D,=¢D, ¢))

Equations 7 and 8 are the system of equations
describing the physical situation of one-dimensional con-
vective flow through a fracture with simultaneous tracer
diffusion into the surrounding porous matrix (Neretnieks,
1980; Neretnieks et. al. 1982; Jensen, 1983).

B.1- Continuous Injection Case

For a constant solute source of C, at x =0, initially
the media are saturated with fluids free from the tracer, the
boundary and initial conditions are given as:

Cr=C,=0 at t=0
Cr=Co at x=0
C,=C at y=0
C,—>0 as y = oo

If we assume C, =1 then the solutions obtained will be the
concentrations normalized by C,. At the end of the injec-
tion period of time f , the solutions representing the
profiles in the fracture and in the porous matrix respective-
ly are:

VD,
G = erfe q’f 1 for 422 (10)
P 1 “
7 u
=0 for rj<%
VD,
C, = erfe [ZT¢%+ Diy ! for 12(11)
¢ 2 lj—i
u
G =0 for tj<-'5

The injection period profile in the fracture will be as
in Fig. 2.
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Figure 2: Dispersion of a sharp interface caused by ma-

trix diffusion.




To account for the change in the direction of the
velocity vector in the backflow period, the governing
differential equations have to be modified. The modification
will be done by utilizing the nature of the injection period
solution and making a simple coordinate change.

Looking at the profile at the end of the injection
period we see that the concentration in the fracture is zero
after a distance of x = w; = L, (see Fig. 2). When the origin
of the new coordinate system is chosen at x=L and the
new space variable is defined as z, the injection period
profile can be expressed in terms of z, by simply replacing
xbyl -z

Now with the new coordinate system, the governing
differential equation of flow in the fracture becomes:

ac,

- U

ar

aC; 2D, 3C,

2 8 9 Jyeo (12)

where 1 is the time coordinate, starting from the beginning
of the backflow period.

As far as the diffusion of tracer into or out of the ma-
trix is concerned, there is no change in the conditions for
constructing the governing equation. Hence, the equation
remains the same, except for the time variable.

d%C,

0. ¥C _ 3
aayz -

et 3
5 (13)

The boundary conditions are:

Cr=0 a z=0 120
Co=C at y=0 120
Cp > as y-—o 120

and the initial conditions are given by Eq. 10 and Eq. 11

However, attempts to obtain the real space solutions
to Equations 12 and 13 failed because of the complexity
introduced by the initial conditions. Hence, the Laplace
transformed forms of the initial conditions will be
preserved, and a solution in the Laplace space will be ob-
tained.

The initial conditions in Laplace space are:

x ~2Dx e
b (14)

[}

I
&
“
o)

(15)

where
x=L-z
Now the initial conditions are given by Equations 14
and 15. Taking the Laplace transform of Eq. 13 with
respect to the time variable, T, we obtain :

3C, -
r PG 1
P D °
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where

_ 2¥D,6 x
T Su

p

Eq. 16 is a linear nonhomogeneous differential equa-
tion and the solution of Eq. 16 is given by:

-9

Laplace transform of Eq. 12 yields a term containing
the derivative of Eq. 17 with respect to y. Therefore
differentiating Eq. 17 with respect to y at y = 0, and substi-
tuting its derivative into the Laplace transform of Eq. 12,
we obtain :

- C
P Cf"Cf+ u%;f- =

2D, 2 s-¥p -Zs
— ..2_ - s u -B\/;
3 { C D, \ID_,(p—S)e e } (18)

Eq. 18 is also a linear nonhomogeneous differential
differential equation representing the flow in the fracture,
and the solution of Eq. 18 is given by:

S 1 2a 1
Cr= s[l+ JE+JEH:+p+2a(\/E+~’E)} (19
where
D, ¢
as=—

B.2- Spike Injection Case

Applying the same technique that was used for the
continuous injection case, we can find the spike injection

case solution as:
[1 .
APPLICATIONS

In the previous section, tracer transport models
through fractures have been discussed and extended for the
analysis of the return profiles from the single well
injection-backflow tracer tests.

Now, the results from the application of the models
to field data will be presented. Both models were curve
fitted to four sets of data obtained from tweo wells in two
different geothermal fields. The curve fitting was done by
using a non-linear optimization program based on the work
of Golub and Pereya (1973). Each model has only one
non-linear parameter to be determined through curve fitting.
Equations 18 and 20 are analytic only in (zsp)-space

=

20 1
p+ Vs || s+ p+ 200 + V5)

(ST

] (20)



which is two Laplace transformations away from the real
space. Therefore, three function subprograms were utilized
to perform a double numerical inversion process by using
(Stehfest, 1970) algorithm.

The first two sets of data were from a well in Raft
River geothermal field. One of the sets of data was a 4-
hour injection test and the other was a 48.5-hour injection
test. The other two sets of data were from a well in East
Mesa geothermal field. The first one of these sets was a
7.22-hour injection test and the injection period for the
second one was 14.22 hours. From the analysis of these
sets we were able to compare the ability of the models to
represent the flow in the reservoir, as well as analyze the
effect of the injection period on the return profiles.

The results of the curve fittings are shown in figures
from Fig. 3 to Fig. 10 at the end of this paper.

Observe that the matrix diffusion model gives better
fits than the convection-dispersion model does. Also note
that the convection-dispersion model gives far better results
on the small injection period tests than it does on the long
injection period tests. The matrix diffusion model, on the
other hand, fits all sets of the data equally well and the fits
are excellent.

One important point to note is that the values of the
non-linear parameters differed even though they were
recovered from data on the same well. The non-linear
parameter of the matrix diffusion model is given by:

(21

The effective diffusivity D, is a function of temperature,
porosity, molecular diffusivity and the geometry of the
rock. We assumed that the temperature, the porosity and
the fracture aperture are constant along the path traveled by
the tracer fluid. Therefore, the values of the non-linear
parameters obtained from the analysis of the data sets of
the same well have to be the same. The reason for the
differing numerical values can be found in the effects of
the injection periods. Since the assumption of constant
fracture aperture and uniform porosity is not absolutely
true, the non-linear parameter, a, recovered from the fits
represents an average value over the distance traveled by
the fluid. Therefore, the longer the injection period the
longer the distance traveled by the tracer fluid and, of
course, the closer the results to the average values of the
whole domain.

The poor fits obtained from the application of the
convection-dispersion model may be explained as follow.
If the injection time is short, then the amount of the tracer
diffusing into the fracture will not be high, so the length of
diffusion. Hence, the main contribution to the dispersion
within the fracture will come from Taylor Dispersion. As
the injection period increases, the effect of the interaction
between the adjacent matrix and the fluid in the fracture
becomes the dominant mechanism of dispersion. Hence,
the convection-dispersion model fails to give a good fit to
the data obtained from the long injection period tests.

The last point to be considered is the non-unit nor-
malized concentraton value even at the beginning of the
backflow period, ¢, = 0, for the fit of convection-dispersion
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model to the data of well 2C which is shown in Fig. 6. In
order to explain this we need to check the injection time
constraint explained in section A.1 of the mathematical
developments. Now let’s look at the condition for the in-
jection time to be satisfied so that the infinite medium solu-
tion is applicable. From the point of view of numerical
calculations the argument of the error function must be
greater than or equal to 2, for the value of the error func-
tion to be 1. Therefore, to be able to get a unit Cp at the
injection point, the following has to be satisfied.

oG24 (22)

If we look at the values given in Fig. 6 we see that:

ot =133 <4 (23)

Now there is two possible explanations can be given for
this result:

1) The injection time is not enough for the theory to be
applicable
2) The model itself is not applicable.

Of course, the second explanation is the logical one
because of the inability of the model to represent the long
injection period tests as explained above.

CONCLUSIONS

This study showed that the injection-backflow tracer
tests can be used in determining the dispersion characteris-
tics of the area within the radius of influence of the test
well. In this study, two mathematical models describing the
tracer transport in fractured medium were extended to suit
for the quantitative analysis of the return profiles of
injection-backflow tracer tests. Then the models were used
to match six sets of field data. From these fits it was seen
that most of the profiles can be successfully matched by
the matrix diffusion model, whereas only short term injec-
tion tests could be fitted by the convection-dispersion
model. In a short injection-backflow test, the time might
not be sufficient for the tracer to diffuse far enough into
the porous matrix to produce an asymmetric and long tailed
profile. Hence, return profiles of the short injection period
tests can be matched by the convection-dispersion mode! as
well as by the matrix diffusion model. In the case of rela-
tively high porosity or long injection periods, however, the
return profiles are expected to be asymmetric and long
tailed, therefore, can be matched well only by the matrix
diffusion model.

It was observed that the non-linear parameters of
models determined from fits to different data sets obtained

.from the same well gave different results. The differences

between the two values of the same parameter were small
if the differences between the injection periods were not
large. In the long injection period tests, the information is
obtained from a larger domain than in the short injection
period tests. Therefore, the fits to the long injection
period test data are expected to give better estimations of
the governing parameters of the transport models.




NOMENCLATURE

Convection-Dispersion Model

& : average velocity

D : molecular diffusivity

1 : dispersivity coefficient

C : concentration { mass per unit volume)
Cp : normalized concentration

x : distance along the flow direction

; - total injection time

: time variable of production period

. slug injection time

z = x-ut : moving space coordinate

o : nonlinear parameter of the solution equation

Matrix Diffusion Model

: concentration in matrix adjacent to fracture
: concentration in fracture

C, : initial concentration of the traced fluid
D, : apparent diffusion coefficient
D, : effective diffusion coefficient

¢ : porosity of adjacent matrix

x - distance in the flow direction in injection period

y : distance normal to the flow direction

z : distance in the flow direction in backflow period

L =u;: distance of the front from injection point at
the end of the injection period

M : mass of tracer material

A : area open to flow

Q : volumetric injection rate of traced fluid

4 : total injection time

T : time variable of production period

p: Laplace parameter corresponding to 1

s : Laplace parameter corresponding to ¢

o : nonlinear parameter of the solution equation
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Figure 7. The result of curve fitting the matrix diffusion
model to the data from Well #19 - Test 4.
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Figure 8: The result of curve fitting the matrix diffusion

model to the data from Well #19 - Test 6.
Correlation between dimensionless boundary
distance and dimensionless departure time,
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Figure 9: The result of curve fitting the matrix diffusion
model to the data from Well #2 - Test a.
1
]
\
.
b ] = 0469 (Iu\)T
»
3 |, = 48.50 hrs
e
a
x
z 0.5 NG
w [
(%)
4 *
Q
o
o *
@ .
- \
a
& v
S ‘ y *
= 0
0 50 100
TIME (hrs)
Figure 10:  The result of curve fitting the matrix diffusion

model to the data from Well #2 - Test c.
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