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ABSTRACT

This paper presents a linear flow water influx analysis
method where the aquifer is separated from the reservoir
by a partially communicating fault. Transient pressure dis-
tributions are considered both in the reservoir and in the
aquifer. Cases where the leaky fault is located within the
aquifer can be analyzed with this model given a superposi-
tion of constant rate flow periods at the oil-water interface.
Constant production rate is specified at the inner boundary,
without inner boundary storage and skin. The partially
communicating fault is modeled as a boundary skin of
infinitesimal thickness having no storage. The aquifer
considered in this paper is infinite in the lateral extent
The problem is posed and solved using the Laplace
transformation, yielding Laplace solutions of the exponen-
tial form.

The solutions presented in this paper, along with a set
of type curves extend the transient linear flow work
presented by Hurst (1958) and by Nabor and Barham
(1964). When the inner region, the reservoir, has an
infinite permeability and a finite storage, it acts like a tank,
where the boundary pressure is equal to average pressure in
the inner region. This case is identical to the linear water
influx model presented by Hurst (1958). When the inner
region has no storage associated with it, the constant inner
boundary rate is transmitted to the second infinite region,
hence yielding the simple linear flow case presented by Na-
bor and Barham (1964).

This paper extends the current solutions by allowing
pressure variations in the reservoir or the inner region as
well as in the infinite aquifer. Also, the model presented in
this paper considers the effects of skin located at the boun-
dary between the two regions of the system that may be
caused by a partially communicating fault separating these
two regions.

INTRODUCTION

Techniques for reservoir performance calculations for
linear and radial water-drive systems have been developed
in a series of papers by van Everdingen and Hurst (1949),
Hurst (1958) and van Everdingen et al. (1953). In such
reservoir performance calculatons, one of the following
two conditions may be encountered:

1. Given a reservoir pressure history, we determine cu-

mulative water encroachment for the reservoir-aquifer
system.

Given reservoir rate history, we determine the pres-
sure decline behavior for the reservoir-aquifer system.
Performing these analyses requires the knowledge of
transient pressure or influx behavior of the assumed
configuration of reservoir-aquifer system. In addition, the
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key assumption is that the average reservoir pressure is
equal to the pressure at the interface between the two
differing regions.

The behavior of linear homogeneous aquifers has
been examined in the literature. Hurst (1958) considered
linear water influx into a hydrocarbon reservoir. In his
model, the material balance equations for the reservoir are
coupled to the transient linear flow diffusivity equation for
the aquifer. Hence, pressure transients in the reservoir are
not accounted for, and the main parameter controlling the
water influx function is the compressibility ratio between
the two parts of the system. Miller (1962) studied the
behavior of closed outer boundary and infinite aquifers. In
his analysis, separate curves were needed for each aquifer
size. Nabor and Barham (1964) extended Miller's (1962)
equations and presented a single working log-log type
curve, that is applicable to any aquifer size. They also in-
cluded the case of constant pressure outer boundary. Non-
homogeneous aquifer responses were generated by Mueller
(1962) using finite-difference techniques. Mueller (1962)
considered linear variations of thickness, permeability or
porosity-compressibility product with distance. Recently,
Ambastha and Ramey (1987) obtained a suite of analytical
response functions for non-homogeneous aquifers. Their
results compared well with Mueller’s (1962) results. Bow-
man and Crawford (1962) presented a method for calculat-
ing transient pressure distribution in linear semi-infinite
water-drive reservoirs having different rock and fluid pro-
perties in each zone.

A true composite system has two distinct regions,
with different properties in each region, as shown in Figure
1. In such a composite system, pressure transients are al-
lowed to develop in both regions. When the inner region
has infinite transmissivity and a finite storativity, it acts like
a tank, where the boundary pressure is equal to average
pressure in the inner region. This case is identical to the
linear water influx model presented by Hurst (1958). If the
inner region has no storativity associated with it, the con-
stant inner boundary rate is transmitted to the second
infinite region, hence, yielding the simple linear flow case
presented by Nabor and Barham (1964). Alternatively, a
composite system with the same transmissivity and stora-
tivity in both regions is identical to the linear semi-infinite
homogeneous aquifer model discussed by Miller (1962),
and Nabor and Barham (1964). Thus, we can view re-
gions I and II as reservoir and aquifer portions respective-
ly, as an analogy to Hurst (1958) model, or consider both
regions as an aquifer system extending across a boundary,
as an analogy to Miller (1962), and Nabor and Barham
(1964) models.

The above discussion implicitly assumes that the
boundary separating the two regions of composite system is




Figure 1: Schematic representation of a composite sys-

tem.

fully communicating. However, since these boundaries
may be created due to geological factors, such as faulting,
facies changes or pinchouts, it is possible that these boun-
daries will resist the flow across them, and be partially
communicating. We model this resistance using the "thin
skin" concept similar to that proposed by Hurst (1953), van
Everdingen (1953), and Carslaw and Jaeger (1959). We
term it “boundary skin" to distinguish it from "wellbore
skin" in the usual sense. In this study we present an
analytical solution to the transient flow problem in a linear
semi-infinite composite system with property contrasts and
boundary skin. Constant rate is specified at the inner
boundary. Though the problem is solved with property
contrasts in the two regions, we mainly present the results
for homogeneous systems with boundary skin. The rela-
tionship of the general model to Hurst (1958), and Nabor
and Barham (1964) models is presented. Late and early
time behavior for special cases are developed. A type
curve is presented for homogeneous systems with boundary
skin. Finally, a modification of Example No. 2 of Nabor
and Barham (1964) has been solved under different model
conditions 10 demonstrate the effects of boundary skin.

MATHEMATICAL CONSIDERATIONS

The geometrical configuration considered is presented
in Figure 2. The dimensionless diffusivity equations
describing the pressure response of a semi-infinite compo-
site horizontal linear system are:

a21701 9Pp
= — for 0<xp<A )
oxp oty b
92 )
Pz o L2 f Asxpse @
ax% n atD
where the dimensionless variables are defined as:
kbh [pi—p1(x,0)]
ppr = —————— 3

gy 1
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Figure 2: Simplified linear composite system.
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The characteristic length of unity is used in the definitions
of dimensionless distance, pressure and time. The associat-
ed initial and outer boundary conditions are:

pp1(xp0) =0 8)
Pp2(xp,0) =0 ®
Pp2(>tp) =0 (10
The inner boundary condition is:
)
Pp1 =1 an
axD =0
The conditions at the skin boundary are:
dpp1 _ -1
= — =] at xp=A 12
) S @p1-Pp2) D (12)
9 9
PD1 - 'PD2 at xp=A (13)
aXD axD
where S, the boundary skin, is defined by:
k,bhip—p,(a,n)]}
S = 1 [px pl( (14)

LJ
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In Equation (14), ¢’ is the flow rate at the boundary that
changes with time. A and M are the dimensionless boun-
dary distance and mobility ratio respectively and are
defined by:

A=42 (15)

1

b _
Ay

1
M= (16)
kypg




The other terms are defined in the nomenclature. Taking
the Laplace transformation of Equations (1), (2), and (10)
through (13) with respect to the dimensionless time, ¢, us-
ing initial conditions of Equations (8) and (9) yields:

d’pp,
—_— —-5pp1 =0 an
dx% PD1
dppy 1
——8sppy =0 (18)
dx%) n PD2
Ppafe,s) =0 19
dbpy
== — 20)
dxp Jxp=0 s
dpy -1 .
Ty =5 Pp1~Pp)) at xp=A  (2])
dppy dpp
= t =A 22
dx, o, 0P @2

The solutions to the ordinary differential Equations (17)
and (18), and the associated boundary conditions, Equa-
tions (19) through (22) are:

Vs

s —
i)_Dl(xD’s) = Cl 14 XD + C2 e XD (23)
Vsm x s x,
Ppaipss) = Cs € Pic,e b 24

The Laplace dimensionless pressure drop at the inner boun-
dary is derived by letting xp, = 0 :

Pp=Ci+C, (25)
C, through C, are given by the following expressions:
D [—1—ﬂ (S«/E—l)]
n
= MsVs 26)
g [(SJE(D—E) - (D+E)] + Vs (D~E)
n
Cr=C+— 27
2 U 27
C3=0 (28)
(D C-ECy)
4= T (29)
~AVsim
—_— e
4
where D and E are given by:
D= e"A‘Is_ 30)
E= eA A\ a31n
Using Equation (27) in Equation (25) yields:
Pwp =2C + —= (32)

sVs
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Solutions for some special cases appear next. From
Equations (23) and (26), M/Vn is recognized as a correlat-
ing parameter for the dimensionless pressure drop in region
I. However, M/¥n is not a correlating parameter for the di-
mensionless pressure drop in region II because of the ap-
pearance of Vs/1 in the exponential argument in Equation
(24).

EARLY AND LATE TIME APPROXIMATIONS

Examination of Equation (26) shows that C;—0 as
s—wo for arbitrary M, n, § and A. Thus, at early time, p.p
is:

—_ 1
=— 33
PwD S‘/; ( )
that inverts to:
’ Ip
Pwp = 2 ? (34)

Equation (34) is the infinite acting homogeneous linear
flow solution that was presented by Nabor and Barham
(1964).

At late time, t—e and s—0. For any set of M, n, §
and A, the expression for 2C at late times is:

1 s 1
26, = = S - (35)
r—N I R
n

since D— 1 and E— 1 as s— 0. From Equations (32) and
(35), the dimensionless Laplace pressure solution simplifies
to:

_ 1 1 S
= ——— o — 6

PwD M s + R (36)

0
that inverts to:

2 Ip

Dwp = M T +S (37
\

For a homogeneous aquifer (M = 1 and n = 1), Equa-
tion (37) reduces to:

,,’D
Pwp =2 ?-G-S

RELATIONSHIP WITH NABOR AND BARHAM MODEL

We saw that the early time behavior of a composite
system with property contrast and boundary skin is given
by the Nabor and Barham (1964) model. Also, Equation
(37) shows that in the absence of boundary skin, proper
combinations of M and 1 such that M/¥q = 1 will result in
a homogeneous semi-infinite linear aquifer solution as
presented by Nabor and Barham (1964). Actually, in such
a case when M = 1 and § = 0, éven the intermediate
time behavior is the same as Nabor and Barham (1964)
model as shown in Figure 3.

(38)

Also, if the inner region has a low storativity associ-
ated with it, a specified real tme corresponds to a large ¢p,
and the system behavior will be given by Equation (37).
Hence, we would have a half slope on a log-log graph
similar to that obtained for Nabor and Barham (1964)
linear semi-infinite aquifer model.
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Figure 3: Comparison with the Nabor and Barham

(1964) model.

RELATIONSHIP WITH HURST MODEL

Equation (17) of Hurst's (1958) paper representing
linear water influx model is:

o 1y Cw 4
=— " S (A 39
Ap N f(AAp) (39)
where

kt
ty = ———m 40
27 opc,12 “

bhoc,,
= 80

NB,ic,

ST =P erfenTp) - 1 + 2Wip/m  (42)

and other terms are defined in Hurst's (1958) paper. In
N our notation, the Hurst (1958) model is represented as:
App=f(A~1p) @3)
where
C
A= (o 1)2 (44)
A (¢c),
kybhAp
Pp=——— (45)
H2q
t
b (46)

tp= ———
27 (0uc, 12

The subscripts 1 and 2 refer to region I (oil zone) and
region II (aquifer zone) respectively. Equation (43) shows
that Hurst (1958) model can be represented by just one
curve if App is graphed against Az, The solid line in Fig-
ure 4 is the Hurst (1958) model. Circles represent the
computation using the general solution developed in this
study with M = 0.001, A = 10, § = 0 and n = 1. The
agreement between the two models shows that the behavior
of the system with a high transmissivity and a finite stora-
tivity in the inner region representing the reservoir is ident-
ical to the linear water influx model presented by Hurst
(1958).
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Figure 4: Comparison with the Hurst (1958) model.
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Figure 5: Effects of boundary skin on dimensionless

pressure responses.

TYPE CURVE DEVELOPMENT

The Laplace solution of Equation (32) was inverted
numerically using an algorithm developed by Stehfest
(1970). Figure 5 examines the effects of boundary skin
with a fixed distance to the boundary. All the curves are
identical at early time as predicted by Equation (34),
representing the infinite acting linear flow period controlled
by the properties of the inner region. The infinite acting
linear flow period is characterized by a one half slope on
the log-log graph. All the curves depart from the infinite
acting behavior at the same time, doubling the slope to uni-
ty, representing pseudo steady state (PSS) depletion of the
inner region. Then, depending on the value of boundary
skin, the pressure response tends to stabilize, joining at late
time the infinite acting linear pressure response. The
higher the value of boundary skin, the longer is the PSS
flow period. Also, the late time curves are separated by
the value of boundary skin, as predicted by Equation (38),
but due to the log-log presentation, the constant difference



Table 1: Late Time Dimensionless Pressure Drop at the
Inner Boundary for Unit Mobility and Diffusivity Ratio

pp (Dimensionless)

Skin 0 10° 10* 100 10°
Ip 10—12 Pp 10_6 Pb 10_6 Pp 10_6 Pp 10_6 Pp 10-6
1 1.128 1.129 1.138 1.228 2.128
5 2.523 2.524 2.533 2.623 3.523
10 3.568 3.569 3.578 3.668 4.568
50 7.979 7.980 7.989 8.079 8.979
100 11.28 11.28 11.29 11.38 12.28
500 25.23 25.23 25.24 25.33 26.3
1
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Figure 6: Dimensionless influx rate across the fault for
different values of skin.
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Figure 7:  Effects of boundary distance on dimension-

less pressure responses.

is not visible. This separation at late time is presented in
Table 1.

Figure 6 presents the effect of boundary skin on the
dimensionless influx rate for a fixed boundary distance.
The dimensionless influx rate is zero at early time, charac-
terizing the infinite acting linear flow period controlled by
the properties of the inner region. The duration of the tran-
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Table 2: Dimensionless Departure Time Data for
Linear Semi-infinite Homogeneous Systems with Boun-
dary Skin

A tD,d \Jth C
10 40 6.32 | 1.581
50 1,000 31.62 | 1.581
100 4,000 63.24 | 1.581
500 | 100,000 | 316.2 1.581
A
Note: C =
‘\thd

sition from an influx rate of zero to one depends on the
value of the boundary skin. As the boundary skin in-
creases, the significant flow across the fault is delayed.
Thus, the pseudo steady state depletion lasts longer for
larger value of boundary skin, as seen in Figure 5. Once
an appreciable influx starts occurring across the fault, the
pressure response tends to stabilize (See Figure 5). Final-
ly, the dimensionless influx rate becomes one that
corresponds to the late time infinite acting linear flow
period. Hence, Figure 6 provides a physical explanation
for the pressure behavior observed in Figure S.

Figure 7 presents the effects of boundary distance
with a fixed value of boundary skin. The departure of the
pressure response from the infinite acting linear flow period
is controlled by boundary distance. As A increases, the
departure time is delayed. Table 2 lists the dimensionless
departure times for different values of A, and a linear corre-
lation between the square root of dimensionless departure
time and dimensionless boundary distance is presented in
Figure 8. This correlation is independent of boundary skin,
and is described by:

A= 1581 V[D’d

The effects of the boundary distance and skin on the
pressure response are presented in Figure 9. Here, the
lowermost thick curve represents infinite linear flow
behavior. The onset of the unit slope representing PSS
flow (or equivalently, the departure of the pressure
response from the infinite acting flow period) is controlled
by the value of the distance to the boundary. The stabil-
ized portions of the curves are controlled by the value of
the boundary skin. The curves in Figure 9 can be correlat-
ed by shifting them horizontally and vertically in some
manner. Figure 10 shows an example of the curve for A =
100 and § = 1000 shifted and matched to the curve for A =
10 and § = 100. Numerically, the two curves match within
less than 0.1%. Thus, the behavior of homogeneous semi-
infinite aquifers with boundary skin is summarized as a
type curve presented in Figure 11 that applies for all values
of A. We arbitrarily chose to correlate all the curves with
the curves for A = 10. Any other choice of A would also
have sufficed.

47

Matching reservoir data to the type curve presented in
Figure 11 offers a method for detecting the boundary and
also determining if there is a skin associated with this
boundary. However, the determination of the values of A
and § is not unique. If we have the distance to the boun-
dary, we can estimate the magnitude of the skin. Also, this
type curve may help examining the possible ranges of A
and § for a given set of data, hence helping in setting some
realistic limits on the distribution of reservoir hetero-
geneities.
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Figure 9: Combined effects of boundary distance and
skin on pressure responses.

EXAMPLE CALCULATION

We solve a modification of Example No. 2 of Nabor
and Barham (1964) for different cases to demonstrate how
to use the type curve of Figure 10. The example involves
estimation of the pressure drop at the aquifer-reservoir
boundary for a constant influx rate of 53.1 bbl/Day over a
91 day time period. Aquifer properties are given in Table
3. We assume the boundary distance to be 1000 ft (ie, A =
1000). To apply Nabor and Barham (1964) model, we as-
sume the aquifer length, L, to be 1000 ft. Thus, for the
Nabor and Barham (1964) model,

; ke
DN+B —
T oucd?
(1.8985) (91)
= =1115 (48)
(0.25) (1) (6.2 x 107%) (1000%)
However, for our model,
5 6
tp = —=— =111.5 x 10 (49)
b duc,
and therefore
1p(10/4)% = 1.1 x 10* (50)
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Establishing S/A as a correlating parameter for
pressure responses.
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Figure 11:  Type curve for linear infinite homogeneous
systems with boundary skin.

Table 3: Aquifer Properties (after Nabor and Barham, 1964)

Property Value

2000 ft
41 ft
300 md
0.25
1cp
6.2 x 1078 psi”!

sFex>w

Calculations required to get pp values at the above ¢p
for different boundary skin values are shown in Table 4.
The values of pp x 10/A are read from the type curve of
Figure 10. An illustration for getting the pp x 10/A values
for the example calculation is shown in Figure 12,

Table 5 shows the results of pressure drop calcula-
tions for different cases. Cases 1 and 2 use the Nabor and
Barham (1964) model and pressure drop is calculated by:

Apn.p = ﬁklb% Pp (p)

_ _(298.1) (1) (1000)
(1.8985) (2000) (41)

pp (tp)
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Table 4: pp from Type Curve for ¢, (10/4)2 = 1.1x10% Equations (51) and (52) are different because of our
definition of pp. There are two points to be made regard-

S 10 S/A | pp x (10/4) Pp ing the pressure drop results in Table 5. The first point is

that we need a large boundary skin to create appreciable
0 0 119.1 1.19 x 10* effect on the influx calculations. Also, the farther the skin
10 10? 207.7 2.08 x 10° boundary, larger the skin needed to create an influx effect.
10° 103 699.7 7.00 x 10* The second point is that ignoring the effect of partially
108 104 1059.1 10.59 x 10* communicating boundaries may result in an incorrect as-

sumption of a closed aquifer that could lead to erroneous

results in reserve estimations and history matching,

The calculated pressure drop for our model in Table 5
Table 5: Pressure Drop Estimations refers to the production boundary (xp = 0). However, Na-
bor and Barham (1964) model gives the average pressure
drop in the inner region. Since our model allows pressure
No. Case Model Ap calc. transients to develop in the inner region, pressure drop will
(psi) be lower as the pressure point moves toward the fault.
Figure 13 shows the pressure responses for different loca-
tions with a fixed boundary distance and skin. The effect
1 Semi-infinite Nabor and 23 of the location of the pressure point on the pressure
Closed, 1000 ft long Barham 214 response is significant at early time. We re-calculated the
pressure drops with our model using different pressure
point locations for the example calculation, presented in

3 §=0 23 Table 6. The average pressure drop is calculated as the the
4 s = 10° New 40 average of calculated pressure drops for the three pressure
5 S =10° Model 134 locations The average pressure drop in any case is close to
6 S =10° (Semi-infinite) 203 the calculated pressure drop at the production boundary

(xp=0). Also, since pressure locations only affect the
pressure response at early time as in Figure 13, it should
be sufficient to calculate pressure drop at the production
boundary using our model for most cases. However, we
Table 6: Pressure Drop Estimations at Different Locations found that xp x (10/A) and § x (10/A) are the correlating
parameters for the pressure responses in the inner region.
Figure 14 shows an example of this correlation with xp x
(10/A) = 5 and § x (10/A) = 10*. Thus, if calculating average

Calculated Pressure Drop, psi Average

Case | Skin Pressure P
2o=0 | x=500 x;=1000 | Drop, psi pressure dl:op were necessary, a type curve for the pressure
3 ) D23 0_22 R 2& responses in the inner region could be developed using xp
2 104 40 39 38 39 x (10/A) and § x (10/A) as the correlating parameters.
5 10° | 134 133 132 133
6 105 | 203 202 202 202.3
7 lew06 1 1 1 1 1 T T T T
55 T AR ERE R AR RN O A I B B I B
5 s S(10/A) - e
2 st 100000 _ PR .
L wn
=] 10000 |— 10000 _] i‘) 1000 |— _
§ = _ =
e 1000 |- 1000 M=1 _ g 100 |- N
z = 9 . =4 g L A=10
3 ok 0 1.1x10 _ § n=1
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a .
. . [=¥)
t,(10/A)*>  (Dimensionless) oo Xp S =10000 |
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Figure 12:  pyx10/A values from the type curve for O 0 100 1000 10000 16+05 16906 fes07 1es08 1es03 1eel® Tevll Iewi2

1pX(10/A)%=1.1x10%, . .
t, (Dimensionless)

Cases 3, 4, 5 and 6 use our model and the pressure drop is Figure 13:

Pressure responses for different locations with
calculated by:

a fixed boundary distance and skin.

= 9%
Ap kbh pp (tp)

=1.915 x 1073 pp, (1p) (52)
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Figure 14:  Establishing correlating parameters for pres-
sure responses in the inner region.
CONCLUSIONS

1.

WO T T T ]

T | I {
lests [~ A= 10, X5 =5, S =10000

The transient pressure behavior of a semi-infinite
composite linear system with property contrast and
boundary skin has been analytically solved. This pa-
per extends the applicability of the presently known
linear influx models. Only constant rate at the inner
boundary has been considered.

Hurst (1958), and Nabor and Barham (1964) linear
influx models are special cases of the new general
model described in this paper.

The departure of the pressure response at the produc-
tion boundary from the infinite-acting linear response
is only controlled by the distance to the boundary. A
linear correlation between the dimensionless boundary
distance and the square root of dimensionless depar-
ture time is presented.

The transition between early and late time infinite act-
ing behavior is explained in terms of the dimension-
less influx rate behavior across the fault. The dimen-
sionless influx rate is zero at early time and ap-
proaches unity -at late time.

The pseudo steady state depletion lasts longer for
larger value of boundary skin. When appreciable
influx starts occurring across the fault, the pressure
response tends to stabilize before reaching late time
infinite acting linear flow behavior.

Boundary skin and the distance to the boundary deter-
mine the pressure response for linear homogeneous
systems. A type curve is presented in Figure 10 in
terms of the correlating parameter 10 §/A. Though the
results are not presented for composite systems with
property contrasts, M/Nm is the other correlating
parameter for .pressure responses in region I, as sug-
gested by Equations (23) and (26).

A large skin is needed to create an appreciable effect
on the influx calculations. However, ignoring the
effect of partial communication at the boundary may
result in the selection of an improper aquifer model
leading to possible errors in reserve estimations and
history matching.
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Different pressure locations in the inner region
significantly affect the pressure responses at early
time. For most cases, calculating pressure drop at the
production boundary should be sufficient.

The pressure responses in the inner region can be

correlated in terms of the parameters xp x (10/4) and
S x (10/A4).
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NOMENCLATURE
A Dimensionless boundary distance
a Boundary distance
b System width
C-C4 Constants in the solutions
¢ Total system compressibility
D.E Parameters given by Equations (30) and (31)
h Thickness
k Permeability
M Mobility Ratio
P Pressure
Pp Dimensionless pressure
Do Dimensionless pressure drop in Laplace space
D; Initial pressure
Pwp Dimensionless pressure drop
q Influx rate
N Boundary skin
s Laplace variable
t Time
tp Dimensionless time
tpg Dimensionless departure time
x Distance
Xp Dimensionless distance

Greek symbols

] Partial derivative

| Diffusivity ratio

A Mobility (Also Hurst model parameter as given by
Equation (41) or (44))

[0} Porosity

n Viscosity

Subscripts

1 Zone 1

2 Zone 2

D Dimensionless

I3 Initial

t Total

REFERENCES

Ambastha, A.K. and Ramey, H.J.,Jr.: "An Analytical Study
in Linear Nonhomogeneous

Bowman, C.H., and Crawford, P.B.: "A Practical Method
for Calculating the Transient Pressure Distribution in
Linear Semi-infinite Water Driven Reservoirs Having
Different Fluid and Rock Properties
SPE Paper 272 (1962).

of Transient

Flow

Aquifers,” SUPRI Tech. Report (to be published).

in Each Zone,"



Carslaw, H.S. and Jaeger, J.S.: Conduction of Heat in
Solids, second edition, Clarendon Press, Oxford (1959)
18-23.

Hurst, W.: "Establishment of the Skin Effect and Its
Impediment to Fluid Flow Into a Well Bore," The
Petroleum Engineer (Oct. 1953) B6-B16.

Hurst, W.: "The Simplification of the Material Balance
Formulas by the Laplace Transformation,”" Trans.
AIME (1958) 213, 292.

Miller, F.G.: "Theory of Unsteady-State Influx of Water in
Linear Reservoirs," Journal Institute of Petroleum
(Nov. 1962) 48, 365.

Mueller, T.D.: "Transient Response of Nonhomogeneous
Aquifers,” Soc. Pet. Eng. J. (March 1962) 33-43.

Nabor, G.W., and Barham, R.H.: "Linear Aquifer
Behavior," J. Pet. Tech. (May 1964) 561-563.

Stehfest, H.: "Algorithm 368, Numerical Inversion of La-
place Transforms,” D-5, Comm. of ACM ,13, No.l
(Jan. 1970), 49.

Van Everdingen, A.F.: "The Skin Effect and Its Influence
on the Productive Capacity of a Well," Trans., AIME
(1953) Vol. 198, 171-176.

Van Everdingen, A.F., and Hurst, W.: "The Application of
the Laplace Transformation to Flow Problems in
Reservoirs," Trans., AIME (1949) Vol. 186, 305.

Van Everdingen, A.F., Timmerman, E.H., and McMahon,
J.J.: "Application of the Material Balance Equation to
a Partial Water-Drive Reservoir," Trans.,, AIME
(1953) Vol. 198, 51.




