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ABSTRACT 
This paper presents a linear flow water influx analysis 

method where the aquifer is separated from the reservoir 
by a partially communicating fault. Transient pressure dis- 
tributions are considered both in the reservoir and in the 
aquifer. Cases where the leaky fault is located within the 
aquifer can be analyzed with this model given a superposi- 
tion of constant rate flow periods at the oil-water interface. 
Constant production rate is specified at the inner boundary, 
without inner boundary storage and skin. The partially 
communicating fault is modeled as a boundary skin of 
infinitesimal thickness having no storage. The aquifer 
considered in this paper is infinite in the lateral extent. 
The problem is posed and solved using the Laplace 
transformation, yielding Laplace solutions of the exponen- 
tial form. 

The solutions presented in this paper, along with a set 
of type curves extend the transient linear flow work 
presented by Hurst (1958) and by Nabor and Barham 
(1964). When the inner region, the reservoir, has an 
infinite permeability and a finite storage, it acts like a tank, 
where the boundary pressure is equal to average pressure in 
the inner region. This case is identical to the linear water 
influx model presented by Hurst (1958). When the inner 
region has no storage associated with it, the constant inner 
boundary rate is transmitted to the second infinite region, 
hence yielding the simple linear flow case presented by Na- 
bor and Barham (1964). 

This paper extends the current solutions by allowing 
pressure variations in the reservoir or the inner region as 
well as in the infinite aquifer. Also, the model presented in 
this paper considers the effects of skin located at the boun- 
dary between the two regions of the system that may be 
caused by a partially communicating fault separating these 
two regions. 

INTRODUCTION 
Techniques for reservoir performance calculations for 

linear and radial water-drive systems have been developed 
in a series of papers by van Everdingen and Hurst (1949), 
Hurst (1958) and van Everdingen et al. (1953). In such 
reservoir performance calculations, one of the following 
two conditions may be encountered: 
1. Given a reservoir pressure history, we determine cu- 

mulative water encroachment for the reservoir-aquifer 
system. 
Given reservoir rate history, we determine the pres- 
sure decline behavior for the reservoir-aquifer system. 
Performing these analyses requires the knowledge of 

transient pressure or influx behavior of the assumed 
configuration of reservoir-aquifer system. In addition, the 

2. 

key assumption is that the average reservoir pressure is 
equal to the pressure at the interface between the two 
differing regions. 

The behavior of linear homogeneous aquifers has 
been examined in the literature. Hurst (1958) considered 
linear water influx into a hydrocarbon reservoir. In his 
model, the material balance equations for the reservoir are 
coupled to the transient linear flow diffusivity equation for 
the aquifer. Hence, pressure transients in the reservoir are 
not accounted for, and the main parameter controlling the 
water influx function is the compressibility ratio between 
the two parts of the system. Miller (1962) studied the 
behavior of closed outer boundary and infinite aquifers. In 
his analysis, separate curves were needed for each aquifer 
size. Nubor and Barham (1964) extended Miller’s (1962) 
equations and presented a single working log-log type 
curve, that is applicable to any aquifer size. They also in- 
cluded the case of constant pressure outer boundary. Non- 
homogeneous aquifer responses were generated by Mueller 
(1962) using finite-difference techniques. Mueller (1962) 
considered linear variations of thickness, permeability or 
porosity-compressibility product with distance. Recently, 
Ambastha and Rumey (1987) obtained a suite of analytical 
response functions for non-homogeneous aquifers. Their 
results compared well with Mueller’s (1962) results. Bow- 
man and Crwford (1962) presented a method for calculat- 
ing transient pressure distribution in linear semi-infinite 
water-drive reservoirs having different rock and fluid pro- 
perties in each zone. 

A hue composite system has two distinct regions, 
with different properties in each region, as shown in Figure 
1. In such a composite system, pressure transients are al- 
lowed to develop in both regions. When the inner region 
has infinite transmissivity and a finite storativity, it acts like 
a tank, where the boundary pressure is equal to average 
pressure in the inner region. This case is identical to the 
linear water influx model presented by Hurst (1958). If the 
inner region has no storativity associated with it, the con- 
stant inner boundary rate is transmitted to the second 
infinite region, hence, yielding the simple linear flow case 
presented by Nubor and Barhum (1964). Alternatively, a 
composite system with the same transmissivity and stora- 
tivity in both regions is identical to the linear semi-infinite 
homogeneous aquifer model discussed by Miller (1 962), 
and Nubor and Barhyn (1964). Thus, we can view re- 
gions I and II as reservoir and aquifer portions respective- 
ly, as an analogy to Hursr (1958) model, or consider both 
regions as an aquifer system extending across a boundary, 
as an analogy to Miller (1962), and Nubor and Barham 
(1964) models. 

The above discussion implicitly assumes that the 
boundary separating the two regions of composite system is 
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Fault 

Region 1 

Figure 1: Schematic representation of a composite sys- 
tem. 

fully communicating. However, since these boundaries 
may be created due to geological factors, such as faulting, 
facies changes or pinchouts, it is possible that these boun- 
daries will resist the flow across them, and be partially 
communicating. We model this resistance using the "thin 
skin" concept similar to that proposed by H u m  (1953), van 
Everdingen (1953), and Carslaw and Jaeger (1959). We 
term it "boundary skin" to distinguish it from "wellbore 
skin" in the usual sense. In this study we present an 
analytical solution to the transient flow problem in a linear 
semi-infinite composite system with property contrasts and 
boundary skin. Constant rate is specified at the inner 
boundary. Though the problem is solved with property 
contrasts in the two regions, we mainly present the results 
for homogeneous systems with boundary skin. The rela- 
tionship of the general model to Hurst (1958), and Nabor 
and Barham (1964) models is presented. Late and early 
time behavior for special cases are developed. A type 
curve is presented for homogeneous systems with boundary 
skin. Finally, a modification of Example No. 2 of Nubor 
and Barham (1964) has been solved under different model 
conditions to demonstrate the effects of boundary skin. 

MATHEMATICAL CONSIDERATIONS 

The geometrical configuration considered is presented 
in Figure 2. The dimensionless diffusivity equations 
describing the pressure response of a semi-infinite compo- 
site horizontal linear system are: 

-- - -  f o r O S x D I A  (1) 
a& 

where the dimensionless variables are defined as: 

(3) 

TOP VIEW 

Region 1 Region 2 

c- =v c- 1 
Constant 

Rate - 
Figure 2: Simplified linear composite system. 

(7) 

The characteristic length of unity is used in the definitions 
of dimensionless distance, pressure and time. The associat- 
ed initial and outer boundary conditions are: 

The conditions at the skin boundary are: 

where S, the boundary skin, is defined by: 

S =  k,bhb'-Pl (aAl 
4*Pl 1 

In Equation (14), q' is the flow rate at the boundary that 
changes with time. A and M are the dimensionless boun- 
dary distance and mobility ratio respectively and are 
defined by: 

(15) 
a A = -  
1 



The other terms are defined in the nomenclature. Taking 
the Laplace transformation of Equations (I), (2), and (10) 
through (13) with respect to the dimensionless time, tD, us- 
ing initial conditions of Equations (8) and (9) yields: 

Solutions for some special cases appear next. From 
Equations (23) and (26), M / f i  is recognized as a correlat- 
ing parameter for the dimensionless pressure drop in region 
I. However, M l f i  is not a correlating parameter for the di- 
mensionless pressure drop in region I1 because of the ap- 
pearance of &iii in the exponential argument in Equation 

(17) (24). 

The solutions to the ordinary differential Equations (17) 
and (18), and the associated boundary conditions, Equa- 
tions (19) through (22) are: 

& XD -& XD 
P D ~ ( x D J )  = c1 e + c, e (23) 

The Laplace dimensionless pressure drop at the inner boun- 
dary is derived by letting xo = 0 : 

FwD = + (25) 

CI through C, are given by the following expressions: 

EARLY AND LATE TIME APPROXIMATIONS 
Examination of Equation (26) shows that C I A  as 

s-+- for arbitrary M .  q. S and A. Thus, at early time, &D 
is: 

that inverts to: 

Equation (34) is the infinite acting homogeneous linear 
flow solution that was presented by Nabor and Barhum 
(1964). 

At late time, t - w  and s a .  For any set of M, q, S 
and A, the expression for 2CI at late times is: 

(35) 
s 1  + - - -  1 

M S A  -s& 6 
2c1 = 

since D+ 1 and E-l 1 as s-1 0. From Equations (32) and 
(39 ,  the dimensionless Laplace pressure solution simplifies 
to: 

that inverts to: 

r 

For a homogeneous aquifer (M = 1 and q = I) ,  Equa- 
tion (37) reduces to: 

P w D  = (38) 

where D and E are given by: 

(30) 
-A& D = e  

E = & &  (3 1) 

Using Equation (27) in Equation (25) yields: 

RELATIONSHIP WITH NABOR AND BARHAM MODEL 
We saw that the early time behavior of a composite 

system with property contrast and boundary skin is given 
by the Nabor and Barhum (1964) model. Also, Equation 
(37) shows that in the absence of boundary skin, proper 
combinations of M and q such that M / f i  = 1 will result in 
a homogeneous semi-infinite linear aquifer solution as 
presented by Nabor and Barhm (1964). Actually, in such 
a case when M / f i  = 1 and S = 0, even the intermediate 
time behavior is the same as Nabor and Barhum (1964) 
model as shown in Figure 3. 

Also; if the inner region has a low storativity associ- 
ated with it, a specified real time corresponds to a large r,,, 
and the system behavior will be given by Equation (37). 
Hence, we would have a half slope on a log-log graph 
similar to that obtained for Nabor and Barhum (1964) 
linear semi-infinite aquifer model. 
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Figure 3: Comparison with the Nabor and Barhum 
(1964) model. 
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RELATIONSHIP WITH HURST MODEL 

linear water influx model is: 
Equation (17) of Hursr's (1958) paper representing 

where 

f(h 6) = elztD e r f c ( h 6 )  - 1 + 2 h G  (42) 

and other terms are defined in Hurst's (1958) paper. In 
our notation, the Hurst (1958) model is represented as: 

where 

(45) 

(46) 

The subscripts 1 and 2 refer to region I (oil zone) and 
region I1 (aquifer zone) respectively. Equation (43) shows 
that Hurst (1958) model can be represented by just one 
curve if hpD is graphed against h f i .  The solid line in Fig- 
ure 4 is the Hurst (1958) model. Circles represent the 
computation using the general solution developed in this 
study with M = 0.001, A = 10, S = 0 and q = 1. The 
agreement between the two models shows that the behavior 
of the system with a high transmissivity and a finite stora- 
tivity in the inner region representing the reservoir is ident- 
ical to the linear water influx model presented by H u n t  
(1958). 

I I I I I 
0 1  I I O  IW laa Imm 

001 

t, (Dimensionless) 

Figure 4: Comparison with the Hurst (1958) model. 
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Figure 5 :  Effects of boundary skin on dimensionless 
pressure responses. 

TYPE CURVE DEVELOPMENT 
The Laplace solution of Equation (32) was inverted 

numerically using an algorithm developed by Stehfest 
(1970). Figure 5 examines the effects of boundary skin 
with a fixed distance to the boundary. All the curves are 
identical at early time as predicted by Equation (34), 
representing the infinite acting linear flow period controlled 
by the properties of the inner region. The infinite acting 
linear flow period is characterized by a one half slope on 
the log-log graph. All the curves depart from the infinite 
acting behavior at the same time, doubling the slope to uni- 
ty, representing pseudo steady state (PSS) depletion of the 
inner region. Then, depending on the value of boundary 
skin, the pressure response tends to stabilize, joining at late 
time the infinite acting linear pressure response. The 
higher the value of boundary skin, the longer is the PSS 
flow period. Also, the late time curves are separated by 
the value of boundary skin, as predicted by Equation (38), 
but due to the log-log presentation, the constant difference 
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Table 1: Late Time Dimensionless Pressure Drop at  the 
Inner Boundary for Unit Mobility and Diffusivity Ratio 

Skin 
lD 

1 
5 

10 
50 

100 
500 

0 I d  104 1 6  
PO lod PO lod PD lod PD lod 

1.128 1.129 1.138 1.228 
2.523 2.524 2.533 2.623 
3.568 3.569 3.578 3.668 
7.979 7.980 7.989 8.079 

11.28 11.28 11.29 11.38 
25.23 25.23 25.24 25.33 

h 

m m 
e, 
d 
0 
.r( 

8 
E 
e 
3 

.r( 

1 o6 
PD lod 

2.128 
3.523 
4.568 
8.979 

12.28 
26.3 

0 
I I O  Irn IMO lm k+O5 lC+C6 lS+W 11+0 k+W 

t, (Dimensionless) 

Figure 6: Dimensionless influx rate across the fault for 
different values of skin. 

le& , I l l l i l l l l l l l l l  

t, (Dimensionless) 

Figure 7: Effects of boundary distance on dimension- 
less pressure responses. 

is not visible. This separation at late time is presented in 
Table 1. 

Figure 6 presents the effect of boundary skin on the 
dimensionless influx rate for a fixed boundary distance. 
The dimensionless influx rate is zero at early time, charac- 
terizing the infinite acting linear flow period controlled by 
the properties of the inner region. The duration of the tran- 

Table 2: Dimensionless Departure Time Data for 
Linear Semi-infinite Homogeneous Systems with Boun- 
dary Skin 

A I  tDd I 4 tDd I C 
10 I 40 I 6.32 I 1.581 

1,000 31.62 1.581 1 il: I 4,000 1 3;i:4 I 1.581 
100.000 1.581 

A Note: C = - 6 
sition from an influx rate of zero to one depends on the 
value of the boundary skin. As the boundary skin in- 
creases, the significant flow across the fault is delayed. 
Thus, the pseudo steady state depletion lasts longer for 
larger value of boundary skin, as seen in Figure 5. Once 
an appreciable influx starts occurring across the fault, the 
pressure response tends to stabilize (See Figure 5) .  Final- 
ly, the dimensionless influx rate becomes one that 
corresponds to the late time infinite acting linear flow 
period. Hence, Figure 6 provides a physical explanation 
for the pressure behavior observed in Figure 5.  

Figure 7 presents the effects of boundary distance 
with a fixed value of boundary skin. The departure of the 
pressure response from the infinite acting linear flow period 
is controlled by boundary distance. As A increases, the 
departure time is delayed. Table 2 lists the dimensionless 
departure times for different values of A, and a linear corre- 
lation between the square root of dimensionless departure 
time and dimensionless boundary distance is presented in 
Figure 8. This correlation is independent of boundary skin, 
and is described by: 

A = 1.581 6 (47) 

The effects of the boundary distance and skin on the 
pressure response are presented in Figure 9. Here, the 
lowermost thick curve represents infinite linear flow 
behavior. The onset of the unit slope representing PSS 
flow (or equivalently, the departure of the pressure 
response from the infinite acting flow period) is controlled 
by the value of the distance to the boundary. The stabil- 
ized portions of the curves are controlled by the value of 
the boundary skin. The curves in Figure 9 can be correlat- 
ed by shifting them horizontally and vertically in some 
manner. Figure 10 shows an example of the curve for A = 

100 and S = 1000 shifted and matched to the curve for A = 
IO and S = 100. Numerically, the two curves match within 
less than 0.1%. Thus, the behavior of homogeneous semi- 
infinite aquifers with boundary skin is summarized as a 
type curve presented in Figure. 11 that applies for all values 
of A. We arbitrarily chose to correlate all the curves with 
the curves for A = 10. Any other choice of A would also 
have sufficed. 

Matching reservoir data to the type curve presented in 
Figure 11 offers a method for detecting the boundary and 
also determining if there. is a skin associated with this 
boundary. However, the determination of the values of A 
and S is not unique. If we have the distance to the boun- 
dary, we can estimate the magnitude of the skin. Also, this 
type curve may help examining the possible ranges of A 
and S for a given set of data, hence helping in setting some 
realistic limits on the dismbution of reservoir hetero- 
geneities. 
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Figure 8: Correlation between dimensionless boundary 
distance and dimensionless departure time. 
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Figure 9: Combined effects of boundary distance and 
skin on pressure responses. 

EXAMPLE CALCULATION 
We solve a modification of Example No. 2 of Nubor 

and B a r h m  (1964) for different cases to demonstrate how 
to use the type curve of Figure 10. The example involves 
estimation of the pressure. drop at the aquifer-reservoir 
boundary for a constant influx rate of 53.1 bbUDay over a 
91 day time period. Aquifer properties are given in Table 
3. We assume the boundary distance to be 1000 f t  (ie, A = 
1000). To apply Nubor and B a r h  (1964) model, we as- 
sume the aquifer length, L, to be 1000 ft. Thus, for the 
Nubor and Barhm (1964) model, 

= 111.5 (48) 
- (1.8985) (91) - 
(0.25) (1) (6.2 x lo4) (1w) 

However, for our model, 

(49) 
kr to = - = 111.5 x lo6 

W C ,  

n '  I IO 100 IDOO iam le& ie+m ilrm icrm lC+o9  IO IC+U IWIZ le113 l r r l l  a 
b (10/A)' (Dimensionless) 

Figure 11: Type curve for linear infinite homogeneous 
systems with boundary skin. 

Table 3: Aquifer Properties (after Nabor and Barham, 1964) 

property I Value 

b 
h 
k 
0 

F w  
Cl 

2000 ft 
41 f t  

300 md 
0.25 
1 CP 

6.2 x 10" psi-' 

Calculations required to get pD values at the above to 
for different boundary skin values are shown in Table 4. 
The values of pD x 1O/A are read from the type curve of 
Figure 10. An illustration for getting the p~ x 1O/A values 
for the example calculation is shown in Figure 12. 

Table 5 shows the results of pressure drop calcula- 
tions for different cases. Cases 1 and 2 use the Nubor and 
B a r h m  (1964) model and pressure drop is calculated by: 

(298.1) (1) (1ooO) 
(1.8985) (2000) (41) PD ( rD)  - - 

and therefore 

rD(10/A)2 = 1.1 x lo4 (50) = 1.915 



Table 4: p D  from Type Curve for t,, (IO/A)’ = l.lx104 

119.1 1.19 io4 
207.7 2.08 x io4 
699.7 7.00 io4 

Model 

Case I 
Table 5: Pressure Drop Estimations 

Ap calc. 
(psi) 

3 
4 
5 
6 

- 1  

s = o  23 

s =  io5 Model 134 
s =  106 (Semi-infinite) 203 

s =  io4 New 40 

Semi-infinite Nabor and 23 
Closed, 1000 ftlong I Barham I 214 

I I I 

Table 6: Pressure Drop Estimations at  Different Locations 

Pressure 

133 132 133 
202 202 202.3 

n m 

U .r. 

2 
.r. t2 
a, 

IC& 

I m m  

- 
- 

I I I I 1 i  
I 10 Im loo0 lmm le& k+O tctm l0.4m k+B letlo 

tD ( 10/A)’ (Dimensionless) 

Figure 12: p+lO/A values from the type curve for 
I$( lO/A)*= 1 . 1 ~ 1 @ .  

Cases 3, 4, 5 and 6 use our model and the pressure drop is 
calculated by: 

Equations (51) and (52) are different because of our 
definition of p ~ .  There are two points to be made regard- 
ing the pressure drop results in Table 5. The first point is 
that we need a large boundary skin to create appreciable 
effect on the influx calculations. Also, the farther the skin 
boundary, larger the skin needed to create an influx effect. 
The second point is that ignoring the effect of partially 
communicating boundaries may result in an incorrect as- 
sumption of a closed aquifer that could lead to erroneous 
results in reserve estimations and history matching. 

The calculated pressure drop for our model in Table 5 
refers to the production boundary (xD = 0). However, Nu- 
bor and B u r h  (1964) model gives the average pressure 
drop in the inner region. Since our model allows pressure 
transients to develop in the inner region, pressure drop will 
be lower as the pressure point moves toward the fault. 
Figure 13 shows the pressure responses for different loca- 
tions with a fixed boundary distance and skin. The effect 
of the location of the pressure point on the pressure 
response is significant at early time. We re-calculated the 
pressure drops with our model using different pressure 
point locations for the example calculation, presented in 
Table 6. The average pressure drop is calculated as the the 
average of calculated pressure drops for the three pressure 
locations The average pressure drop in any case is close to 
the calculated pressure drop at the production boundary 
(XD = 0). Also, since pressure locations only affect the 
pressure response at early time as in Figure 13, it should 
be sufficient to calculate pressure drop at the production 
boundary using our model for most cases. However, we 
found that XD x (lO/A) and S x (lO/A) are the correlating 
parameters for the pressure responses in the inner region. 
Figure 14 shows an example of this correlation with xD x 
(lO/A) = 5 and S x (10/A) = lo4. Thus, if calculating average 
pressure drop were necessary, a type curve for the pressure 
responses in the inner region could be developed using xD 
x (lO/A) and S x (lO/A) as the correlating parameters. 

t, (Dimensionless) 

Figure 13: Pressure responses for different locations with 
a fixed boundary distance and skin. 

= 1.915 x low3 pD (to) (52) 
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Figure 14: Establishing correlating parameters for pres- 
sure responses in the inner region. 

CONCLUSIONS 
1. 

2. 

3. 

4. 

5 .  

6. 

7. 

The transient pressure behavior of a semi-infinite 
composite linear system with property contrast and 
boundary skin has been analytically solved. This pa- 
per extends the applicability of the presently known 
linear influx models. Only constant rate at the inner 
boundary has been considered. 
Hurst (1958), and Nabor and Barhum (1964) linear 
influx models are special cases of the new general 
model described in this paper. 
The departure of the pressure response at the produc- 
tion boundary from the infinite-acting linear response 
is only controlled by the distance to the boundary. A 
linear correlation between the dimensionless boundary 
distance and the square root of dimensionless depar- 
ture time is presented. 
The transition between early and late time infinite act- 
ing behavior is explained in terms of the dimension- 
less influx rate behavior across the fault. The dimen- 
sionless influx rate is zero at early time and ap- 
proaches unity at late time. 
The pseudo steady state depletion lasts longer for 
larger value of boundary skin. When appreciable 
influx starts occurring across the fault, the pressure 
response tends to stabilize before reaching late time 
infinite acting linear flow behavior. 
Boundary skin and the distance to the boundary deter- 
mine the pressure response for linear homogeneous 
systems. A type curve is presented in Figure 10 in 
terms of the correlating parameter 10 SIA. Though the 
results are not presented for composite systems with 
property contrasts, MIJ? is the other correlating 
parameter for pressure responses in region I, as sug- 
gested by Equations (23) and (26). 
A large skin is needed to create an appreciable effect 
on the influx calculations. However, ignoring the 
effect of partial communication at the boundary may 
result in the selection of an improper aquifer model 
leading to possible errors in reserve estimations and 
history matching. 

8. Different pressure locations in the inner region 
significantly affect the pressure responses at early 
time. For most cases, calculating pressure drop at the 
production boundary should be sufficient. 
The pressure responses in the inner region can be 
correlated in terms of the parameters XD x (lO/A) and 
S x (lO/A). 

9. 
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NOMENCLATURE 

A 
a 
b 

c1-c4 

Ct 

06 
h 
k 

M 
P 

P D  

Pi 
PwD 

4 
S 

FD 

S 
I 

ID 
ID,d 

X 

X D  

Dimensionless boundary distance 
Boundary distance 
System width 
Constants in the solutions 
Total system compressibility 
Parameters given by Equations (30) and (31) 
Thickness 
Permeability 
Mobility Ratio 
Pressure 
Dimensionless pressure 
Dimensionless pressure drop in Laplace space 
Initial pressure 
Dimensionless pressure drop 
Influx rate 
Boundary skin 
Laplace variable 
Time 
Dimensionless time 
Dimensionless departure time 
Distance 
Dimensionless distance 

Greek symbols 

a Partial derivative 
q Diffusivity ratio 
h 

0 Porosity 
p Viscosity 

Mobility (Also Hurst model parameter as given by 
Equation (41) or (44)) 

Subscripts 

1 Zone 1 
2 Zone 2 
D Dimensionless 
i Initial 
f Total 
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