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ABSTRACT

Proper application of proven worldwide fracture
determination analyses adequately aids in the de-
tection and enhanced exploitation of reservoir
fractures in The Geysers steam field. Obsolete,
superficial ideas concerning fracturing in this re-
source have guided various malformed judgements
of the actual elusive trends. Utilizing region-
al/local tectonics with theoretical rock mechanics
and drilling statistics, offers the most favorable
method of fracture comprehension. Exploitation
philosophies should favor lateral drilling trends
along local tensional components and under speci-
fic profound drainage/faulting manifestations to
enhance high productivities. Drill core observa-
tions demonstrate various degrees of fracture fill-
ing, brecciation, strain responses, and rock frac-
ture properties, giving the most favorable impres-
sion of subsurface reservoir conditions. Consider-
ably more work utilizing current fracturing prin-
ciples and geologic thought is required to ade-
quately comprehend and economically exploit this
huge complex resource.

INTRODUCTION

Reservoir fracturing in The Geysers field is often
termed as debatable and elusive, yet need not be
when appropriate current tectonic/hydrothermatl
studies are applied. Determination of reservoir
fracture trends and location can be ascertained
through application of methods by Stearns and
Friedman (1972). Utilization of active regional and
local stress fields, active fault and drainage trends,
theoretical rock mechanics, drilling experiences,
oriented drill cores, and borehole televiewer logg-
ing, definitely allow the geologist to determine and
drill high permeability trends and zones. Many
former and current interpretations of Geysers
fracturing use obsolete, superficial geologic
thought, which could be greatly enhanced through
the utilization of correct tectonic principles that
have proven to be very effective in defining reser-
voir fracturing in worldwide fluid energy systems
for the last 35 years.

MEGATECTONICS

The Geysers regional tectonics are excellently por-
trayed by Mclaughlin (1981, Figure 7), where the
steam field lies within a wide shear zone bounded
by the right lateral Maacama and Collayomi Fault
zones (Figure 1). Former Franciscan imbricate
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thrust faults (McLaughlin, 1978, 1981) are assumed
to be inactive and hydrothermally sealed for up to
the last three million years (Hebein, 1985). The
San Andreas system fault scheme of Moody and
Hiti (1956) and a regional strain ellipsoid (Wilcox,
et al., 1973) can now be applied so as to compre-
hend the regional and local stress/strain patterns.

The drainage in Figure | represents segments of
large, deep, near vertical faults and joints in the
earth's crust. Regional/local shears probably tra-
verse through the creeks. Enhanced tectonic strain
induces profound erosion along active fault trends
("creekology").

LOCAL TECTONICS

The strain ellipsoid can be utilized to determine
the local strains within the steam field (Figures 2
and 3). Refer to Thomas (1981, Plate V). Indivi-
dual block rotations within the steam field allow
for various positioning of the strain ellipsoid in
different portions of the Geysers field. Figure 4
illustrates a typical shear model and how the
Geysers drainage mimics potential fault trends.

Some steam field workers continue to profess the
importance of old, imbricate thrust contacts (long
inactive and sealed?) in reservoir permeability, yet
the author downplays any importance and concen-
trates on current active tectonic stresses/strains.
Numerous fluid injection tracer tests demonstrate
reservoir radia! flow out from the injection point
with differing preferential pathlines over various
times, suggesting a thoroughly fractured non-
homogeneous reservoir.

SPECIFIC DRILLING PHILOSOPHIES

Directional drilling beneath creeks in many parts

of the steam field has demonstrated that pro-
foundly enhanced reservoir permeability exists

under .such - drainage (faulting and jointing) trends.
The author proposes (Figure 4) a drilling scheme of
deep lateral penetration parallel to the fields var-
iable tensional components which should intersect
more tension joints and synthetic/antithetic shears
of various orders. Drilling under drainage through
the shear or tensional component is also stressed
whenever possible. Compressional trend and ver-
tical drilling (Hebein, 1985) should be avoided. If
reservoir rock blocks are indeed fractured, this
method will enhance penetration of a maximum
number of permeable zones. Statistically, most
reservoir fractures {main metagraywacke, felsic




intrusions, and sometimes the lithocap) should be
near vertical and follow the three general direc-
tions on the regional strain ellipsoid.

OBSERVED DRILL CORE FRACTURING

Deep oriented drill cores from the Bottlerock area
exhibit fresh vertical tension fractures in an en
echelon fashion and correspond to surface drainage
directional patterns immediately above the core
point(s). Large rock fragments blown up from the
Bottlerock reservoir (top) exhibit profound sericitic
alteration (condensate sealing) with sheared slick-
ensides cemented with realgar. Cores from the
shallow Big Geysers area exhibit sub-vertical and
vertical fractures filled with quartz-pyrite-epi-
dote-chalcopyrite-sphalerite-galena veins, those in
turn fractured and filled with quartz-adularia-
argentite veins. Some sericitization exists in the
rock matrix, suggesting a shallower hot spring
chaotic fracturing environment. Ancient schisto-
sity trends are sealed tight. Small fracture ca-
verns are witnessed. Quartz flooding has enhanced
the already highly brittle nature of the metagray-
wackes. Deep rock fragments blown up from the
Bottlerock reservoir are very similar in nature to
the aforementioned descriptions. Deeper Big
Geysers cores exhibit vertical, enechelon, epidote-
filled tension fractures, in turn shot through by
crosscutting quartz-actinolite-chalcopyrite veins
in systematic mega to mini-breccia fashion.

Cores from the Little Geysers exhibit profound
quartz flooding and sealing of ancient schistosity
trends. Fractures in three or more subvertical to
vertical trends are flooded with quartz-actinolite-
chalcopyrite veins. Sealing is profound. Felsic
intrusive cores from the Little Geysers area are
shot through by tourmaline veins (some small ex-
plosion breccia dikes), those in turn shot through by
quartz veins, those in turn shot through with actin-
olite-quartz veins, those in turn shot through by
sericitic alteration holes (perhaps due to steam cell
sealing). High angle fracture trends run parallel to
one another and also cut across some in a complex
and chootic fashion. Fracture caverns are wit-
nessed.

CONCLUDING REMARKS

Considerably more work is required to adequately
map fracture trends and enhancements in the
Geysers steam field. The complexities of such a
deep, large, completely faulted resource, coupled
with varying personal interpretations of reservoir
fracturing has lead to multi-lined avenues of geo-
logic thought (some non-supportive) among the
resource operators. Acceptance and use of appro-
priate tectonic fracturing principles aligned with
wellfield observations and drilling experiences,
offers the most favorable attitude for the exploita-
tion of any fluid energy resource. Many obsolete
and inadequate ideas concerning field fracturing
must be dismissed in favor of new scientific ap-
proaches for the proper economic exploitation of
steam permeability. The aforementioned discus-
sion offers a realistic and incident-proven approach
to solve the complexing problems of the Geysers
reservoir(s).
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Figure l. A conceptual illustration depicting the regional stresses and strains about the Geysers Steam Field, modified
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/joint displacement and variable block stresses.
numerously throughout the entire Geysers region, indicating very specific stress/

strain patterns of tectonic disruption.
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Figure 3. A localized drainage map in less
profoundly fractured area of the steamfield.
Intersections of specific proposed shears and
tension joints(drainage) are found to provide
enhanced reservoir fracture(near vertical)
permeability when laterally drilled at depth.
Drainage clustering may equate to profound
subsurface tectonic disruption. In the
lower illustration, blocks between drainage
mains may be much less fractured than the
mains, yet are economically viable when
exploited in correct fashion.
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Figure 4. A proposed fieldwide drilling scheme, so as to enhance the number and
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(Hebein, 1985).
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