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ABSTRACT

An important task associated with reservoir
simulation is the development of a technique
to model a large number of fractures with a
single description, Representative elements
must be developed before reservoir scale
simulations can adequately address the
effects of intersecting fracture systems on
fluid migration. An effective element model
will sharply reduce the cost and complexity
of large scale simulations to bring these to
manageable levels, Stochastic analysis is a
powerful tool which can determine the
hydraulic and transport characteristics of
intersecting sets of statistically defined
fractures, Hydraulic and transport
characteristics are required to develop
representative elements,

Given an assumption of fully developed
laminar flow, the net fracture conductivities
and hence flow velocities can be determined
from descriptive statistics of fracture
spacing, orientation, aperture, and extent,
The distribution of physical characteristics
about their mean leads to a distribution of
the associated conductivities. The variance
of hydraulic conductivity induces dispersion
into the transport process,

The simplest of fracture systems, a single
set of parallel fractures, is treated to
demonstrate the usefulness of stochastic
analysis, Explicit equations for
conductivity of an element are developed and
the dispersion characteristics are shown,
The analysis reveals the dependence of the
representative element properties on the
various parameters used to describe the
fracture system,

NOTATION

a depth of fracture into the plane of
the element

b fracture aperture

b average (expected) aperture

c¢(z,t) solute concentration as a function of
z and t

o] gravitational acceleration
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hydraulic conductivity
length of a fracture
expected length of 1

average spacing of fracture centers
in the z direction

absolute viscosity

average spacing of fracture centers
normal to the fracture faces

expectation operator
natural logarithm

probability density function
o~ [In(x/%)12/205?
Pin(x) = 77y X

where x = e{<In x>);

0% = variance of In(x)
= =X/
Pe(x) l/xX X

where iy = mean of x
flow rate

fluid density
préssure

time

length of the element, in z direction

average velocity of fluid 1in a
fracture

width of
fracture

the element, normail to

faces
varfance of 1n(b)

distance along a fracture




NTRODUCTION

This paper addresses an area of reservoir
modeling that has not had significant
exposure in the literature, Specifically,
the development of representative element
models to simulate a small portion of a
fracture system, The main thrust of the
paper 1{s that, given a statistical
description of a fracture system, a large
number of fractures can be modeled with a
sfngle element., These elements can be
combined with other elements and
representations of individual fractures to
form a reservoir scale simulation of
manageable size and cost, A promising
technique for deriving the properties of a
representative element is the analytical
reduction of statistical distributions into
expected values, This technique s known as
stochastic analysis.

The paper provides a brief background of
current research in fractured reservolir
modeling, followed by a discussion of what
parameters may be needed to characterize a
fracture system, The final portion of the
paper is an example of using stochastic
analysis to model a simple fracture geometry,

BACKGROUND

Modeling of fractured medfa has been based on
two primary approaches, continuum and
discrete, These two approaches are briefly
discussed below and compared to a third
approach which contains elements of both.

The continuum approach is based on a lumped
parameter model of the fracture system, where
the continuum 1s composed of representative
elements, These elements model the hydraulic
and transport behavior of a large number of
fractures., For simulations of real fracture
systems, the hydraulic and transport
properties are determined from a statistical
description of the fracture system., A
requirement of the elements {s that they
represent a fracture system that is
sufficiently large such that effects of
individual fractures can not be distinguished
in the response of the model. The scale must
be large enough so that the fractured rock
can be treated as if it were homogeneous.
Consequently, reducing a large number of
fractures to a single representation has
become an active area of research (Dershowitz
1984).

A homogeneous porous medfa approximation is
the most common method of representing a
fracture network as a contfnuum, A major
assumption of the porous media model is that
transport dispersion can be modeled as a
Gaussian random process using a dispersivity
coefficient to determine the variance of
transport about the mean movement, Recently
a number of studies have called into question
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the validity .of the
approximation (Simmons 1982,
Schwartz et al, 1983),

porous media
Dagan 1982,

The discrete approach represents the opposite
end of the spectrum, All fractures which are
considered relevant are modeled as individual
entities. The fractures can be described
from knowledge of the individual fractures in
the system or be a stochastically generated
realization based wupon a statistical
description of the fracture system, The
discrete approach trades the difficulties of
determining a representative element for a
large amount of information processing
required of the model, Presently these
requirements 1imit discrete fracture
simulatfons to reservoirs with few relevant
fractures or small portions of a fracture
system, Discrete fracture simulations are a
promising approach to determining proprieties
for representative elements (Dershowitz 1984,
Long 1985, Schwartz et al. 1983),

At the Idaho National Engineering Laboratory,
a slightly different approach to reservoir
scale simulations of fracture systems is in
development, The dual permeability approach
is a compromise between discrete modeling and
continuum modeling., Dual permeability treats
the most important fractures in the system
discretely and models the rest with
representative elements. Furthermore, by
incorporating most of the fractures into
representative elements, the dual
permeability approach can significantly
reduce the processing requirement of the
simulation, By treating the most important
fractures discretely the complexity of the
representative element {is reduced, The
compliexity of the elements can be controlled
by choosing the level of detail modeled
discretely. In many cases the dual
permeability approach will allow simulation
of reservoirs that are too large for discrete
simulation, yet are dominated by a few major
fractures or faults making the contfnuum
representation impossible., The fracture
system found at the Raft River geothermal
field is an example of a system that is
highly dominated by a few flow channels and
therefore not readily simulated as continuous
media. Figure 1 was generated using
statistical distributions of fracture spacing
based on acoustic televeiwer log data from
Raft River (M{ller et al., 1984),

Figure 1 is the motivating example for this
analysis., In Figure 1 a few large and widely
spaced fractures comprise two dominant
fracture sets, A third set of small closely
spaced fractures completes the flow net, The
first observation to be made from Figure 1 is
the sparse nature of the large fractures., To
model this system with a continuum model
would require a much larger representative
volume than depicted in the figure., The
second observation to note is the large
number of small fractures. A discrete



sfmulation of this system would have to
ignore most of these fractures,
Unfortunately, these lesser fractures may
provide a significant hydraulic connection
between the larger fractures.,

Figure 1: Two-dimensional Representation of a
Fracture System, Spacing Acquired from Raft
River Data,

The figure provides motivation to develop a
two-dimensfonal representative element for a
single set of parallel fractures, the closely
spaced set in Figure 1. The representative
element must simulate the hydraulic
connection provided by this set. It must
also simulate the transport dispersion
characteristics of the fracture set. One
optfon is to develop type curves based on
discrete fracture simulations of various
realizations of the fracture set., The
geometry of a single parallel set of
fractures makes stochastic analysis a viable
tool to develop the element models,

Before proceeding with the model development,
an aside on complexity is in order. This
paper deals with the most simple case which
can be studied analytically, a single set of
parallel fractures. The next level of
complexity fnvolves two fracture sets which
intersect. If these sets are such that few
intersections occur, then the system is
amenable to stochastic analysis, More
complex is two fracture sets with frequent
intersections. Whether these systems can be
solved analytically or must be developed from
dual permeabilfty or discrete simulations is
not clear, Intersections of multiple sets is
probably beyond stochastic analysis. The
power of the dual permeability approach. will
allow these more complex elements to be buflt
up from simpler elements, .This paper treats
the simplest geometry, keeping a general
approach for application to more complex
systems,

FRACTURE SYSTEM CHARACTERIZATION

A statistical description of fracture sets
comprising the system is required before a
representative element model can be
developed. This section identifies the
parameters that may effect the element
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properties, A brief review of current
statistical models is presented along with
the statistical models chosen for this
analysis,

Evans (1983) provides an excellent discussion
of statistical distributions of fracture
parameters., The fracture sets can be
described by probability functions of
location or spacing, extent or size, fracture
aperture, shape, and orientation, Fracture
surface characteristics and fracture
tortuosity may also be important although
these factors are not considered in this
development, Fracture shape may be an
important factor in developing a
representative element., For this treatment
however, fractures are assumed to be all of
the same depth into the plane of the element.

Evans reports the spacing between fractures
found from line samples have been described
as lognormal or exponential, Exponential
spacing results from a uniform random
placement of fractures in space and is
assumed for this study. A lognormal
distribution would have only a minor impact
on the development described below.

The length of fractures is assumed to be
distributed as a negative exponential.
Lognormal length distribution 1is also
commonly used, The lognormal distribution
was investigated but dropped due to the
intractability of the resulting equations.
Orientation is treated as fixed within the
set,

The consequences of different assumptions
about aperture characteristics were easily
studied., The fracture aperture is assumed
variously as a.,)constant, b.)lognormal,
c)proportional to length, and d.,)lognormally
distributed about a mean proportional to
length., In the latter assumption the

. .variance of the logarithm of aperture is
-~ constant,

A lognormal distribution fis
belfeved to result from the multiplicative
effects of different distributions (Hahn
1967}, In this ~1ight, given a
proportionality of mean aperture and length,
a constant varjance of the logarithm seems
the most appropriate assumption for the
aperture,

As p'.re\./i_c(wsfy mentioned fhis paper treats a
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very simple .class of representative
elements, Specifically the element is a
two-dimensional representation of a single
set of parallel fractures. The elements are
rectangles such that two sides are in the
plane of the fracture faces and the other two
sides are normal to the fracture faces
(Figure 2). The normal sides are treated as
constant head boundaries, with the other
sides having a no flow condition,
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Figure 2: Example Representative Element,

The representative element considered here

must simulate pressure response, bulk flow,
and transport, Pressure and flow modeling
require both a capacitive term to model the
pressure response to fluid storage and a
conductive term.

Storage is a bulk property determined for the
reservoir as a whole, The storage of an
individual element is determined by the
reservoir storage multiplying the volume
represented by the element,

Hydraulic conductivity and fluid transport
require more complex analysis than the
storage term, The development of these
properties and their dependence on the
statistical model assumptions are presented
in the next two sections,

HYDRAULIC CONDUCTIVITY

Conductivity requires a calculation of the
average flow through the element for a unit
pressure differential. The parallel fracture
system requires only a conductivity between
the two fixed head sides, More complicated
elements will require a conductivity tenser
in two and three dimensions. A1l fractures
that act as a flow path contribute to the
conductivity., Limiting the model to laminar
flow, the average velocity along a fracture
is related to the pressure drop by (Lamb,
1945)

d¢

v=—g_g_ —
dz

2
2y P

n

The flow is then the cross sectional area of
the fracture times the average velocity. For
constant depth fractures as is normally
assumed in two dimensfonal models, the flow
is proportional to the cube of the fracture
aperture as;

Q=289 d¢
12u dz

The flow through a fracture connecting both
sides of an element of length T fis;
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The conductivity of the fracture is defined

b3a (2)

(3)

“Tbe

as flow per unit pressure gradient or;

9 ps3
lZuba

If the aperture is independent of all other
factors and is lognormally distributed, then
the expected conductivity of a fracture is;

-0 -
k=0Q+3F = (4)

o= ST bl pip(d) db (s
= 29 p3g 9972
<k> 20 b3d e (6)

Equatfon 6 reveals a strong dependence of the
average conductivity upon the variance of the
logarithm of aperture.

The length distribution of fractures also
affects the element conductivity. Only
fractures which connect both sides of the
element contribute to flow in this parallel
system, Consider fractures with centers, Z,
distributed uniformly along the z axis of the
element., The fracture will connect the two
sides only if the length,2 , 1s such that;

2> 2Z 1 Z > T/2 or > 2T=2) 1f Z < T/2.

This criteria is symmetric about T/2.

For a negative exponential distribution of
fracture length, the distribution function of
connecting fractures becomes

1 (-T) -2/y, for T
A A (7

z

=0 for o«&T
For fractures with aperture unrelated to
length and expected fracture spacing,*s , the
conductivity of the element is
19§72 e/l
>‘s 12u )‘Z
The expression for conductivity in Equation 8
has the units of a material property (i.e.
conductivity per unit area normal to the
direction of flow). The conductivity of the
element is not a material property, It is a
measure of the effective hydraulic
conductance of a specific element, Equation
8 reveals that the effective conductivity of
the element decreases exponentially with
separation T due to the exponential length
distribution of fractures,

P(e) =

<k> =

The above assumption that aperture fis
independent of fracture sfze 1{is not
realistic. The following development
assumes that the aperture 1s a direct
function of the length as;

b = a?
(9)
The expected conductivity of an element is

<k> = 1 0g IT aalap(ﬂ,) dg

s 120 (10}
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Figure 3 presents a comparison of the
sensitivity of conductivity to element
length, T, for apertures correlated and
uncorrelated to fracture length, Figure 3
makes ft clear that more attention needs to
be payed to mean fracture length if apertures
are assumed to be uncorrelated with length,
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Figure 3: Sensitivity of Conductance to
Element Length.

If aperture is related to fracture size by a
lognormal distribution where b = g and o2 =
constant

1 e-[In(b/82)1°/202
(12)

b:t) =
P(b:2) (2mo2)% b
now
<k> =

Loeg (7 (7 pap(bra)p(g) db dr (13)
s 12u£r [, bp(b:e)p(2)

which is identical to the 2d'lrect
proportionality case with o= ge30/2

The conductivities developed above are the
expected values for elements of width W, It
is important to consider. the effect of the
width of the element on the varfance of the
conductivity. The varifance of the
conductivity of the fractures increases
proportionately to the expected number of
fractures, W/Ag contained by the element.
The variance in the number of fractures
represented by the element is also W/Xg for
an exponential spacing of fractures (Parzen
1962), These variances of the element
conductivity are independent and therefor
additive, The conductivity of the elements
also increase linearly with W/Xg which means
the relative varfance deceases l1inearly with
the element width,

As mentioned earlier, the conductivity
determined in this analysis has the units of
a material property but is a measure of the
expected conductivity of a specific geometry,
The representative element properties are
strictly modeling tools and should not be
construed as a measure of physical

A -
a3 = [T46T2Ag+18TAp+240gJe /2y,
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properties,

JRANSPORT

Once fluid enters a fracture in this system,
it remains in the fracture until it reaches
the end of the element, Consider a pulse of
solute entering the element at time zero.
Following the development presented by
Simmons (1982), the distribution of the
expected concentration as a function of time
and the distance along the element is:
c(z,t) = [ &(t-z/v)p(v)dv = p (z/t) (1 &)

o
The distribution (dispersion) of the pulse is
simply a scaled version of the velocity
profile. To model the element, the time
distribution of breakthrough is needed,
Replacing Z by T

c(T,t) = p(T/t) (15)
Using Equation 1,
= 09 2 8¢
GRS . (16)
= (22)"1 (A8 )1 p-2
t= (3 (RF) b (17)

The transit time t {is therefore directly
related to aperture.and

p(t)dt = p(b)db (18)
From 17,
db = 1/2 (§5)7% (F) 7 72 ar A9

Given a lognormal aperture distribution as in

the first of the three conductivity
calculations,
-[in(t/2)1%/2042
P(t) = 15 ¢ (20)
(2rot7)% t

Where;

< Ap 2

t=91-g-u- %’-bz and ot” = go? (21)

The transit time for a solute packet can be
found using the Monte .Carlo technique, The
effect of the Poiseuille profiles can be
incorporated into a Monte Carlo simulation by
dividing the transit time by a generated
velocity ratio from the Poiseuille velocity
distribution, The distribution function is;

- Y
Pv) = 1/3 (1-2Y/3 )

Where Y = the ratio of the velocity at a
random position in the fracture to the mean
velocity.

(22)

Equatifons 23 and 24 present the distribution
function for transport given a linear




correlation of aperture and fracture length.

U2 e o-thsang 23D
P(t) = ———
2a% 1A}
Where, .
Jleg. Ab 7
1M2n 72 (24)

When aperture is lognormally distributed
about a fracture length dependent mean,
Equatfon 25 defines the probability
distribution of velocities, Equation 25 does
not yield a closed form solution and must be
evaluated numerically.

p(b) = " P(b:2)P(2) d2 (25)
T

CONCLUSIONS

The Dual permeability approach to reservoir
scale simulation has some 1important
advantages over discrete fracture simulation
or the continuum approach, These advantages
are embodied in the ability to adjust the
degree of complication treated discretely
versus the complexity of the representative
elements, Further, some reservoirs may be
simulated by only a dual permeability model.

The dual permeabflity approach will provide a
more robust simulation capacity because the
technique does not require homogenefty of the
elements, It will allow the modeler to treat
highly important fractures discretely and yet
retain full informatfon of the influence of
the minor fractures,

The primary research, needed to be performed
to develop dual permeability modeling, is the
development of representative elements, This
study involved the simplest of fracture
systems to be modeled as a representative
element. The study provided a complete
description of the hydraulics and transport
properties of this class of two dimensional
elements, These elements can be used in a
dual permeabflity model which simulates
transport of solute as discrete particles,

Even these simple elements can provide a
significant reduction in simulation cost.
More complicated elements can also be
created, although some tough problems need to
be addressed. The first hurdle is the
description of a fracture intersection, both
hydraulically and in terms of transport.
Fracture 1interactions will dintroduce

transition probabilities into the transport
equatfon, Once the simple elements have been

“described, more compliicated elements may be

amenable to analytic development, If not, a
dual permeability model can be used to
empirically find the element properties as is

‘now done to develop continuum models,
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