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ABSTRACT

This paper presents a transient pressure
analysis method for analyzing the rate decline of a
constant pressure well producingin an infinite double-
porosity reservoir, without wellbore skin. This analysis
method may be used to interpret well test rate data,
and to compute the rate behavior of an infinitely act-
ing reservoir that is being produced at constant pres-
sure.

The development of the pseudo steady state
bg-log type curve is presented along with a
hypothetical example of its use. This type curve
allows the estimation of the two controlling parame-
ters in double-porosity systems: A and w. The first
perameter, A describes the Interporosity flow, and
the second parameter, & describes the relative frac-
ture storatlvity. This paper considers the estimation
of these two parameters. The estimations of per-
meabillties and storativities have been described in
the past, hence, are not considered.

In a double-porosity system, with pseudo steady
state Interporosity flow, the initial infinite acting rate
decline, representing only the fracture system, is foi~
bwed by a constant rate flow period. The length of
this constant rate flow period is controlled by the
parameter w. The beginning of this period is con-
trolled by the interporosity flow parameter, A Follow-
ing this constant rate period, the rate resumes an
Infinite homogeneous decline, representing the total
system, fractures and matrix. The parameters A and
w may be estimated from a log-log match of rate data
to the type curve.

A comparison between rate responses of two
translent flowing matrices and the pseudo steady
state matrix Is presented. Transient Interporosity flow
allows the matrix to Increase the well flowrate in the
early and transition portions of the flow. The final
decline, representing the total system, is identical to
the decline with a pseudo steady state matrix.

INTRODUCTION

Decline curve analyses are used to interpret
rate-time data, estimate reservoir properties, and
then, compute the future behavior of the system. The
decline in the rate of production with time, be it a sin-
gle well or an entire reservoir, when produced under a
constant pressure drawdown, has been described In
the literature 178, Fetkovich? introduced the concept
of "transient decline” and "depletion decline", by
merging 4rps depletion decline with the transient
solution for a finite wellbore in a cbsed outer boun-
dary radial reservoir. The transient period of the rate

response occurs before the closed outer boundary
effects are significant, and the reservoir appears to
infinite in lateral extent.

As naturaliy-fractured reservdirs were con-
sidered, it became evident that fluid flows both in the
fractures and in the matrix blocks. Barenblatt and
Zeltov? presented a double-porosity model where the
diffusion equation applied to the fractured medium
and the fluid stored in the matrix flowed into the frac-
tures at a pseudo steady state condition. Warren
and Root? introduced two parameters characterizing
the flow In a two porosity system: the interporosity
flow parameter, A, and the relative fracture storage
parameter, w.

Mavor and Cinco-Ley®, Da Prat et al'%, and
Raghavan and Ohaeri!! introduced the concept of
decline curve analysis in double-porosity systems.
They considered the rate-time behavi¢r of a constant
pressure well in an infinite or closed outer boundary
radial system.

The response of a double-poresity reservoir
depends on the type of interporosity flow. Transient
Interporosity flow was considered for various matrix
shapes: slabs?:13, spheres!3, and cylihders!*. Ragha-
van and Ohaeri!! considered decline curve analysis
for both the Warren and Root® pseudo steady state
model and the transient Interporosity flow model.
Also, Moench!31® considered a generalized solution to
the interporosity flow, introducing the concept of
fracture skin. Moench!®'® showed that pseudo
steady state interporosity flow occurs when a large
fracture skin is present, and the transient Interporos-
Ry flow as previously considered occurs when frac-
ture skin is not present.

This paper presents a log-logtype curve match-
ing technique for estimating A and @ from rate-time
data taken during a constant-pressure well test in a
double-porosity reservoir with pseudd steady state
matrix flow. Comparisons between the pseudo steady
state and the transient interporosity flow models are
presented.

MATHEMATICAL MODEL

The mathematical description of the behavior of
double-porosity systems has been described in the
past?’ 2%, In developing the model, it is assumed that
the reservoir is Infinitely large, the fluid is slightly
compressible with a constant compressibility, gravita-
tional forces are negligible, the porosity and per-
meabilities of the fractures and the matrix are not
functions of pressure , and that the fluid enters the
well through the fractures.
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Deruyck et al'® observed that the pseudo
steady state and the transient interporosity flow
models may be handled in a similar mathematical way.
They presented the fracture pressure equation!®29;

kf o _ 8p, .
P Vep, = [‘P#Ct]f m (1)

where the terms are defined in the nomenclature. The
Laplace transformation of the dimensionless form of
equation 1, making use of the Initial condition

Pr = Pm = p; ,Yields®10:

d%p,p 1 dfyp
er""’ + ; er - Sf (S)P’D =0 (2)

for which the Laplace dimensionless rate solution for
a constant pressure inner boundary is:

G IQINASTION)
= sKo(V5f (3))

()

ﬁfp(rp.s) and §p are the Laplace transformations of
p,p(rp,tp), and gp respectively. The dimensionless
groups are defined as:

Pip = H‘L— (4)

gp = k,h(p‘.B‘- Pup) (5)

= kpt ©
[(;aVc,), + (¢Vc,),,,]urj

Tp = ;r:- 4]

The variable f(s) depends on the assumed
interporosity flow model. For the pseudo steady state
model:

Lol —w)s + A
f(s)__——_(1—o)s+)\ (8)

For the transient interporosity flow model, with slab-
shaped matrix!92¢;

rs)=ow+ -3}‘?-0. tanh(a) (8)
where: a = '\/_3-(1'—:;3)E

For the transient interporosity flow model, with slab-
shaped matrix and with matrix skin13:18;

a tanh(a) ]

A
1+Spa tanh(a)J

3s

J(s)=ow+ (10)

For the transient interporosity flow model, with
spherically-shaped matrix 1218,

ot 2
JGs)=w Bs b coth(b) (11)
where: b = \/-1_5(_1':'5)?
A

For the translent interporosity flow model, with
spherically-shaped matrix and with matrix skin%:18;

AL b coth(b) =1 ]
T)=0+ 51 T 5,1 b coth() =1 ﬂ(’z)

The parametersw and A are defined as: .

_ (die)
Y= G, + (e, (%)
A=a-klr,§ (14)

ky

and the other parameters are defined in the nomen-
clature.

For the pseudo steady state interporosity flow,
the value of f(s) takes on three distinct approxima-
tions. At early times, {-0,s-=, f»o, and Eq. 3
inverts to!%:

1
VAt |'E
= [u (18)

At intermediate times, A controls the flow, 3 +A/s,

and Eq. 3 Inverts to:
VXK (VX)
= — 16
D= TRAVR) e

At late times, t-= ,s§20, f-»1 and Eq 3 inverts
to!01%

W = 1 (17)

3 r
5 Intp + 0.800]

At intermediate times for the transient inter-
porosity flow with a matrix skin of Sp >0.33,
J€s) » A/ 35p, and Eq. 10 inverts to:

—x_ ‘

———

35y K 35y

Ko/ 35p

The Laplace dimensionless rate soilition is numer-
ically inverted using the algorithm developed by Steh-
Jest?L,

gp = (18)
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TYPE CURVE

In this section, the log-log type curve for the
pseudo steady state interporosity flow is presented,
followed by a comparison between the pseudo steady
state and the transient interporosity flow models. In
contrast to a single porosity homogeneous system,
there are two parameters controlling the flow in the
system, w and A

The effects of & and A on the rate response are
now considered. Figure 1 presents two cases with
different w and the same A. The case where v = 1is
a single-porosity system, and A has no effect on the
rate response, yielding the lower curve. When o <1,
the rate response is different. At a certain time, the
rate becomes asymptotic to a constant, and only
after a period of time resumes its decline. The early
decline represents the flow only in the fractures. This
decline starts with a slope of -1/2, as described
by Eg. 16. The transition flow period, represents an
increasing amount of flow from the matrix into the
fractures. The constant rate during the transition
flow period is given by Eq. 16. The second decline
occurs when the pressure in the matrix and in the
fracture at a given spatial point are practically identi-
cal. This is the total system decline, for which the
rate is give by Eq. 17191,

Oimensioniess rate, a

10 10 10 107 10
Dimensioniess time, tg/mw

FAGURE 1: A typical response of an Inflnite
double-porosity system, PSS (©=0.001, A=0.001,
and S=0 ).

The constant rate flow period described by Eq.
18 is only a function of A and the time shift of the
second decline is only a function of w, hence, A and w
domains may be mapped independently. Figure 2
presents a log-log type curve for an infinite two
porosity system without wellbore skin. A rate
response of a constant pressure well would start on
the infinite acting single porosity curve for w = 1.
Then, after a transition period, the rate will become
constant following a constant A line. At later times,
the rate response will follow the decline of a different
« line. By matching the initial decline and the constant
rate period, the value of A can be estimated. By
matching alt the three flow periods, the values of A
and w can be estimated. The use of this log-log type
curve is demonstrated in the next section.

Transient interporosity flow produces a different
rate response than the pseudo steady state one.
Two kinds of matrix geometries are considered: slabs

and spheres. Figure 3 presents the rate response for
an infinite double- porosity system with transient
interporosity fbw. The lowermost curve is for a
single-porosity system where & = 1. The two curves
for @ = 0.001 and A = 0.001, representing slabs and
spheres are similar, with the Curve for the
spherically-shaped matrix above the curve for slabs.
These two curves merge into a single curve at the
end of the transition flow period and in the second
decline period.
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FHGURE 2: Log-log type curve for an Infinite
double-porosity system, PSS flow model (S =0).
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FIGURE 3: Response of an Infinite double-porosity
system with transient matrix flow (S=0 and
Sp=0).

Figure 4 compares the rate response of the
pseudo steady state and transient In{erporosity flow
models for a fixed value of A. The early time transient
interporosity rate response is above that of the
pseudo steady state one. The final declines for the
two interporosity flow models are identical.

The transient flow response curves separate
from the homogeneous case at early times and do not
follow the same transition response as well. The
larger the value of w, the more the deviation between
the curves. Figure 6 compares the rate response of
the pseudo steady state and the transient Iinter-
porosity flow models, for a fixed value of w. As the
value of A increases, the difference between these
two interporosity flow models reduces.
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HGURE 4: Comparison between the PSS and the
transient Interporosity flow models for a fixed A
and various values of w.
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FIGURE 6: Comparison between the PSS and the
transient interporosity flow models for a fixed w
and various values of A

For the transient Interporosity flow models,
without fracture skin, the early time period and the
beginning of the transition flow period depend on the
values of & and A This dependency complicates the
bg-log type curve matching procedures, which are
not considered inthis paper.

Transient and pseudo steady state interporosity
flows are described by a transient interporosity flow
with fracture skin!S. In Figure 8, a set of rate
responses with fracture skin are compared to pseudo
steady state and transient responses. When Sz = 0O,
Eg. 10 is identical to Eq. 8, hence, the transient flow
is a speclal fracture skin case with zero skin. For
Sy >0.33, the matrix acts like a pseudo steady
state matrix, and the constant rate, given by Eq. 18,
occurs for a period that depends only on W. The lines
of constant A on Figure 2 are identical to lines of con-
stant A/ 8 Sp for a transient matrix with fracture skin.
A high fracture skin prevents flow from the matrix to
the fractures, hence, the rate response s for a single
porosity system, with fracture characteristics.

TYPE CURVE MATCHING EXAMPLE

In this section, a hypothetical example of a rate
history from an infinite two porosity system without

wellbore skin is analyzed. Only the estimation
methods of A and w are presented. The analysis for
the fracture permeability and the total storage were
presented by Da Prat et al®, and Raghavan and
Chaeri!® are not considered here.

Transient sleb matrix
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HGURE 6: Comparison of the PSS model and the
transient interporosity flow model with fracture
skin.

This example Hlustrates the use of the type
curve presented in Figure 8. The infinite acting early
time data are matched on the log-log( type curve to
the first curve on the left (See Figure 7). This curve
is for w = 1. The late time data deviate above the
first infinite acting curve and the rate becomes con-
stant. The value of A is estimated by matching the
constant rate portion of the data to a constant A line.
For this example, A = 0.00001. it this test were
bnger, the rate would resume the second decline
along another w curve, allowing the estimation of w.
For this example, only the upper limit of w is estimated
as 0.01. Once a bg-log match is made, other parame-
ters, such as fracture permeability, can be calculated
from the rate and time match point.
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FIGURE 7: Log-log type curve matching example
for an infinite double-porosity system.

DISCUSSION

The log-log type curve presented In this paper
has two applications. The first application is for
analyzingwell test rate data for estimating the values

-166-




of A and w. The second application is to compute the

decline rate of a well producing at a constant pres- 1.
sure in an infinite double-porosity reservoir.
Assuming the matrix produces at a pseudo
steady state condition permits an independent deter- 2
mination of ) and w. The value of A is determined by
the deviation of the rate response from the homo-
geneous response, and the value of the rate during
the constant rate flow period. In order to determine
w, the matrix pressure must decline together with the 3.
fractures, acting as a single porosity system. Hence,
the length of the constant rate flow period deter- 4.
mines the value of w.
The rate response of a double-porosity system
with transient interporosity flow does not yield a 5.
decline pericd where only the fractures are produced.
The transiticn flow period starts early in the decline
process, and does not end in a constant rate flow 6.
period. This transition flow period Is affected by both
A and w, hence complicates the log-log type curve
analysis. 7
The rate response of an infinite double-porosity
system with transient interporosity flow is modeled as
a single case of a transient interporosity flow with a
negligible fracture skin. With a significant fracture 8
akin, the rate response is similar to the rate response ’
when the matrix produces at pseudo steady state,
ylelding a constant rate flow period. the length of
this period is inversely proportional to w, and the 9.
value of this constant rate is a function of A and
fracture skin.
NOMENCLATURE
10.
B =  formation volume factor
Ko = modified Bessel function, third kind, zero order
K, = modified Bessel function, third kind, first order
V = ratio of volume of one porous system to
bulk volume 11
Sr = dimensionless fracture skin
c = compressibility
h = formation thickness
k = permeabillty
p = pressure 12.
Pp = dimansionless pressure
Bp =  Laplacetransform of pp
g =  volumetricrate
gp = dimensionlessrate 13.
gp = Laplacetransform of gp
g’ = matrix flow rate
rp = dimensionlessradius
Tw =  wellbore radius 14,
s = Laplace variable
t = time
tp = dimensionlesstime
A= interporosity flow coefficient
® = viscosity
¢ = porosity 15,
w = dimensionlessfracture storage
Subsecripts
D =  dimensionless
J = fracture 16.
m = matrix
t = total
w = Well
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