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MSBSTRACT 
This paper presents a transient pressure 

analysis method for analyzing the rate decline of a 
constant pressure well producing in an infinite doubie- 
porosity reservdr, without wellbore skin. This analysis 
method may be used to interpret well test rate data, 
and to  compute the rate behavior of an infinitely act- 
ing reservoir that is being produced at  constant pres- 
sure. 

The development of the pseudo steady state 
bg-log type curve is presented along with a 
hypothetical example of Its use. This type curve 
dlOW8 the estimation of the two controlling parame- 
ters in double-porosity systems: A and o. The first 
perameter, A, describes the Interporosity flow, and 
the second parameter, o describes the relative frac- 
ture storatlvlty. This paper considers the estimation 
of these two parameters. The estimations of per- 
meabillties and storativities have been described in 
the past, hence, are not considered. 

In a double-porosity system, with pseudo steady 
state Interporosity flow, the initial infinite acting rate 
decline, representing only the fracture system, is fol- 
bwed by a constant rate flow period. The length of 
this constant rate flow period is controlled by the 
parameter 0. The beginning of this period is con- 
trolled by the interporosity flow parameter, A. Follow- 
ing this constant rate period, the rate resumes an 
Infinite homogeneous decline, representing the total 
8ystem. fractures and matrix. The parameters A and 
w may be estimated from a log-log match of rate data 
to  the type curve. 

A comparison between rate responses of two 
translent flowing matrices and the pseudo steady 
state matrix Is presented. Transient Interporosity flow 
ellows the matrix to Increase the well flowrate in the 
early and transition portions of the flow. The final 
decline, representing the total system, is identical to 
the decline with a pseudo steady state matrix. 

INTRODUCTION 
Decline curve analyses are used to interpret 

rate-tlme data, estimate reservoir properties, and 
then, compute the future behavior of the system. The 
decline in the rate of production with time, be it a sin- 
gle well or an entire reservoir, when produced under a 
constant pressure drawdown, has been described In 
the literature Fetkovich" introduced the concept 
of "transient decline" and "depletion decline", by 
merging h p s  depletion decline with the transient 
solution for a finite wellbore in a cbsed outer boun- 
dary radial reservoir. The transient period of the rate 

response occurs before the closed outer boundary 
effects are significant, and the reservoir appears to 
infinite in lateral extent. 

As naturaliy-fractured reservdirs were con- 
sidered, it became evident that fluid flows both In the 
fractures and in the matrix blocks. BarenMatt and 
Zeltov' presented a double-porosity model where the 
diffusion equation applied to the fractured medium 
and the fluid stored in the matrix flowed into the frac- 
tures at  a pseudo steady state condition. Warren 
a r d  Roota introduced two parametem characterizing 
the flow in a two porosity system: the interporosity 
flow parameter, A, and the relative fracture storage 
parameter, 0. 

Mavor and ciSrco-Lsyg, Da A@ et  allo, and 
Raghavan and Ohaeri" introduced the concept of 
decline curve analysis in double-porosity systems. 
They considered the rate-time behavier of a constant 
pressure well in an infinite or closed outer boundary 
radial system. 

The response of a double-powity reservoir 
depends on the type of interporosity flow. Transient 
Interporosity flow was considered fofl various matrix 
shapes:  slab^^^^^^, sphereslS, and cyli0den1". Raghn- 
van and ahaerz" considered decline curve analysis 
for both the Warren tznd Roote pseudo steady state 
model and the transient Interporosity flow model. 
Also, Moenchls,'e considered a generalized solution to 
the interporosity flow, introducing the concept of 
fracture skin. f d o a n ~ h ' ~ ~ ~ ~  showed that pseudo 
steady state interporosity flow occurB when a large 
fracture skin is present, and the transient lnterporos- 
tty flow as previously consldered occurs when frac- 
ture skin is not present. 

This paper presents a log-log type curve match- 
Ing technique for estimating X and w from rate-time 
data taken during a constant-pressure well test in a 
double-porosity reservoir with pseudd steady state 
matrix flow. Comparisons between the pseudo steady 
state and the transient interporosity flow models are 
presented. 

MATHEMATICAL MODEL 

The mathematical description of the behavior of 
double-porosity systems has been described in the 

In developing the model, It is assumed that 
the reservoir is Infinitely large, the fluid is slightly 
compressible with a constant compressibility, gravita- 
tlonal forces are negligible, the porosity and per- 
meabilities of the fractures and the matrix are not 
functions of pressure , and that the fluid enters the 
well through the fractures. 
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Deruyck et  all9 observed that the pseudo 
steady state and the transient interporosity flow 
models may be handled in a similar mathematical way. 
They presented the fracture pressure equation19.Zo: 

where the terms are defined in the nomenclature. The 
Laplace transformation of the dimensionless form of 
equation 1, making use of the Initial condition 
p, = pm = pi ,  yield^^,^^: 

for which the Laplace dimensionless rate solution for 
a constant pressure inner boundary is: 

pfD(qhs) and q D  are the Laplace transformations of 
pJ/o(rD$tD), and qD respectively. The dimensionless 
groups are defined as: 

Pt -Pf 
Pi - P w f  

PfD = (4) 

( 7 )  

The variable 3 ( s )  depends on the assumed 
interporosity flow model. For the pseudo steady state 
model: 

For the transient interporosity flow model, with slab- 
shaped matrix1Q20: 

30-7- where: a = 4 O s  

For the transient interporosity flow model, with slab- 
shaped matrix and with matrix 

For the transient interporosity flow model, with 
spherically-shaped matrix18.1g: 

(11) h 3 ( ~ )  = o + -b c o t h ( b )  
6s 

where: b = 4 T F i r r 7  

For the translent interporosity flow model, with 
spherically-shaped matrix and with matrix 

The parameters o and h are defined am . 

and the other parameters are defined in the nomen- 
clature. I 

For the pseudo steady state interporosity flow, 
the value of f ( s )  takes on three distihct approxima- 
tions. A t  early times, t -0  , s - = ,  f +o, and Eq. 3 
inverts tolo: 

A t  intermediate times, h controls the flow, 3 - A / s ,  
and Eq. 3 Inverts to: 

~ 

l 
I 

(1 6 )  
I 

A t  late times, t - r -  , s - 0 ,  f - 1  and Eq. 3 inverts 
to' 0.1 1 : 

* (1 7 )  1 
q D =  1 -1 IntD + 0.800 2 I 

A t  intermediate times for the tvansient inter- 
porosity flow with a matrix skin O f  SF > 0.33, 
3 (s) + A/ 3sF. and Eq. 10 inverts to: 

The Laplace dimensionless rate solotion is numer- 
ically inverted using the algorithm developed by Steh- 
lest". 

i 
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TYPE CURVE 

In this section, the log-log type curve for the 
pseudo steady state interporosity flow is presented, 
followed by a comparison between the pseudo steady 
state and the transient interporosity flow models. In 
contrast to a single porosity homogeneous system, 
there are two parameters controlling the flow in the 
system, w and A. 

The effects of o and h on the rate response are 
now considered. Figure 1 presents two cases with 
dlfferent o and the same A. The case where w = 1 is 
a single-porosity system, and A has no effect on the 
rate response, yielding the lower curve. When o < 1, 
the rate response is different. A t  a certain time, the 
rate becomes asymptotic to a constant, and only 
after a period of time resumes its decline. The early 
decline represents the flow only in the fractures. This 
decline starts with a slope of - 1 /2 ,  as described 
by Eq. 16. The transition flow period, represents an 
increasing amount of flow from the matrix into the 
fractures. The constant rate during the transition 
flow period is given by Eq. 16. The second decline 
occurs when the pressure in the matrix and in the 
fracture at a given spatial point are practically identi- 
cal. Thls is the total system decline, for which the 
rate is give by Eq. 1710.'L. 

w 0 .) 
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FIGURE 1: A typical response of an lnflnite 
dwblcporoslty system, PSS ( o = O . O O l ,  h=O.OOI I 

and S=O 1. 

The constant rate flow period described by Eq. 
16 is only a function of A. and the time shift of the 
second decline is only a function of o, hence, A and w 
domains may be mapped independently. Figure 2 
presents a log-log type curve for an infinite two 
porosity system without wellbore skin. A rate 
response of a constant pressure well would start on 
the infinite acting single porosity curve for w = 1. 
Then, after a transition period, the rate will become 
constant following a constant h line. A t  later times, 
the rate response will follow the decline of a different 
o line. By matching the initial decline and the constant 
rate period, the value of A can be estimated. By 
matching ail the three flow periods, the values of A 
and o can be estimated. The use of this log-log type 
curve is demonstrated in the next section. 

Transient interporosity flow produces a different 
rate response than the pseudo steady state one. 
Two kinds of matrlx geometries are considered: slabs 

and spheres. Figure 3 presents the rate response for 
an infinite double- porosity system wlth transient 
interporosity fbw. The lowermost curve is for a 
single-porosity system where o = 1. The two curves 
for o = 0.001 and A = 0.001, representing slabs and 
spheres are similar, with the Curve for the 
spherically-shaped matrix above the curve for slabs. 
These two curves merge into a single curve a t  the 
end of the transition flow period and in the second 
decline period. 

1 0 - 8  
lo-* 10 104 16' 10 '0  
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FIGURE 2: Log-log type curve for an Infinite 
double-porosity system, PSS flow model (S=O). 

Dlmomlonleao Ho., b/= 

FIGURE 3: Response of an Infinite double-porosity 
system with transient matrix flow (S=O and 
sF=oh 

Figure 4 compares the rate response of the 
pseudo steady state and transient inqerporosity flow 
models for a fixed value of A. The ear1)r time transient 
interporosity rate response is above that of the 
pseudo steady state one. The final declines for the 
two interporosity flow models are identlcal. 

The transient flow response curves separate 
from the homogeneous case at early times and do not 
follow the same transition response as well. The 
larger the value of o, the more the deviation between 
the curves. Figure 6 compares the rate response of 
the pseudo steady state and the transient inter- 
porosity flow models, for a fixed value of w. As the 
value of A increases, the difference between these 
two interporosity flow models reduces. 
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FIGURE 4: Comparison between the PSS and the 
transient Interporosity flow models for a fixed A 
and various values of o. 

FIGURE 6: Comparison between the PSS and the 
transient interporosity flow models for a fixed w 
and various values of A. 

For the transient interpomsity flow models, 
without fracture skin, the early time period and the 
beginning of the transition flow period depend on the 
values of o and A. Thb dependency complicates the 
bg-log type curve matching procedures, which are 
not considered in this paper. 

Transient and pseudo steady state interporosity 
flows are described by a transient interporosity flow 
with fracture skinlS. In Figure 6, a set of rate 
responses with fracture skin are compared to pseudo 
steady state and transient responses. When S p  = 0, 
Eq. 10 is identical to  Eq. Q, hence, the transient flow 
Is a special fracture skin case with zero skin. For 
SF > 0.33, the matrix acts like a pseudo steady 
state matrix, and the constant rate, given by Eq. 18, 
occurs for a period that depends only on w. The lines 
of constant A on Figure 2 are identical to lines of con- 
stant A/ 3SF for a transient matrix with fracture skin. 
A high fracture skin prevents flow from the matrix to 
the fractures, hence, the rate response is for a single 
porosity system, with fracture characteristics. 

TYPE CURVE MATCHING EXAMPLE 
In this section, a hypothetical example of a rate 

history from an infinite two porosity system without 

wellbore skin is analyzed. Only the estimation 
methods of h and o are presented. The analysis for 
the fracture permeability and the total storage were 
presented by Da R a t  e t  ale, and Raghavan and 
Chzerilo are not considered here. 

FIGURE 6: Comparison of the PSS model and the 
transient interporosity flow model with fracture 
skin. 

This example Illustrates the USB of the type 
curve presented in Figure 6. The infir$te acting early 
time data are matched on the log-log( type curve to 
the first curve on the left (See Figure 7). This curve 
b for o = 1. The late time data deuiate above the 
first infinite acting curve and the rate becomes con- 
stant. The value of A is estimated bv matching the 
constant rate portion of the data to a constant A line. 
For this example, A = 0.00001. If this test were 
bnger, the rate would resume the gecond decline 
along another w curve, allowing the estimation of o. 
For this example, only the upper limit of w is estimated 
as 0.01. Once a bg-log match is made(, other parame- 
ters, such as fracture permeability, can be calculated 
from the rate and time match point. 

10, 

FIGURE 7: Log-log type curve matcWng example 
for an infinite double-porosity system. 

DISCUSSION 
The log-log type curve presented In this paper 

has two applications. The first aphiication is for 
analyzing well test rate data for estimating the values 

-166- 



of h and w. The second application is to  compute the 
decline rate of a well producing at a constant pres- 
sure in an infinite double-porosity reservoir. 

Assuming the matrix produces at a pseudo 
steady state condition permits an independent deter- 
mination of A and w. The value of A is determined by 
the deviation of the rate response from the homo- 
geneous response, and the value of the rate during 
the constant rate flow period. In order to determine 
0, the matrix pressure must decline together with the 
fractures, acting as a single porosity system. Hence, 
the length of the constant rate flow period deter- 
mines the value of CJ. 

The rate response of a double-porosity system 
with transierlt interporosity flow does not yield a 
decllne pericd where only the fractures are produced. 
The transiticn flow period starts early in the decline 
process, and does not end in a constant rate flow 
period. This transition flow period is affected by both 
h and w ,  hence complicates the log-log type curve 
analysis. 

The rate response of an infinite double-porosity 
system with transient interporosity flow is modeled as 
a single case of a transient interporosity flow with a 
negligible fracture skin. With a significant fracture 
akin, the rate response is similar to the rate response 
when the matrix produces at  pseudo steady state, 
yleldlng a constant rate flow period. the length of 
this period is inversely proportional to w, and the 
value of this constant rate is a function of A and 
fracture skin. 

NOMENCLATURE 

formation volume factor 
modified Bessel function, third kind, zero order 
modified Bessel function, third kind, first order 
ratio of volume of one porous system to 
bulk volume 
dimensionless fracture skin 
compressibility 
formation thickness 
permeabillty 
pressure 
dimansionless pressure 
Laplace transform of p~ 
volumetric rate 
dimensionless rate 
Laplace transform of qD 
matrix flow rate 
dimensionless radius 

wellbore radius 
Laplace variable 
time 
dimensionless time 
interporosity flow coefficient 
viscosity 
porosity 
dimensionless fracture storage 

Su brcriptt 

D = dimensionless 

m = matrix 
t = total 

w = Well 

= fracture 
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