

ANALYSIS OF RECHARGE COOLDOWN AT THE
WESTERN BOUNDARY OF CERRO PRIETO I GEOTHERMAL FIELD

Paul Kruger, Stephen Lam, Anstein Hunsbedt
Stanford Geothermal Program
Stanford University
Stanford, CA 94305

Carlos Esquer, Ricardo Marquez, Lourdes Hernandez, and Juan Cobo
Coordinadora Ejecutiva de Cerro Prieto
Comision Federal de Electricidad
Mexicali, Baja California

INTRODUCTION

Extensive study of the Cerro Prieto geothermal field has provided much geologic and thermodynamic data of its structurally-complex, liquid-dominated reservoir. Several of the studies investigated the resource characteristics of fluid and energy flow. An early report by Mercado (1975) showed that the heat source for the part of the reservoir under development, now called Cerro Prieto I (CPI), originated in the eastern part of the field. Subsequent studies confirmed the flow of hot water from the east. A summary of several experimental and numerical studies of fluid and energy transport in the field was given by Lippmann and Bodvarsson (1983).

The hydrogeologic model of Halfman et al. (1982) shows hot-water flow from the east divided into a shallow (alpha) aquifer at about 1200m and a deeper (beta) aquifer at about 1700m depth. A cross section along an east-west direction shows a central upflow to the two aquifers and uncertain geology beyond the western border of the field near well M-9. It also shows a fault dividing the line of border wells at M-29 from the inner wells at M-25 to the east.

The hydrogeology of the field was described by Sánchez and de la Peña (1981) as an alluvial unit from the surface to about 700 m over the production zone and a shale-sandstone unit comprising an upper, shallow (alpha) aquifer bounded below by a basement horst overlying a deeper (beta) aquifer. To date, much of the cumulative production at Cerro Prieto I has been from the alpha aquifer. Piezometric level measurements over the first 5 years of operation showed a decline in the western zone beyond the production wells.

Over the 10-year period of continuous production, a significant temperature decline has been observed along the westernmost line of wells. Several investigations of the recharge characteristics of the field have been reported. Mercado (1975) and Elders et al. (1984) indicated a flow of cold groundwater from the east. Mercado also noted that cold water was entering the reservoir from the west. In studying the expectations of field

deliverability, reservoir life, and ultimate recovery of the resource, Castaieda et al. (1983) from a reservoir simulation model indicated a major degree of cold-water recharge into CPI from the west and north sides of the field. From reported chemical and thermal changes with production, Grant and O'Sullivan (1982) considered the reservoir as a leaky aquifer rather than confined, and attributed one quarter to one half of the recharge to percolation of fresh water from cooler rocks above the reservoir. From the accumulated chemical and production database, Grant, Truesdell, and Mañon (1984) suggested that the western part of the alpha aquifer was essentially unbounded and that mixing with colder water by dilution rather than by boiling is the reservoir's response to continued extraction. They suggested that local boiling occurs in most of the wells as pressure decreases but that no general vapor zone has developed.

It should be possible to estimate the cooldown history at the western border of the field. The problem of cold water recharge intrusion into the western part of the Cerro Prieto I field is of economic importance by assuming that the upper alpha aquifer at Cerro Prieto I represents a one-time source of thermal energy extractable by cold water recharge from the infiltration zone through the western surrounding formation to the westernmost line of wells. Hunsbedt, Lam, and Kruger (1983) described a 1-D linear heat sweep model for estimating energy recovery from fractured hydrothermal reservoirs based on early estimates of geological, and thermodynamic properties of the formation.

The model was designed to calculate water and rock matrix temperature distributions as functions of distance from injection site and production duration. It takes into account the temperature gradient inside large rock masses produced by long path lengths for heat conduction and small values of rock thermal conductivity when cold water flows along the rock surfaces. The model is based on input estimates of volumetric distribution of rock blocks (e.g., mean fracture spacing) and rock heat transfer properties (Iregui, et al., 1979). The major parameters of the model are the "number of heat transfer units" and the

initial distribution of the energy stored in the fluid and rock media. The "number of heat transfer units" parameter is defined as the ratio of estimated fluid residence time and the thermal response time constant for the rock block (a function of rock size and shape, thermal diffusivity, and Biot number). As the most significant parameter in the 1-D heat sweep model, it indicates the degree to which energy extraction from the reservoir is rock-heat-transfer limited or water-supply limited.

This paper presents the results of a study to evaluate the effects of cold-water recharge from the west on the long-term production characteristics of the western border wells using two 1-D sweep models. One model assumes no vertical leakage through the overlying formation and the other model assumes significant leakage from above.

HYPOTHETICAL HEAT SWEEP OF CPI WESTERN OUTER ZONE

To evaluate the potential of the model for application to the study of cold water recharge intrusion at Cerro Prieto I, a hypothetical linear heat sweep calculation was made of the zone west of the reservoir. A significant economic parameter is the time when the temperature of the produced geofluid drops below 250°C, resulting in an inefficient heat rate for the power plants. The hypothetical study was focused to estimate this parameter. The basic premise in the study was that all of the water extracted through the westernmost line of wells at CPI originated in the western outer zone. This premise is supported somewhat by assuming that fault "L", located by Halfman et al. (1982) between wells M-29 and M-25 acts as a barrier to hot water flow from the center of the field.

The geometry of the western outer zone was estimated from published information. For the hypothetical study, it was chosen as a horizontal rectangular formation, bounded on the west by the Cerro Prieto fault zone just east of well M-6 (whose data provided the recharge water inflow temperature), on the east by fault "L" described by Balfman et al. (1982), a block width spanning the distance between wells M-43 to the north and M-35 to the south, and a uniform thickness of sandstone from wells M-6 to M-29, estimated from the published cross section of Halfman et al. (1982). The geometric, reservoir, and sandstone thermophysical data used in the model are given in Table 1.

Analysis of the heat extraction potential was made with three key input parameters: (1) the initial formation temperature, (2) the effective radius of the mean rock sizes in contact with the flowing recharge water, and (3) the effective porosity of the formation determining the mean residence time to the

line of wells at the western boundary, based on production data for the 1982-83 total flow rates. Heat transfer to and from the surrounding formation by conduction was considered negligible, and for the 1-D sweep model without leakage, the upper and lower formations were considered impermeable.

The results of the calculations for the 1-D sweep model without leakage are given in Table 2. They show that the western outer zone contains a significant storage of thermal energy and with the premise that all energy production at the western line of wells is from cold-water recharge sweep, production at 485 t/h could continue for 20 to 50 years before cooldown to 250°C, depending on the actual distribution of the three parameters modeled. The results were sufficiently encouraging to undertake a detailed study of the observed cooldown at the western border of the Cerro Prieto I field.

OBSERVED COOLDOWN HISTORY

To estimate how realistic the assumptions of linear recharge sweep were, the large database of chemical and production data for the western line of wells was analyzed to obtain an "observed" cooldown history over the total production period of CPI. This history was compared to the "observed" cooldown observed in the neighboring inner line of wells on the other side of the "L" fault. The wells selected for the two lines, from north to south, were M-43, M-29, M-30, and M-35 for the border wells and M-11, M-19A, M-25, M-31, and M-26 for the inner wells. For each of these wells, available data were compiled in six-month averaged values for: (1) wellhead pressure; (2) liquid and steam flowrates; (3) wellhead enthalpy; and (4) chemical components Na, K, Ca, Mg, SiO₂, and Cl. The chloride values were used to delete suspicious values of the geothermometer components.

From these data the six-month averaged values were calculated for: (1) wellhead temperature and steam fraction; (2) bottom-hole temperature and steam fraction with the CFE wellbore simulator adapted from Orkiszewski (1967) which computes the pressure loss for two-phase flow in vertical pipes; and (3) reservoir temperatures, estimated by (i) constant enthalpy transport based on the geofluid in the reservoir being all liquid; (ii) Na-K-Ca geothermometers of (a) Mañon et al. (1978) (b) Fournier and Truesdell (1973), and (c) Nieva and Nieva (1982); and (iii) SiO₂ geothermometer of Fournier and Potter (1982).

The temperature cooldown histories of the two lines of wells are shown in Figure 1. A summary of the linear and exponential regression of the data is given in Table 3. The wellhead pressures of the border wells were kept reasonably constant at a saturation temperature of about 176°C with a correspond-

Table 1
INPUT DATA FOR CPI HYPOTHETICAL 1-D HEAT SWEEP ANALYSIS

Reservoir Geometry	
Length	L = 1200m
Cross sectional area	S = $4 \times 10^5 \text{ m}^2$
Porosity	ϕ = 0.05 to 0.30
Mean fracture spacing	MFS = 10 to 200m
Reservoir Conditions	
Initial temperature	T_1 = 250 to 300°C
Sweep water temperature	T_{in} = 150°C
Production/recharge rate ('82-'83)	Q = $4.85 \times 10^5 \text{ kg/h}$
Heat transfer coefficient	h = 1703 W/m ² K
External heat transfer	q' = 0 kJ/m
Physical Properties	
<u>Sandstone</u>	
Density (kg/m ³)	ρ_r = 2300
Specific heat (kJ/kgK)	C_r = 0.92
Thermal conductivity (W/mK)	k = 1.73
<u>Water</u>	
	ρ_f = 1000
	C_f = 4.18

Table 2

RESULTS OF CPI HYPOTHETICAL 1-D HEAT SWEEP
PRODUCTION OF 485 t/h FROM RECHARGE SWEEP AT 150°C

1. Variation with Initial Reservoir Temperature*

<u>T_1 (°C)</u>	<u>No. Heat Xfer Units</u>	<u>Breakthru Time to 250°C (yr)</u>
250	3.4	24.9
270	3.4	43.9
300	3.4	54.2

*MFS = 100m; ϕ = 0.20

2. Variation with Mean Fracture Spacing**

<u>MFS (m)</u>	<u>No. Heat Xfer Units</u>	<u>Breakthru Time to 250°C (yr)</u>
10	341	56.5
50	13.6	54.0
100	3.4	43.9
200	0.85	25.4

** T_1 = 270°C; ϕ = 0.20

3. Variation with Porosity (flow residence time)***

<u>ϕ (%)</u>	<u>No. Heat Xfr Units</u>	<u>Breakthru Time to 250°C (yr)</u>
10	1.7	36.8
20	3.4	43.9
30	5.1	49.2

***MFS = 100m; T_1 = 270°C

Table 3

TEMPERATURE COOLDOWN ANALYSIS

	Border Well†				Inner Well††			
	T_1 (°C)	LCDR* (°C/y)	A^* (y ⁻¹)	r^2	T_1 (°C)	LCDR (°C/y)	A (y ⁻¹)	r^2
Wellhead	176	-0.3	-0.002	0.28	186	-0.45	-0.003	0.06
Bottom hole	270	-3.0	-0.012	0.99	271	-1.57	-0.006	0.63
Reservoir	295	-2.3	-0.008	0.92	293	-1.0	-0.003	0.69

† M43, M29, M30, M35

* linear cooldown rate

†† M11, M19A, M25, M31, pU6

** exponential cooldown constant

ing linear temperature cooldown rate of $-0.3^{\circ}\text{C}/\text{yr}$. Fluctuations in production of the inner lines of wells were much greater, due to changes in discharge orifice diameter in response to sand production problems. The result appears to be a more variable temperature history. The linear regression with low correlation coefficient, r^2 , shows saturation temperature of about 186°C with a corresponding cooldown rate of $-0.45^{\circ}\text{C}/\text{yr}$.

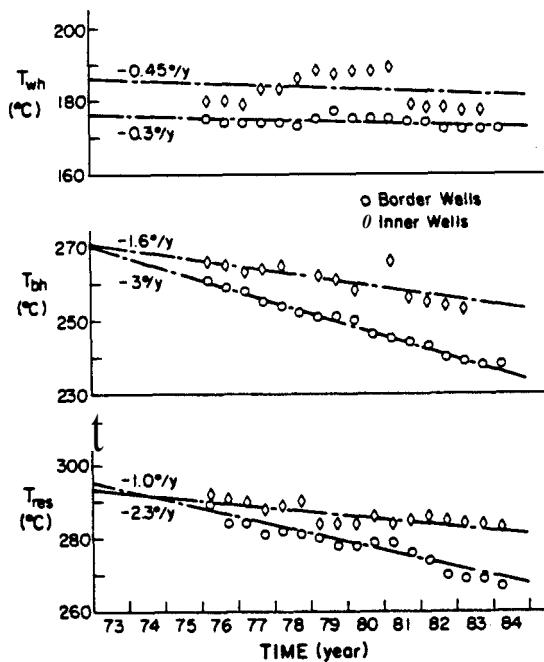


Figure 1 CPI observed wellhead, bottom-hole, and reservoir temperature histories.

The bottom-hole data for the two lines of wells show more stable conditions. Regression of the two sets of temperature cooldown data shows a common initial bottom-hole temperature of about 270°C , with a steam fraction growing steadily from about 88 percent in 1976 to about 10.5 percent in 1984. The mean growth rate of the steam fraction near the wellbores since commencement of sustained production is about $0.2\%/\text{yr}$. The bottom-hole cooldown rate in the border line of wells is about two times that of the inner line of wells. The corresponding trend in wellhead enthalpy from an initial value of 1317 kJ/kg decreases at a rate of $-0.8\%/\text{yr}$ for the border line of wells, compared to 1313 kJ/kg and $-0.2\%/\text{yr}$ respectively for the inner line of wells.

The reservoir temperatures calculated from an average of the constant enthalpy and Na-K-Ca geothermometer values show a common initial reservoir temperature of about 295°C . The linear cooldown rate for the line of border wells of $-2.3^{\circ}\text{C}/\text{yr}$ is decidedly steeper than the corresponding value for the line of inner wells of $-1.0^{\circ}\text{C}/\text{yr}$. The data show clearly

the more rapid cooldown at the border line of wells, but also the significant cooldown that has occurred at the inner line of wells.

The results of this analysis of the production and chemical data for the 11 years of steady operation suggest that multiple processes are responsible for the difference in cooldown rates from a common pre-production reservoir temperature. These may include cold-water intrusion from the western outer zone to the line of border wells, vertical cold-water percolation from above to both lines of wells, hot-water flow from the east to the inner line, and natural groundwater flow from below to both lines of wells. The 1-D linear heat sweep model has been revised to examine the role of distributed cold-water percolation from above.

SWEEP-RECHARGE HEAT SWEEP OF CPI

Modification of the 1-D linear heat sweep model included a uniformly distributed source of cold water percolation from above, along the entire sweep path, and testing of the inversion of Laplace transformed governing equations by two alternate numerical algorithms. Vertical recharge was assumed to occur at a uniform rate, constant temperature, and insignificant vertical momentum. The recharge fluid was further assumed to mix rapidly with the horizontal sweep flow across the thickness of the semi-confined aquifer zone. At the production horizon, adiabatic mixing occurs with the heated water recharge from the eastern source of the reservoir at the observed exponential-falling temperature of the inner line of wells. A schematic drawing of the flow geometry is given in Figure 2.

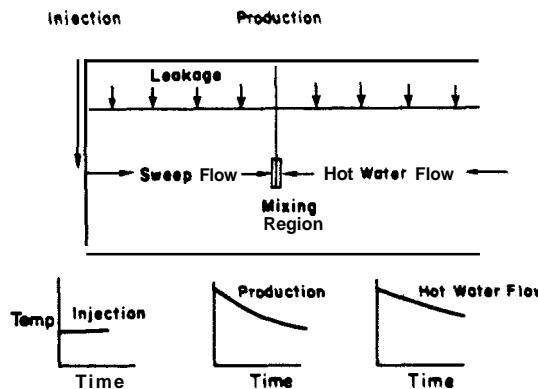


Figure 2 Schematic of the 1-D linear heat sweep model for CPI analysis.

In the sweep-recharge heat sweep process of the CPI western zone, the major parameters included the percolation rate, the sweep rate, the hot-water influx, the percolation fluid temperature, and the mean fracture spacing. The parameters were systematically

varied to investigate their influence on matching the simulated cooldown history of the border line of wells with the corresponding observed cooldown history over the 1973 to 1984 production period.

The 1-D grid imposed on the sweep zone assumes a rectangular slab geometry based on the geological analysis of Cobo. His data fixed the slab geometry as a thickness of 800 m from the bottom of a 500 m thick leaky upper cap to 1300 m at the bottom hole horizon of the production wells, a mean porosity of 18% with 45% of the formation as permeable sandstones, a path length of 1900 m from recharge to production wells, and 1000 m across the N-S line of wells normal to the flow path. The percolating recharge water temperature was estimated by Castañeda et al. (1983) as 52°C. A summary of the input parameters to the sweep-recharge analysis is given in Table 4.

The solution of the 1-D sweep model's governing equations are based on conversion into Laplace space and the use of a numerical inversion procedure to obtain the calculated cooldown history. Prior experience with the stochastic Gaver-Stehfest algorithm (Gaver, 1966; Stehfest, 1970a,b) showed numerical overshoot at the temperature breakthrough and tail portions of the cooldown curve. Two other numerical inversion algorithms were tested for this analysis: The Piessens-Branders algorithm (Piessens and Branders, 1971; Piessens, 1984) using generalized Laguerre polynomials and the Crump algorithm (Crump, 1976; IMSL, 1982) using Fourier series approximations. A comparison of these inversion procedures as applied to thermal sweep problems is underway by Lam (1985).

Figure 3 shows the production temperature cooldown simulated with the three algorithms using the same input parameters in comparison to the observed cooldown for a period of 60 years. In this simulation, the mean residence time is 39.2 years. The results of the matched simulated and observed cooldown curves were achieved for the distribution of component flows given in Table 5.

CONCLUSIONS

The western zone of CPI has been successfully modeled by a simple linear heat sweep model combining flows from horizontal sweep from an injection source near westernmost well M-6 at its observed formation temperature, uniform percolation recharge water from above at its estimated groundwater temperature, and geothermal resource fluid from the east at its observed temperature history. Three numerical inversion algorithms applied to the Laplace transformed equations of the simulation give essentially the same cooldown history match to the observed cooldown. Extrapolation of the matched cooldown curve indicates that the fluid temperature on con-

tinuous production of the border line of wells would decrease to 250°C in approximately 52 years, indicating a substantial reservoir of available heat in the western zone of the field. The match of calculated and simulated cooldowns was optimized to component flows of about 51±2 percent from westward sweep, 41±2 percent from percolation from above, in accord with the estimates of Grant and O'Sullivan (1982), and only 8±4 percent from the geothermal resource from the east cooling at its observed rate.

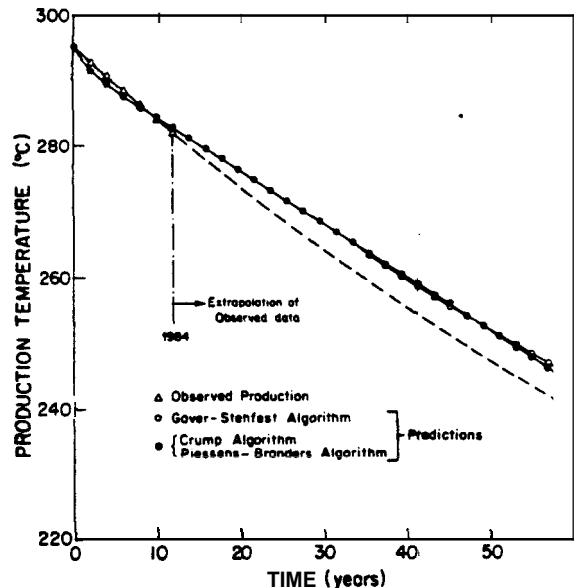


Figure 3. Comparison of simulated and observed production temperature cooldown.

REFERENCES

Castañeda, M., R. Marquez, V. Arellano, and C. A. Esquer, Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study, Proceeding 4 Ninth SGP Workshop on Geothermal Reservoir Engineering, Stanford University Report No. SGP-TR-74, pp 357-364, December, 1983.

Crump, K. S., "Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation," *J. Association Computing Machinery*, 23, No. 1, 89-96, January, 1976.

Elders, W. A., D. K. Bird, A. E. Williams, and P. Schiffman, Hydrothermal Flow Regime and Magmatic Heat Source of the Cerro Prieto Geothermal System, *Geothermics* 13, 27-47 (1984).

Fournier, R. O. and R. W. Potter, A Revised and Expanded Silica (Quartz) Geothermometer, *Bulletin GRC* 11, 3-12 (November, 1982).

Fournier, R. O. and A. H. Truesdell, An Empirical Na-K-Ca Geothermometer for Natural Waters, *Geochim. et Cosmochim. Acta* 37, 1255-1275 (1973).

Gaver, Jr., D. P., "Observing Stochastic Processes, and Approximate Transform Inversion," *Operational Res.*, 14, No. 3, 444-459, 1966.

Grant, M. A., A. H. Truesdell, and A. Mañon, Production Induced Boiling and Cold Water Entry in the Cerro Prieto Geothermal Reservoir Indicated by Chemical and Physical Measurements, *Geothermics* 13, 117-140 (1984).

Grant, M. A. and M. J. O'Sullivan, The Old Field at Cerro Prieto Considered as a Leaky Aquifer, Proceedings Fourth Symposium on the Cerro Prieto Geothermal Field, pp 123-132, August, 1982.

Halfman, S. E., M. J. Lippmaan, and R. Zelwer, The Movement of Geothermal Fluid in the Cerro Prieto Field as Determined from Well Log and Reservoir Engineering Data, Proceedings Eighth SGP Workshop on Geothermal Reservoir Engineering, Stanford University Report No. SGP-TR-60, pp 171-176, December, 1982.

Hunsbedt, A., S. T. Lam, and P. Kruger, User's Manual for the 1-D Linear Heat Sweep Model, Stanford University Report SGP-TR-75, August, 1983.

IMSL Library routine "FLINV", IMSL, Inc., Houston, Texas, June, 1982.

Iregui, R., A. Hunsbedt, P. Kruger, and A. L. London, Analysis of the Heat Transfer Limitations on the Energy Recovery from Geothermal Reservoirs, Stanford University Technical Report SGP-TR-31, January, 1979.

Lam, S. T., Heat Extraction Modeling of Single-phase Sweep Flows in Fractured Geothermal Reservoirs, Ph.D. Dissertation, Stanford University, in preparation, 1985.

Lippmann, M. J. and G. S. Bodvarsson, Numerical Studies of the Heat and Mass Transport in the Cerro Prieto Geothermal Field, Mexico, *Water Res. Res.* 19, 753-767 (1983).

Mañon, A., A. Sánchez, J. J. Fausto, M. E. Jiménez, A. Jacobo, and I. Esquer, Modelo Geoquímico Preliminar del Campo Geotérmico de Cerro Prieto, Proceedings First Symposium on the Cerro Prieto Geothermal Field, pp 83-90, September, 1978.

Mercado, S., Migración de Fluidos Geotérmicos y Distribución de Temperaturas en el Subsuelo del Campo Geotérmico de Cerro Prieto, Proceedings Second U.N. Symposium on the Development and Use of Geothermal Resources, pp 487-492, May, 1975.

Nieva, D. and R. Nieva, A Cationic Composition Geothermometer for Prospection of Geothermal Resources, Manuscript, 1982.

Orkiszewski, J., Predicting Two-Phase Pressure Drops in Vertical Pipes, *J. Petrol. Engr.*, June, 1967.

Piessens, R., Personal Communication, 1984.

Piessens, R. and M. Branders, "Numerical Inversion of the Laplace Transform using Generalized Laguerre Polynomials," *Proc. IIE*, 118, No. 10, October, 1971.

Sánchez, J. and A. de la Peña, Geohidrología del Acuífero Geotérmico de Cerro Prieto, Proceedings Third Symposium on the Cerro Prieto Geothermal Field, pp 309-327, March, 1981.

Stehfest, H., "Numerical Inversion of Laplace Transforms. Algorithm No. 368," *Comm. ACM*, 13, No. 1, 47-49, January, 1970.

Stehfest, H., "Remark on Algorithm 368 [D5] Numerical Inversion of Laplace Transforms," *Comm. ACM*, 13, No. 10, 624, October, 1970.

Table 4

INPUT DATA FOR CPI SWEEP RECHARGE ANALYSIS

Reservoir Geometry	
Length	L = 1900m
Cross sectional area	S = 3.6x10 ⁵ m ²
Porosity	φ = 0.18
Mean fracture spacing	MFS = 100 m
Reservoir Conditions	
Initial temperature	T ₁ = 295°C
Sweep water temperature	T _{in} = 150°C
Recharge water temperature	T _p = 52°C
Production rate ('82-'83)	Q = 4.85x10 ⁵ kg/h
Heat transfer coefficient	h = 1703 W/m ² K
External heat transfer	q' = 0 W/m
Physical Properties	
<u>Sandstone</u>	
Density (kg/m ³)	ρ _f = 2380
Specific heat (kJ/kgK)	C _f = 0.92
Thermal conductivity (W/mK)	k = 2.40
<u>Water</u>	
ρ _f	921
C _f	4.87
---	---

Table 5

RESULTS OF COOLDOWN HISTORY MATCH

Component	Input Temperature (°C)	Matched Flowrate (kg/s)	Estimated Contribution (%)
Percolation	52	55.2	41±2
Sweep	150	68.7	51±2
Hot Water	T _{in} +ΔT e ^{-kt} (see Table 3)	10.8	8±4