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Abstract 
In a porous medium the fiow conduits are small and 

a large number of conduiw are connected to the well. For 
this reason the medium appears to behave like a contin- 
uum on the scale of the well test, and volumetric averag- 
ing and continuum approximations are justified. On the 
contrary, in a fractured medium, only a small number of 
fractures may intersect the pumping well. These particu- 
lar fractures will be stressed by a large gradient under 
well test conditions. Consequently, the early time 
behavior will be dominated by these fractures. The 
volumetrically averaged permeability does not control fiow 
in the vicinity of an active well. The individual fractures 
close to the well must be characterized in order to under- 
stand the well test behavior especially if the hydraulic 
parameters of these fractures are significantly different 
from the average values for the entire system. 

In the present study, a new analytical model is p r e  
posed for well test problems in fracture networks where 
the matrix is impermeable. The model accounts for the 
difference in the fiow regime around the active well from 
that  of the system as a whole. The analytical solutions are 
presented in a series of type curves for ranges of dimen- 
sionless parameters. The fiow propreties of the fracture 
system can be determined by curve matching. 

Introduction 
In the region near the pumping well, a single contin- 

uum approximation is not appropriate for modelling well 
tests'. This is because the inner boundary condition of a 
well test causes flow to converge on the few fractures 
which intersect the well. These fractures are macroscopic 
features compared to the well bore radius. However large 
the scale of observation may be, the characteristic length 
of the system stili has to be the wellbore radius of the 
pumping well. In a porous medium the size of each fiow 
conduit is microscopic and there are a large number of 
conduits connected to the well. In this case volumetric 
averaging and continuum approximations are justified. 
On the contrary, in a purely fractured medium, the small 
number of fractures that  intersect the pumping well will 
be stressed by a large gradient. The volumetrically aver- 
aged permeability d a s  not control fiow in the vicinity of 
an active well. The individual fractures close to the well 
must be characterized in order to understand the well test 
behavior especially if the hydraulic parameters of these 
fractures are significantly different from the average 
values for the entire system. 

In this study a new analytical solution is proposqb 
for well test problems in purely fractured media based 9 
a composite model with two concentric regions. The innb 

outer region is a classical porous medium. Similar comp il region contains a finite number of descrete fractures. T 

site models have been examined in the petroleum liter? 
t ~ r e * * ~ , ~  but none include the effects of intmfracture flop. 
The analysis of a well intersecting a $ingle vertical frapt 
ture in a porous matrix has also been developed. Howeve/ 
in this cme fiow enters the fracture from the faces. In op 
model the fluid enters and exits the fractures only fro 
their intersections with other fractures. A solution 1 
obtained for a finite radius well. The solution 1' 

propreties of the fracture system can be determined t) 
presented in a series of type curves, so that  the fi 

curve matching. 

Model Deacription 
An b t h e r m a l  well test problem In a homogeneou 

fractured formation of uniform thickness H is consider 
The fractures are assumed to be 
the top to the bottom of the 
assumed that  the rock matrix is 
hydraulic parameters are indep 
wellbore storage or damage is cons1 
model of the well test in this sys 
In the outer region the usual equivalant porous medi 
approximation is assumed to hold, i.e., the fiow proper 
of the fractures are volumetrically averaged and a sin 
contiuum replaces the fractures. The  hydraulic c 
tivity and the storage coemcient for the region are 
S,, , respectively. The well is located in the center 
inner region and communicates with the outer 
through a finite number (n )  of fractures in the innet 
region. The radius of the well is r. and the radius of t44 
boundary between the inner and outer regions is ' 1 .  44 
the fractures in the inner region have the same hydraullq 

assumed that  there Is an infinitesimally thin ring 4 
infinite conductivity between the two regions so that  t Y  
otherwise incompatible boundaries can be matcheg 
Figure1 illustrates the model. The debails of the solutid 

aperture 6 and the hydraulic parameters k, and S,,. I t  

are given below and the final result can be found in Equ 
tion (28). We then examine the asymptotic behavior id 
small and large time in order to provide simpler solutioaj 
and check the results. 

The governing equation for the imer  region is thq! 
for one dimensional unsteady-now, 

i 

1 
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where the hydraulic diffusivity, u =i k /S, . For the outer 
region the usual radial flow equation describes the flow. 

The initial conditions and the boundary conditions for 
constant rate injection test are 

h , ( r  . o ) - o  ( r v  I r  I r l  ) (2) 

h , ( r  . O ) = = O  ('1 5. l o o )  (3) 

(4) 

For the continuity at the boundary of the inner and outer 
region, we have 

h i - h r  ( 7  - r /  ) (5) 

The following dimensionless parameters are deflned: 

nbk, 
(7) 

rr Ql 

'I ma 2rrl k, ' 
re = - , a e - -  . B-- 

Solution Scheme 
Laplace transforms can be used successfully to solve 

the equations simultaneously. The subsidiary equations 
are: 

The transformed boundary conditions are 

drD, 1 dKD, 
drD @ drD (rD -11). (19) - = -- 

The general solutions for Eqs.(lS) and (16) are of the 
form: 

5, = A c w h ( m .  r D )  + B S m ( m .  ro )  

C, = C Z o ( 6  . rD) + D K d 6  . rD) 

(20) 

(21) 

where I ,  and K, are modifled bessel functions of zeroth 
order of the flnt and second kind, tespectively. The 
coefl'icient C in Eq.(21) is found to be 1 1  since we expect 
the solution to be bounded for rD--roo . Eqs.(2O) and (21) 
are substltuted into Eqs.(l7), (18) and (le), and the fol. 
lowing set of equations are obtained. 

A G s W G .  re ) + 
1 '  + B&cosh(fi. re 1 - -- 

@P 
A c w h a  + B s i n h s  = D K O ( G  ) 

A G S h h f i  + 
+ B G c a h f i  = -%K1(6 1 B 

Eqs.(22) are solved for A,B and D. 

J.T 
A =  mX 

--mx 

D - x T  

X [ 6 K A 6  ) s h h m + B K o ( 6  ) c = h m ]  

(23) 
J.T 

X [ 6 K l ( 6  1c-hJp' ;TaTBKo(6 M n h m ]  

6 

where 

Substituting A,B and D back into Eqs.(20) and (21), the 
solutions in the Laplace domain are obtained: 

Invemion of 5, 
The inversion $heorem is applied to p&:. 

wi 00 

*i 00 
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The integrand has a branch point a t  p - 0 .  We consider 
the contour r in Figure-2. Since there are no singularities 
within r, 

B C D E F A  

80 that 

B ( C  0 E F A )  

Therefore, 
B 

I C  D E F A )  

where R is the radius of the outer circle and c the radius 
of the inner. It  can be shown that 

c A 

urn$== l l m J = o .  
F 

1 -0  
B 

R-W 

A b ,  by letting p - t e  '' and taking the limit as c 4, 
B 

u r n s  =Eo 

On CD, let p-paeir and on EF let p-paeir and using 
the identity: 

e +  
D 

we obtain 
0 

I 00 

, where 

Therefore 

I D  F \  

Simplifying and using the recurrence formula: 

2 
r2 

JJZ)YJ (2)  - YV(2)J; (3) = - , 

Finally, by the convolution theorem we obtain 

Eq.(28) can be used to evaluate hD, at  rD BS a function of 
tD for given a,, B and re .  Figure-3 is a log-log plot of hDl 
vs. LD at rD=re==O.O1 for ranges of u, and 8. All the 
curves have characteristic initial half-slope straight line 
portion, which Is the evidence of linear flow. A curve 
matching technique can be used to analyze well test data  
with such characteristics. If a unique match of the data 
to one of the curves generated by Eq.(28) can be found, 
us, /3 and re can be determined. The pressure and time 
match yield two more equations which give C1 and the 
product S.,r,'. If C, can be expressed in terms of 1 using 
the parallel plate analogy, Le.. C - 6'pg/12p where p ,  p 
and p are fluid density, gravity constant and fluid viscos- 
ity, respectively, and if n ,  the number of fracture inter- 
secting the well, is known, then the unknowns CI, SV1. La, 
S,g and r l  can all be calculated from Eqs.(?). 

In Figure-4. ADl is evaluated using Eq.(28) for various 
values of r, with u,-2.0 and 8.po.7. Note that when 
r, = 1.0, l.e., zero inner zone thickness, the curve is ident- 
ical to that  of van Everdhgen and Hurst6. As can be 
seen in Figure-4, hD, is not very sensitive to re for 
re < 0.1. Therefore, it may be very diEicult to determine 
r, directly from the match for r, = r./r, < 0.1. This 
would leave only four equations to work with. In such a 
case, either one of S,,, CI, S,$ or r, must be estimated a 
priori in order to determine the rest. An observation well 
Is needed to determine S., a priori; I . ,  and r, will prc- 
bablly never be known a priori. One might assume SSl to 
be equal to fluid compressibility BS a possible flrst trial. 

Large Time Solution for Region 1 
For small values of z, 

( 2 9 4  
Ez a 
2 4  2 

K&) e -In- - L f ( hE" - 1 )+ . . . 
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(2Qc) 

( 2 8 4  

21 

Z 8  

c o s h z = l + - + ' ~ ~  

s i n h z = z + - + . . .  

2 

6 

where 1nE 3: 7 = 0.577215665 ( Euler's constant ). Substi- 
tuing Eq.(28) into (24) and rearranging, 

.(,+, . [ L - ! ! 2 2 2 ] . ' n + + . . .  Ed-  
a QC 

Eq.(30) shows that for large t o ,  hD1 can be approximated 
by a logarithmic function of tD . The lower limit of tD for 
which this approximation is h l i d  is a function of @, a, 
and re 88 can be seen in the derivation of Eq.(30). On a 
semi-log graph, Eq.(30) is would be a straight line identi- 
cal to the solution for a homogeneous porous medium 
except for the consta,nt (i-rD)/B. This, in effect, can be 
thought as apparent "skin". Therefore, k, can be obtained 
in the usual manner but the calculation of the storage 
coelTicient in the conventional manner may result in 
incorrect value of that parameter by a factor given by 

Small Time Solution for Region 1 
Remembering for small z , 

Then at the pumping well, rD = re,  

hDl - L-'K~,J 

From Eq.(32), it is assured that for small to ,  h D 1  exhibits 
hall dope straight line. Using the identities in Eqs.(7), 

(33) 

where is the value of h a t  t t c l s e c  obtained by 
extrapolating the straight line on log-log graph. Eq.(3ii) 
can be used to flnd bk, when n and S,, are known. If 9,2 
la also known, Eq.(31) can then be used to flnd rf 
without tedious curve matching. 

Inversion of &, 
I t  now remains to invert &, to r e a  space: 

0 

2 6  -& e . J&rq 1 + * . Y,WD 1 
d P  ' L-'{PKDbl} -- *Jc 0 

So that 

+ e1 

0 

-& 0 .  J o ( p a )  + 0 . Y,(jWD) 
3 + €9 d p  

h D , p - z $ l - c  2 G  . 
0 pa if 

Large Time Solution for Region 2 
Substituting Eqs.(20) into Eq.(25), 

Then, 

Small Time Solution for Region 2 
For large p , noting that re c 1, E(1.(32) becomes 

2 6  . c-m(w 
K D ,  = \TT + . . - .  

Q + B  P JP 
and now inverting 5, we have: - 

(361 
This completes the large and small time solutions. 
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Example Application and Conclusion 
Figure4 illustrates an example of the procedure 

applied to flnd kI, k,, S,+ and rt from a numerical well 
test simulation in the fracture network also shown in the 
flgure. The numerical procedure employed here is dis- 
cussed in Long' and Kanehiro'. A flt was found assuming 
S,, was known. The flow parameters for both regions cal- 
culated from the match point and from the equations for 
u, and /3 were found to be very close to the input values. 
The calculated rf was 4.9m in this case. In the actual 
network, the distance to the nearest intersection was 
7.3m in one direction and 3.8m in the other, averaging 
5.5m. 

If a flt can be found this analytical model can suc- 
cessfully be used to accurately determine the average 
storage coetncient of a fracture system from one-well test 
as well as the distance to the nearest fracture intersection, 
which in turn give us a clue to fracture spacing. Because 
there are an inflnite number of C U W ~ S  for various combi- 
nations of u, , /3 and re ,  an automatic curve fltting p r e  
cedure by a computer is being investigated. 
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-2 The contour path taken for Laplace 

inversion. 
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rO< 0.05 

am a\\l ai 1 m (00 

am 
b 

RgUn-Sb Dimensionless pressure for rc<0.05 and 
ac=l.O. 
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RgUrrr-3~ Dimensionless pressure for rcQl.05 and 
ao=0. 1. 

Rgurr-3e Dimensionless pressure for rcQ).05 and 
B=l.O. 
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ai 
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b 

Figure4 Dimensionless pressure for ac=2.0 and 
p=0.7. 
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-3d Dimensionless pressure for rcQl.05 and 
@=lo. 

P 

om ai 1 to m 
b 

Figure-Sf Dimensionless pressure tor rcQ).05 and 
#=0.1. 
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-5 A n  example of curve mtching tech- 
nique applied to numerlcd well test 
simulation results. 
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