PROCEEDINGS, Tenth Workshop on Geothermal Reserveoir Engineering
Stanford Uaiversity, Stanford, California. January 22-24, 1985
SGP-TR-84

A NEW MODEL FOR WELL TEST ANALYSIS INA PURELY FRACTURED MEDIUM

Kenzi Karasaki. Jane C. S. Long, Paul A Witherspoon ‘\

Earth Science DDivision
Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

Abstract

In a porous medium the fiow conduits are small and
a large number of conduits are connected to the well. For
this reason the medium appears to behave like a contin-
uum on the scale of the well test, and volumetric averag-
ing and continuum approximations are justified. On the
contrary, in a fractured medium, only a small number of
fractures may intersect the pumping well. These particu-
lar fractures will be stressed by a large gradient under
well test conditions. Consequently, the early time
behavior will be dominated by these fractures. The
volumetrically averaged permeability does not control fiow
in the vicinity of an active well. The individual fractures
close to the well must be characterized in order to under-
stand the well test behavior especially if the hydraulic
parameters of these fractures are significantly different
from the average values for the entire system.

In the present study, a new analytical model is pro-
posed for well test problems in fracture networks where
the matrix is impermeable. The model accounts for the
difference in the fiow regime around the active well from
that of the system as a whole. The analytical solutions are
presented in a series of type curves for ranges of dimen-
sionless parameters. The fiow propreties of the fracture
system can be determined by curve matching.

Introduction

In the region near the pumping well, a single contin-
uum approximation is not appropriate for modelling well
tests!, This is because the inner boundary condition of a
well test causes flow to converge on the few fractures
which (ntersect the well. These fractures are macroscopic
features compared to the well bore radius. However large
the scale of observation may be, the characteristic length
of the system stili has to be the wellbore radius of the
pumping well. In a porous medium the size of each fiow
conduit is microscopic and there are a large number of
conduits connected to the well. In this case volumetric
averaging and continuum approximations are justified.
(n the contrary, in a purely fractured medium, the small
number of fractures that intersect the pumping well will
be stressed by a large gradient. The volumetrically aver-
aged permeability does not control fiow in the vicinity of
an active well. The individual fractures close to the well
must be characterized in order to understand the well test
behavior especially if the hydraulic parameters of these
fractures are significantly different from the average
values for the entire system.

In this study a new analytical solution is propess
for well test problems in purely fractured media based
a composite model with two concentric regions. The ian
region contains a finite number of descrete fractures. T
outer region is a classical porous medium. Similar comp
site models have been examined in the petroleum lites!
ture234 but none include the effects of Intra-fracture Aow,
The analysis of a well intersecting a single vertical fract
ture I a porous matrix has also been developed. However,
in this case fiow enters the fracture from the faces. Inou
model the fuid enters and exits the fractures only froi
their intersections with other fractures. A solution |
obtained for a finite radius well. The solution
presented in a series of type curves, so that the fi
propreties of the fracture system can be determined b
curve matching.

Model Description

An iso-thermal well test problem {n a homogeneous
fractured formation of uniform thickness H is coasidered.
The fractures are assumed to be vertical and extend fro
the top to the bottom of the formation. It is furthe
assumed that the rock matrix is impermeable and all tb
hydraulic parameters are independent of pressure.
wellbore storage ar damage is considered. The conceptu
model of the well test in this system consists of two zon
In the outer region the usual egquivatart porous mediuj
approximation is assumed to hold, i.e., the fiow properti
of the fractures are volumetrically averaged and a sing
contiuum replaces the fractures. The hydraulic condut
tivity and the storage coefficient for the region are k, an
5., - respectively. The well is located in the center of th

inner region and communicates with the outer regid
through a finite number (n) of fractures in the innét
region. The radius of the well is r, and the radius of the
boundary between the inner and outer regions is r; . Al
the fractures in the inner region have the same hydraull¢
aperture 5 and the hydraulic parameters &, and &, . It
assumed that there is an inflnitesimally thin rlng 6
infiaite conductivity between the two regions so that ti
otherwise incompatible boundaries can be matched
Figure-1 illustrates the model. The details of the solutig
are given below and the final result can be found in Equ
tion (28). We then examine the asymptotic behavior if
small and large time in order to provide simpler solutions
and check the results.

The governing equation for the faner region is thzﬂ
for one dimensional unsteady-fow,
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#h, 4 ok,
Frca o THE (12)

where the hydraulic diffusivity, e == k/S, . For the outer
region the usual radial flow equation describes the flow.
Phs 1 Bhy 1 Bk,
o T T ar T Bt (b)
The initial conditions and the boundary conditions for
constant rate injection test are

Ay(r.,0)=0 (r, <r<r) (2)

ha(r,0)=0 (r; €£r <o0) (3)
nkma"‘

- 1 _aT=Q (r=71)~ (4)

For the continuity at the boundary of the inner and outer
region, we have

By==h, (r=r) (s)
Ah ah
nklb—b-rl == 27rk, a: (r=1r). (8)

The following dimensionless parameters are deflned:

A 2xk Hh aat r2 ayt
D g 'a ,,,a o fp = P
Iy a, nbk,
fe = ¢y o, = ot - 211'7—/k, (N
Substituting into Eqgs.(1a) and (1b) we obtain
&hp, 1 ahp, ®
arp a, dtp
3hp, | dhp, _ ohyp, ©
org rp drp atp

In terms of the dimensionless parameters the initial and
boundary conditions become

hp (rp ,0)=0 (r, Srp L1) (10)
hp,(rp ,0)=0 (1Lr <o) ay
dhp, 1
B " F (rp =r. ) (12)
Ap,=hp, (rp=1) (13)
ah 3h
P Y (14)

afp ﬂ arp

Solution Scheme

Laplace transforms can be used successfully to solve
the equations simultaneously. The subsidiary equations
are:

d%hp
! P
o o ko, (15)
*hp, , dhp,

— = php_ . )
e + Pl Php, (18)

The transformed boundary conditions are

dkp,
o =‘=‘"ﬂ7 (rp =r.) (17)
bp,=F, (rp=1) (18)

(I'D =1) (lg)

The general solutions for Egs.(15) and (16) are of the
form:

Bp, = A cosh(v/p /a; - rp) + B sinh(\/p /a; - rp) (20)
Fp,=CIVp .rm)TDKVP . (21)

where Iy and K, are modified bessel functions of zeroth
order of the fint and second kind, respectively. The
coefficient C in Eq.(21) is found to be nil since we expect
the solution to be bounded for rp—oo . Eqs.(20) and (21)
are substltuted into Eqs.(17), (18) and (19), and the foi-
lowing set of equations are obtained.

AP 7o, sinn(\/p e, - r,) +

+BVp /e comn(Vp 1) T 5=
A cosh\/p /a, T Bsinhy/p /a, = DKqV7 ) (22)
A7 /e, sinhy/p /a, +

+ BV /ac comy/p Ja; =-2VTKA(VF)

Eqs.(22) are solved for A,Band D.

e
A—W—A-X

X [\/OTKl(\/p_ Jsinhy/p /a, +8K oV Jeosh\/p /a. ]

e
B —-mx (23)

X [V K V7 o5 Ta; +AK (V5 Winnv/3 e, |

b Vo
PVP A

where
& = VK7 o [VTR, - r)] +

+ K V7 )sinh [\/m-(m)] '

Substituting A,B and D back into Eqgs.(20) and (21), the
solutions in the Laplace domain are obtained:

- Vo,
hp, = YN {\/OTKn(‘/P-)ﬂnh [\/P 7d, ‘(l‘fn)] +

+ BK V7 Yoot V573, -(x—rp)]} (24)
hp, = p—\y/':rzxo(\/; “1p) (25)

Inversion of &p,
The lnversion theorem is applied to php ®.
i
L oo} = 5= f php e "4
~-i00

444 00
1 a. €

= ‘57;‘5‘{\/:"*“’; o [\5 73+ 0-r0)] +

+ BT o [VoTar o) |0 (29)
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The integrand has a branch point at p =0. We consider
the contour I in Figure-2. Since there are no singularities
within T,

BESNNE

so that
B c D E F A
[=-{[+]+[+[+]
A B c [ E F
Therefore,
B
1
L7 (e} = jim o
¢ =0 A
c D E F A
- f+f+f+f+f
27 R —~oo
¢ =0 c D E F

where R is the radius of the outer circle and ¢ the radius
of the inner. It can be shown that

[ A
llmfakllmf=o.
l-oeoa —ooo'

Also, by letting p =¢+'* and taking the limit as ¢ =0,

E
Hm § =0
-0
D
On ¢D, let p==p?e’* and oN EF let p==p?e¢~* and using
the identity:

Lo Lo
K,,(ze*2 )ci%m'e*’ [—J,(z);t:i}’,{z)] s

we obtain

©

-l"p A+{Q
V+1©

—dp

=

[}
oo

1 vea, f -#¥y —A+i0)
1]

, Where

(27a)

A=, J,(uein [%”-p |- s %p]
a=a Yx(l-‘)lnl%:r#] +ﬁYo(u)cos[§;=‘:=u]
¥ = ~/a, T (u)cos [ %n] +87 {upetn [ %};-u]
e=a, Y;(u)cos[%n]-ﬂf’o(#)sm [-‘7:-;4]

Therefore

ram——

(27b)

(27¢)

(27d)

=2\/a‘f M A-6-0-¥
=8

v+ et “vre

Simplifying and using the recurrence formula:

JUD)Y) (2) - Y (2)) (= =,
x2

p~Te
oy [ ]

€

L_l{P’TD J= =

“ W’+e°

A
0%8

Finally, by the convolution theorem we obtain

b ® co’[ DT l-l]

4a, ff :7«, dd
r
v? + @2 #

© . coe[ rp-r. ]
4a, fl—c-‘ 0
Ll A w’+e’

(r. £rp £1) (28)

Eq.(28) can be used to evaluate hp atrp as a function of
tp for given a, ,8 and r,. Figure-3is a log-log plot cfhol
vS. tp at rp==r,==0.01 for ranges of «, and 8. All the
curves have characteristic initial half-slope straight line
portion, which is the evidence of linear flow. A curve
matching technique can be used to analyze well test data
with such characteristics. If a unique match of the data
to one of the curves generated by Eq.(28) can be found,
a,, B and r, can be determined. The pressure and time
match yield two more equations which give &, and the
product 8, r® If k, can be expressed in terms of & using
the parallel plate analogy, i.e., F = b%pg /124 where p, ¢
and g are fluid density, gravity constant and fluid viscos-
ity, respectively, and if n, the number of fracture inter-
secting the well, is known, then the unknowns &, S, , k,,

S,, and ry can all be calculated from Eqs.(7).

In Figure-4. 45 is evaluated using Eq.(28) for various
values ofF r, with &, =20 and 8=0.7. Note that when
r. == 1.0, l.e., zero inner zone thickness, the curve is ident-
ical to that of van Bverdingen and Hurst®., As can be
seen in Figure-4, 4, s not very sensitive to r. for
r. < 0.1. Therefore, it may be very difficult to determine
r. directly from the match for r, =r,/r; < o0.1. This
would leave only four equations to work with. In such a
case, either one of S, ki 8, ar r, must be estimated a
priori in order to determine the rest. An observation well
Is needed to determine ,S‘,, a priori; k, and r, will pro-
bablly never be known a priori. One might assume S, to
be equal to fluid compressibility as a possible flrst trial.

Large Time Solution for Region 1
For small values ofz,

Ez: :?

Ko(2)~—ln—— '(mfz-’--l)+--- (20a)

Ez

Kl(z)z%+-;- (ln-—-—)+ (29b)
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2

coshzzl+-12—+-" (29¢)

unhzzz+3;+--- (29d)

where 1nf == 4 = 0.577215665 ( Euler's constant ). Substi-
tuing Eq.(29) into (24) and rearranging,

r 141 EVy
th~;{ ﬁ -In P -+
t-rp 1 -l | p EVy
+[ﬂ—2— . ]2ln2+ }X
'(1+1 [-l--ﬂ(l_r‘)]‘mﬁdi+ }—l
3 8 2
o1 1-rp EVp
.-v7 { 3 In P +
1 ﬂl""c) E‘/-};-
+p [? = ] (In 2 P+ }
80 that
D =L-l{’rul}
~1-fm 1 1.1 BAu-r)
~ S fe - S

X(-v+nstp )+ -
1-rp
8
Eq.(30) shows that for large tp, hp can be approximated
by a logarithmic function of ¢, . The lower limit of ¢, for

~

+-;-'(—7+m4t,,) (30)

which this approximation is valid is a function of 8, a,

and r, as can be seen in the derivation of Eq.(30). On a
semi-log graph, Eq.(30) is would be a straight line identi-
cal to the solution for a homogeneous porous medium
except for the constant (1-rp)/8. This, in effect, can be
thought as apparent "skin". Therefore, k, can be obtained
in the usual manner but the calculation of the storage
coefficlent in the conventional manner may result in
incorrect value of that parameter by a factor given by
5, rf? [ 21-r, /7y ) ]

. r2 B8

’3

(31)

Small Time Solution for Region 1
Remembering for small z ,

K/fz)= l%]m et - { 1+ %;—l-+ O(L)}

za
Since r, < 1,

h f_ -,/,7«,('3 -r) »
D, = ﬁP‘/—
a,

Then at the pumping well, rp =r,,

hp = L_‘{’Tn,}

= i ST o]

%T/\Z—T‘r—— Q-r)-cerfec l;r:b + - (32)

From Eq.{32), it is assured that for small ¢p, Ao, exhibits
hall slope straight line. Using the identities in Egs.(7),

1
b = nb \/7k,S, (38)

where & ., is the value of A at t == 1sec obtained by
extrapolating the straight line on log-log graph. Eq.(33)
can be used to find bk, when n and $, are known. I §,,

is also known, Eq.(31) can then be used to flnd r,
without tedious curve matching.

Inversion of &p,

It now remains to invert ITDQ to real space:

L™ ok} =- Vﬁ-f
So that

oy = BMEL [ 12
2 * “’

p © " Jolurp) + ¥ - Yo(P'D)
v + o2

. © - Jfurp) tw- Yo(ll"p)
3 +e?

(o 21, (34
where ¥ and © are given by Eq.(27c) and (27d), respecr

tively.

Large Time Solution for Region 2
Substituting Egs.(29) into Eq.(25),

= Evpr,
B~ t{ B

1 Aa-r)|  Everp EVp }
+ p[ 2 a, ] I = 5
Then,
1 1 Ba-r)]ed ) D
kp N;—{l-}-[ a ]t }(-' +In—-)+ -
~ 1 4ip
~ 2(—“/+ln—;;;- (35]

Small Time Solution for Region 2
For large p , noting that r, C 1, Eq.(32) becomes

— -\/v/a a-r,)
kA —als
%2~ Ja +8 - pvp

and now inverting IT,,’, we have:

2

h ~
\/aT+ﬂ
¢ 1/3 . 1 L
-(1- -7 -
x| 2] oo 1ol g LN
Ve, 2v/a, tp

(38)
This completes the large and small time solutions.
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Example Application and Conclusion

Figure-5 illustrates an example of the procedure
applied to find ¥, £, 8, and r, from a numerical well
test simulation in the fracture network also shown in the
flgure. The numerical procedure employed here is dis-
cussed in Log® and Kanehiro®. A fit was found assuming
5,, was known. The flow parameters for both regions cal-

culated from the match point and from the equations for
o, and 8 were found to be very close to the input values.
The calculated r; was 4.9m in this case. In the actual
network, the distance to the nearest intersection was
7.3m in one direction and 3.8m I the other, averaging
5.5m.

If a flt can be found this analytical model can suc-
cessfully be used to accurately determine the average
storage coeffictent of a fracture system from one-well test
as well as the distance to the nearest fracture intersection,
which in turn give us a clue to fracture spacing. Because
there are an infinite number of curves for various combi-
nations of «, , 8 and r., an automatic curve fltting pro-
cedure by a computer is being investigated.
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