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ABSTRACT

The development of reliable spinner tools may
belp avoid much of the ambiguity which often accom-
panies well tests in geothermal wells, due to inter-
layer flows through the well bore. However, the use of
both pressure and flow rate changes requires new
methods of well test interpretation. The Stanford
Geothermal Program has been  developing
microcomputer-based techniques for the simultane-
ous analysis of pressure and flow rate measurements.
There are two key steps in the procedure. Firstly,
the non-linear regression is achieved by calculating
the gradients of the response (with respect to the
unknown reservoir parameters) in Laplace space, and
inverting numerically. Secondly, the variable flow
rate is represented in terms of a superposition of
many step changes - this was found to work better
then a spline fit to the data. One problem was
encountered when attempting to analyze data in
which the spinner ’'stalled”, causing a jump to zero
flow rate.

The method shows great promise in that the
degrees of freedom on the interpretation are greatly
reduced, the well bore storage eflect disappears, and
inter-feed flows do not affect the results.

INTRODUCGT]ON

Well test analysis is often hampered by compli-
cating factors such as wellbore storage (afterflow)
end multi-phase flow. As & result, great care is
required in associating any portion of data with the
"correct semilog straight line”. The difficulties are
often greater in the case of geothermal wells since
the wellbore storage effect is usually substantial, and
the additional problem of multiple feed points in the
same well makes the analysis embiguous. One solu-
tion to these various problems is the use of a spinner
to measure downhole flow rate during a test. Pro-
vided the feed point is properly located, and the
downhole pressure and flow rate measured at" an
appropriate place, it then no longer matters whether
that feed zone produces (or accepts) all or only some
of the test fluid; nor does it matter if the feed zone
produces (or accepts) fluid to (or from) other feed
zones in the same well rather than to (or from) the

surface--the spinner will always: monitor the actual

reservoir flow rate. At present stages of technologi-
cal development, spinners can operate in geothermal
wellbore environments (although with safety mainly
in injection tests), and combined tools with simul-
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teaneous pressure, flow rate and temperature meas-
uremnents have been used (Benson, Goranson, Solbur
and Biocca, 1981). At the present time however, con-
ventional well test analysis techniques cannot easily
use these new measurements, except when they
serve only to show that the flow rate is constant. New
interpretation technigues are required.

Stanford University's Department of Petroleum
Engineering has been developing computerized pres-
sure transient technigues, using non-linear regres-
sion to fit field data to a reservoir model. The first
problem to overcome was the difficulty in describing
the reservoir model in a closed analytic form, since
many conventional type curves have been developed
using numerical techniques. Rosa and Horne (1983)
showed a way of formulating the reservoir model in
Laplace space (in which most solutions exist in closed
form), and then numerically inverting the transforms
of the solution and its derivatives with respect to the
unknown reservoir parameters. The numerical inver-
sion was performed using an algorithm by Stehfest
(1970). Experimentation with non-linear regression
methods indicated that variable projection (Kaufman,
1875) or Gauss-Marquardt with penalty functions
(Bard, 1974) would be the preferred methods to use.

Following the successful development of a set of
methods capable of fitting a wide range of common
type curves using a computer, the next step was to
extend the work to encompass reservoir models that
cannot be represented graphically in a type curve.
Included in these is the case where flow rate is not
constant. This work by Guillot (1983), examined the
advantages of representing the variable flow rate in
terms of a superposition of step functions, or in a
spline approximation.

This paper will summarize the results of both
works, discussing first the advantages in performing
the interpretation using the computer, and second
the specific case of variable flow rate tests.

Computerized ‘Type Curve’ Matching

Well test interpretation in the conventional
meanner usually requires the separate analysis of one,
two, three or more different portions of the
pressure-time response. Commonly the early time
response is used to estimate wellbore storage and
skin effects, and also to correctly locate the start of
the "correct semilog straight line” which is the
second (intermediate time) response. The semilog
straight line occurs when the fluid flows radially
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through the reservoir and no external boundary
eflects have been reached. Recognition of the
gorrect straight line is one of the more frequent
sources of error in well test interpretation since
several different semilog straight lines may be
apparent in some real data. The slope of the straight
line is used to estimate permeability-thickness pro-
duct (kh). The third region that may be analyzed is
the late time response, which indicates the presence
of and distance to reservoir boundaries.

Interpretation of a well test may be difficult or
impossible if one or more of the separate responses
is absent. For example, a well with a large storage
volume, close to a fault or boundary, may show a
response which changes from storage-dominated to
boundary-dominated without ever showing a semilog
straight line. Worse still a spurious:straight line may
be apparent in the data, resulting in an erroneous
interpretation. For this, and other reasons, it is also
possible to obtain diflerent estimates for the reser-
voir parameters from different parts of the response.

Many of these problems may be overcome with
computerized curve matching. = Using non-linear
regression algorithms, a computer can fit curves as
easily as straighl lines and is therefore not depen-
dent on the sometimes subjective choice of "the
semilog straight line”. - The algorithm also does not
obtain its estimates from a sub-region of the data,
thus it cannot obtain different parameter estimates
from diflerent sub-regions. The procedure fits the
entire pressure response at one time, regardless of
its straightness or otherwise, and obtains a set of
parameter estimates consistent with the whole data
set. These estimates may still be in error if the
model used was inappropriate, but on the whole the
number of degrees of freedom (i.e. possibilities for
error) are reduced relative to conventional graphical
methods. ’

The analysis method proceeds as follows:
Define:

[prf ]4=x‘ = theoretical value of pressure drop at the

wellbore at time t =¢,, as defined by
the reservoir model

Ap,;, = recorded value of that pressure drop

The least squares procedure calls for minimiza-
tion of the sum of squares of the residuals, defined
by:

SSr(®) =§)} ;Ipr,‘ ]M‘ - pr,}z v

= (6.6 . is a vector o e np unknown
5=(6.6, 6,)i tor of the np unk
reservoir parameters.

SSR is called the objective function and we seek
the vector at which it attains its minimum. This
process of minimization is an optimization and if we
constrain the parameters we will refer to the process

as ponlinear programming.
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The system of equations of condition is given by:

FlE [prj ]g =4 —pr[, =0 (2)

The equations in this system are nonlinear with
respect to the unknown reservoir and well parame-
ters. The basis of the Gauss method is linearization
of the equations by expanding each function F; in a
Taylor series up to the first derivative term. We note
that the derivatives cannot always be easily obtained
in real space because the functions F; are known only
in the Laplace domain. However, we employ one of
the theorems of the Laplace transform theory:

: 61’57(9.: )=L"! {;ggmz)} (3)

where:
p = parameter number
9, = reservoir parameter
b = vector having the reservoir
parameters as components

J = function F in the Laplace domain, i.e.,
Bwj(az)-

After linearizing the system of eguations (2) the
normal equations are constructed by the usual pro-
cedure. Then, the normal equations are solved, the
corrections added to the solution vector to form a
new estimate of the unknowns. We repeat the pro-
cess until convergence within a prescribed accuracy.

The Gauss method is known to be very sensitive
to the initial guess and may converge slowly or even
diverge if it is too far from the true solution. It may
be improved greatly using the Marquardt (1963)
modification and further improved by the addition of
penalty functions (Rosa and Horne, 1983). :

The inversion of the equation from Laplace space
to real space was done numerically using the Stehfest
(1970) algorithm. The accuracy variable N in that
algorithm was chosen to be B. With this value results
from the evaluation of the pressure at the wellbore
agree closely with those presented by Agarwal (Al-
Hussainy and Ramey, 1970), within four or five
significant figures.

~ Table 1 presents data obtained from a pressure
drawdown test on a new oil well, which is strongly
influenced by wellbore storage.



TABLE 1
DATA FOR EXAMPLE TEST

After Earlougher and Kersch (1974)

-6 -1
QY " 179 sTB/d (:t 8.2 x 10 psi
lo = 1.2 bb1/STB ¢~ 0.18
he= 35 ft ve 1.0 cp

r, = 0.276 ft
[

Drawvdown Pressure Data

8t (hr) 8p ¢ (psi)
0.2 19.7
0.3 28.1
0.5 43.1
0.7 58.3
1.0 75.1
2.0 114.5
3.0 135.5
5.0 152.2
7.0 163.2
10.0 166.7
20.0 171.2
30.0 173.9
50.0 175.2
70.0 177.1

Figure 1 shows the log-log plot.

Matching with

the Gringarten et al {1979) type curves we estimated:

k = 104 md = 0.104 darcy

s=12.3

C = 0.08659 bbl/psi =

202,386. cm3/ atm

Earlougher and Kersch (1974) obtained the fol-
lowing results using type curve matching:

k = 132 md = 0.132 darcy

s=18

C = 0.0942 bbl/psi =

220,172. cm3/ atm

1000

Ewo .".J tt e

3 ¢

-1 .

< °

°
.
10 -
0.1 1.0 ‘ 10 100
At(hr)

Fig 1. Log-log plot of example data (after

Earlougher and Kersch, 1974).
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Ve performéd the semi-log analysis, as

presented in Figure 2, and calculated:

k = 102.6 md = 0.103 darcy
s=12.1
180 s
Apﬂ'1m=159psl ’: -
= -
2 160} L *
; ’a” Y
2 -
m = slope = 9.73 psi/cycle
140} MTEOPe =SS By
°
120 4. !
0.1 1.0 10 100
At (hr)

Fig 2. Semi-log plot of example data.

According to the approximate start of semi-log
straight line indicated by the matching with the
Gringarten et al (1979) type curves, only two or at
most three points fall on that line. This makes the
conventional analysis rather difficult and subjective.
In order to investigate this point, we employed the
Gauss method using all the data points but also
without some of them. The results are summarized
in Table 2.

The matching using all the data points gave a
sumn of squares of residuals of 0.0478 atm? and the
largest individual residual, not shown, was 2.3 psi.
The estimated permeability from the conventional
semi-log analysis is 13.6% above the result from the
Gauss method and the skin factor is 23.8% above.

The conventional semi-log analysis is difficult
with so few points on the straight line, so it is
interesting to observe what happens if the last two
data points are not present. In this case the conven-
tional analysis would be impossible but the
automated matching still produces reasonable
figures for permeability and skin, within 18%, and
practically the same wellbore storage coeflicient.

Excludmg the first three points it would be
impossible to estimate the ‘wellbore storage by con-
ventional analysxs using the unit slope line. However,
the Gauss method yields almost the same results as
those obtained when using all the data points.

- . These ~examples point out ‘the eflicacy of the
automated_procedure.. It is clear that:it is feasible to
estimate the-three reservoir parameters using data
that fall only in the transition region between the unit
slope line (dominated by storage effects) and the
semi-log straight line (no storage eflects anymore).
The only way of performing this analysis is automati-
cally, using a regression technique as proposed,
because there is no simple analytical expression for
the pressure drop in the transition region and the
visual matching becomes completely subjective.
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TABLE 2 - RESULTS OF THE GAUSS METHOD

Data from Table 1

»
. Initial Guess Solution H
-é Number of H
b
H Data Points Darcy System of Units s SSR )
w k ] c k s c = | (atm)
1 14 0.100 | 18. 220, 000. 0.0903 | 9.87 | 201,840. 6 | 0.0478
12
2 (excluding the last |[0.104 12.3 | 202,386. 0.0806 | 8.07 | 200,360. 4 | 0.03857
two points)
11
3 (excluding the 0.100 | 18. 220, 000. 0.08%9 | 9.79 | 201,490. 6 | 0.04524
first three points)
10
4 1 (excluding the first |0.104 12.3 | 202,386. 0.0810 | 8.14 ] 200,560, 4 | 0.03811
two & last three
points)
Quite apart from this, the automatic approach L B e B B L N LY S
also permits confidence intervals to be placed on all :
the parameter estimates, as shown in Rosa and Horne 200k

(1983). This quantification of the 'fuzziness" of the
estimates is not possible in the conventiona!l analysis.

Variable Flow Rate
Given that the model pressure drop [pr!],ﬂ“

and its derivatives can be obtained by numerical
inversion of their Laplace transforms, it is no longer
necessary to require that the flow rate be constant
during the test - provided it has been measured. For
the simple case without storage and skin, the model
function can be written down in terms of the
exponential integral function E,, without recourse to
the Laplace transform:

s o

m n-1
T ankk

2

Here g(7;) are the set of n flow rates measured
throughout the test - each treated as constant from
time 7, to time 7;,,. Guillot (1983) also examined the
case where the variable flow rate is fitted using a
spline, however the step function approach was found
to give better results in much less computer time.
Figure 3 shows an example of a flow rate variation
and its approximation in terms of (a) step functions
and (b) a cubic spline. The resulting pressure his-
tories are shown in Figure 4. The non-linear regres-
sion program can fit both pressure curves with good
accuracy; however only the step function approach
errives at estimates of the reservoir parameters
which coincide with the values used to generate the
data. The spline approximation approach gives
answers which deviate as much as 10% from the
actual values.

g (15,)+9(7;)
2

PUCT
4k (t‘ ’7" +1)

PUOTS

o) ®

—El
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FLOV RATE (stb/d)
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Fig 3. Flow rate vs. time: x = data;
broken curve ~ step functions;
solid curve - spline approximation.
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Fig 4. Pressure vs. time resulting from
the flow rate approximations of Fig 2.



This difliculty in smoothing the data manifests
itself in an important way in real data. There is com-
monly & “step” in flow rate measurements when the
spinner stalls as the flow becomes small. This step is
not a true representation of the actual calculated
pressure response in the same manner as the "wig-
gles” produced by the spline. Examples considered
by Guillot (1983) showed two difficulties in fitting
such real data - firstly, the algorithm has difficulty
converging on the observed data (since the model
forces the non-existent step), and secondly the fit
eventually obtained does not give reasonable values
of the reservoir parameters. Using only that part of
the data which precedes the stalling of the spinner
results in a much better fit. This again emphasizes
the eflicacy of the computerized technique, since the
reservoir estimates are obtained purely from what
would normally be the afterflow period - before the
downhole flow rate reaches zero in a buildup test.
The additional hours of data collected in pursuit of
the correct straight line is not required, and in fact
maeke the fit more diflicult to obtain.

Summary

(1) Tbe use of the Laplace transform of a reservoir
model pressure transient (and its derivatives with
respect to unknown reservoir parameters) makes
possible computerized fitting of many common type
curves. The transforms need to be inverted numeri-
cally in most cases.

(2) The computerized method does not analyze a
sub-region of the data (such as the semilog straight
line), but fits all the data at once. It is therefore pos-
sible to correctly fit many data sets that do not
demonstreate easily recognizable graphical features.

(3) By fitting the whole data set at one time the
reservoir parameter estimates obtained are at least
consistent. The reduction in degrees of freedom is
also likely to make the estimates more correct.

(4) Tbe flow rate need not be constant, provided it
bhas been measured. Analysis of variable flow rate
tests gives better answers than constant rate tests
since wellbore storage eflects do not eflect the
results, and the number of degrees of freedom are
substantially reduced.

(5) The computerized well test analysis procedure is
capable of fitting data from much shorter tests than
are necessary for conventional analysis. This
represents a significant saving in time for wire-line
crews, and a shortening of exposure of the toois to
the downhole environment.

(6) The methods are sensitive to errors in the meas-
urements, but fortuitously less sensitive to flow rate
errors than to pressure errors. An exception is the
flow rates indiceted when the spinner “stalls”, and
this data requires carefu! handling.

Horne, Guillot and Rosa
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