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1. Introduction 

Proximity Functions for Modeling Fluid and Heat Flow i n  
Reservoirs w i t h  Stochastic Fracture Distributions 
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It is w e l l  established that  most 
high-temperature geothermal reservoirs 
&re extensively fractured. The fractures 
provide the principal conduits for f luid and 
heat flow. The rock m a t r i x  contains most of 
the fluid and heat reserves? but it usually 
has a very l o w  permeability, perhaps in the 
microdarcy-range. 

Conventional approaches t o  geothermal 
reservoir modeling have employed a porous 
medium approximation, although the validFty 
of this approximation for  naturally fractured 
reservoirs has never been demonstrated in  
detail. It appears that  most researchers 
expected a porous medium approximation t o  
work i n  cases w i t h  "not too large" fracture 
spacing. Recently it was shown by Pruess 
and Narasimhan (1982a), that  in two-phase 
geothermal reservoirs strong discontinuities 
in vapor saturation can arise a t  matrix/ 
fracture interfaces, due t o  an interplay 
between f luid convection and heat conduction. 
This suggests that fractured systems with 
two-phase f luid may behave quite differently 
than porous medium systems even i n  cases 
where fracture spacing is small in  comparison 
t o  characteristic dimensions of the problem 
(e.g., reservoir size, well spacings, 
completion intervals). 

In order t o  quantitatively model 
fractured reservoir behavior, Pruess and 
Narasimhan (19823) developed a "multiple 
interacting continua" method ("MINC"), 
which is a generalization of the double 
porosity model of Barenblatt et a l .  (1960) 
and Warren and Root (1963). The classical  
double-porosity work employed a quasi-steady 
approximation for  "interporosity" flow 
between rock matrix and fractures, which 
severely limits the range of systems 
and processes to which it is applicable. 
The MINC-method on the other hand, t rea ts  
interporosity flow entirely by numerical 
methods. 
transient representation of interporosity 
flow, which is applicable t o  problems with 
coupled f luid and heat flow, and t o  multi- 
phase fluids w i t h  large and varying compres- 
s ibi l i ty ,  such as  steam-water mixtures. 

This makes possible a ful ly  

The work of Pruess and Narasimhan 
employed highly idealized regular f r a c  
ture distributions, but the authors pointed 
out that  the MINC-method can be extended t o  
rea l i s t ic  (stochastic) fracture distributions 
as w e l l .  
paper t o  carry out the generalization t o  
arbitraxy irregular fracture distributions. 
Mter  briefly reviewing the main assump- 
tions of the MINC-method, we shal l  introduce 
the concept of a "proximity function" as  the 
central geometrical quantity which defines 
the matrix-fracture interaction. subse- 
quently we shal l  consider proximity functhns 
for regular or irregular fracture distribu- 
tions, using Monte Carlo integration techniques. 

2. Summary of the MINC - Method 

It is the purpose of the present 

The MINC-method follows the double- 
porosity approach in adopting a continuum 
treatment for both the fracture network and 
for the porous rock matrix. Global flow in 
the reservoir is assumed to occur only 
through the network of interconnected 
fractures, whereas fractures and rock matrix 
can exchange fluid and heat locally. 
order t o  obtain a numerical description 
for interporosity flow? it is necessaxy to 
parti t ion the flow domain into discrete 
volume elements, o r  grid blocks. The 
crucial point of the MINC-method is the 
partitioning (or  discretization) procedure 
adopted for interporosity flow. It should 
be noted that  the customary equations for 
mass- and energy-conservation, when written 
i n  integral  form, hold for arbitrary 
reservoir subdomains (Narasimhan, 1982). 
However, discretized equations are only 
useful (solvable), when the flow terms 
between volume elements can be xelated to 
the accumulation of mass and heat within 
volume elements. Fluid and heat flow are 
driven by gradients of pressure and temper 
ature, respectively, and these can be 
expressed in  terms of average values of 
thermodynamic variables i f  (and only if) 
there is approximate thermodynamic equili- 
brium within each volume element a t  a l l  
times. In porous media, th i s  requirement 
w i l l  usually be sat isf ied for any suitably 
"small" simply-connected subregion, as  
thermodynamic conditions generally vary 
continuously and smoothly w i t h  position. 

In 

-219- 



'Phe s i tuat ion can be quite different in 
fractured media, where changes in the- 
dynamic conditions as a consequence of 
boiling o r  cold w a t e r  injection may propagate 
rapidly in the fracture network, while 
migrating only slowly i n t o  the rock matrix. 
Thus, thermodynamic conditions may show 
strong variations as a function of position 
i n  the vicini ty  of the fractures..Because of 
the different response times, thermodynamic 
changes in the rock matrix w i l l  locally 
depend mainly upon the distance from the 
nearest fracture. Then, interporosity flow 
w i l l  be perpendicular to the fracture faces. 
This suggests parti t ioning (discretizing) of 
the rock matrix in to  sequences of nested 
volume elements, which a re  defined on the 
basis of distance from the fractures. 
Figure 1 i l l u s t r a t e s  t h i s  concept fo r  the 
case of an idealized two-dimensional fracture 
distribution. In t h i s  case the geometric 
quantit ies governing the interporosity flow 
(element volumes, interface areas, and 
nodal distances) can be easi ly  obtained i n  
exp l i c i t  analytical  form (Pruess and 
Natasimhan, 1982b). 

The mesh design concept a s  shown i n  
Figure 1 can be generalized, to  make it more 
suitable fo r  applications of pract ical  
interest .  In reservoir regions where 
thermodynamic conditions vary slowly as a 
function of position, it is not necessary to 
have separate volume elements within each of 
the elementary uni ts  depicted in Figure 1. 
Instead, corresponding nested volumes i n  
neighboring units, which are ident i f ied by 
an index number in Figure 1, can be lumped 
together i n t o  one computational volume 
element. Element volumes and interface 
areas scale proportional t o  the number of 
elementary units which are lumped together, 
whereas nodal distances remain unchanged. 
The scaling procedure can be further general- 
ized by applying the same scaling law t o  
grid blocks of arbi t rary s i ze  or  shape. 
Thus we arr ive a t  a two-step procedure fo r  
defining a computational mesh fo r  a fractured 
reservoir. 
mesh j u s t  a s  would be done fo r  a porous- 
med ium type system with small gr id  blocks 
near wells, etc. ("primary mesh"). The 
second s t ep  is to sub-paxtition each gr id  
block i n t o  several continua, the respective 
volumes, interface areas, and nodal distances 
of which are obtained by appropriate scaling 
from the quantit ies pertaining t o  the basic 
fractured un i t  ("secondary mesh"). 

The f i r s t  s t ep  is to construct a 

The concept of parti t ioning based on 
distance from the fractures can be readily 
extended to  arbi t rary irregular f racture  
distributions. Figure 2 i l l u s t r a t e s  this 
for  a set of fractures of f i n i t e  length. 
F i r s t  it is necessary to eliminate the 
dead-end portions of the fractures, which do 
not participate in global f low within the 
fracture system (Figure 2b). 
matrix can then be readily parti t ioned in to  
several continua w i t h  increasing distance 

The rock 

-220- 

from the fractures (Figure IC). 
general case of i r regular  fractures is 
straightforward from t he  conceptual point of 
view, it is not possible t o  obtain the 
geometrical parameters for  the sub-continua 
in an exp l i c i t  fashion. To accomplish this 
we introduce an auxiliary function, termed a 
"proximity function", which can be calculated 
fo r  any given facture diStXibUtiOn, and 
which allows t o  completely define a l l  
gecanetric parameters fo r  interporosity flow. 

While the 

3. The Concept of Proximity Functions 

For any given reservoir subdomain with 
known fracture distribution a function V(x) 
can be defined, which represents t o t a l  
matrix volume V within a distance x from the 
fracture faces. Note that the volume V w i l l  
generally consist  of a finite number of 
d i s jo in t  multiply-connected regions, repre- 
senting a quite complex topological structure 
(see Figure Z c ) .  
the  subdomain, and 0.1 is the volume 
fract ion (average porosity) of the fracture 
system, the volume of t he  fracture continuum 
within VO is V1 = @l*vo. 
to introduce a "proximity function" PROX(x), 
which expresses, fo r  a given reservoir 
subdomain VO, the t o t a l  f ract ion of matrix 
volume within a distance x from the fractures. 
Noting t h a t  the t o t a l  matrix volume ih domain 
VO is 

If  VO is the volume of 

It i s  convenient 

we have 

(1) 

In the MINC-method, a discretization is 
adopted for  the rock matrix (see Figure 3) 
whereby a l l  matrix volume within a distance 
x2 from the fracture  faces w i l l  be lumped 
i n t o  one computational volume element (or 
subcontinuum) V2; matrix volume within a 
distance larger than x2 but less than x3 
w i l l  be lumped i n t o  V3, etc. This is 
i l l u s t r a t ed  i n  Figure 3 f o r  a regular 
f racture  network, but  it is evident t ha t  the 
same procedure can be applied t o  arbi t rary 
i r regular  fracture distributions,  see Figure 
2c. To define flow towards or away from the 
fractures,  it is necessary t o  specify 
interface areas and nodal distances between 
the matrix sub-continua. From the definit ion 
of the proximity function a s  given above, 
the interface area f o r  flow a t  distance x is 
simply 

In conventional porous med ium- type  
simulation methods with simply-connected 
grid blocks, t he  computational nodes are 
points, usually located a t  the center of a 
volume element. 
volume elements of the MINC-methOd, the 

For the multiply connected 
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element nodes becane nodal surfaces, which 
a re  located half-way between the inner and 
the outer surface of an element. The 
discretization procedure adopted h i n t h e  
WNC-method can now be described as follows. 
Firs t ,  a "primary" mesh I s  specified in 
integral  f i n i t e  difference form by means of 
a set  of volume elements CV,J n51, . . ., NI, 
interface areas b, and nodal distances 
h. A l l  primary "connections" (A,,,,,, 
h) between volume elements are assigned 
t o  the fracture continuum. 
Vn of the primary mesh is then parti t ioned 
i n t o  a sequence of interacting continua 
V n j  (j=l, . . ., 5). The continua are 
specified by means of a set of volume 
fractions $ j  (j=l, . . ., J), where $1 
is the average fracture  porosity, and the 
$2. . . ., $J denote volume fractions in 
the matrix a t  increasing distance from the 
fractures. Obviously we must have 

Each grid block 

J 

(4) 

j= 1 

Apart from this constraint, the  $ j  (j-2, . . ., J) are arbitrary,  but f o r  best accuracy 
the volume fractions near t he  fractures 
($2, $3, . . .) should be chosen not "too" 
large. 
are simply 

The volumes of the sub-partitioning 

Vnj + j  Vn ( 5 )  

so t h a t  

J 

In the "secondary" mesh { V n j j  n=l, . . ., N J  
111, . . ., J) each of the primary g r id  blocks 
Vnl  (representing fractures)  interacts  
w i t h  its neighbors through the fracture  
Continuum, and with a one-dimensional s t r ing  
Vn2, Vn3, . . ., V,.,J of nested grid "blocks" 
i n  the matrix. 
the Vn extend can be simply obtained by 
inverting the proximity function. 

The distances x j  t o  which 

We have 

The fracture  nodes are placed a t  the fracture- 
matrix interface, so that 

--A 
411, n2 

The innermost nodal distance requires special  
. consideration. Writing 

X J-1 - xJ-2 
(10) 

+ DJ 
I 

dnJ-l, J 2 

w e  introduce the distance DJ of the nodal 
surface with index J from the innermost 
interface area, %J-$, nJ. 
chosen i n  such a way t h a t  the f i n i t e  differ-  
ence approximation f o r  pressure - and 
temperature - gradients gives the most 
accurate estimate fo r  the actual  gradients 
a t  the interface A ~ J - I ,  n ~ .  
may be taken i n  quasi-steady flow approxi- 
mation. 
steady nodal distance i n  many cases is 
(Warren and Root, 19631 

DJ should be 

In general, DJ 

A good approximation fo r  the quasi- 

(11) 

4. Examples of ProxFmity Functions 

In the case of regularly shaped matrix 
blocks, analytical  expressions can be 
written down fo r  proximity functions. For 
example, fo r  two-dimensional square matrix 
blocks with side length a the matrix volume 
w i t h i n  a distance x from the block faces is 
(per un i t  thickness) 

V(X)  = a2 - ( a -2~12  (12) 

so that ,  according to equation (2)  

An interest ing application of the 
methods presented here is for the Stanford 
large reservoir model, which has a loading 
of  regularly shaped rocks. There are six 
layers, each of which has f ive  parallelepiped 
blocks and four tr iangular blocks with fiide 
lengths a, b, C. The proximity function 
for a rectangular block is 

j'52 

The interface area between elements V n j  
and Vnj+ l  is  simply A(xj) as given by 
equation (3). 
(j52, . . ., J-2) 

and for  a triangular block we have Nodal distances a re  given by 

x j  - xj-1 + xj+l - x j  
d I 

nj t  nj+l , 2 2 
( 8 )  

+(+ + $)x 
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The averaged proximity function in each layer b 

P,(X) - - 5 P (x) + - 2 p ( X I  
7 r  7 t  

These functions are i l l u s t r a t ed  i n  Figure 4. 
Fluid and heat flow calculations using these 
functions are  reported i n  another paper 
presented a t  this workshop (Hunsbedt et  a1.,1982) 

In the general case of arbi t rary 
irregular fracture distributions,  prox- 
imity functions can be computed by means of 
Monte Carlo - integration. 
program was written which generates random 
points w i t h i n  a region VO with known 
fracture distribution. The minimum distance 
of each point f r m  the fractures is computed, 
and a l l  points are sorted in order of 
increasing distance. 
f a l l i n g  below a certain distance x is the  
value of the proximity function a t  X. This 
procedure, which is applicable to arbi t rary 
fracture distributions, defines the proximity 
function a t  discrete points, subject t o  
s t a t i s t i c a l  fluctuations from the Monte 
Carlo - integration process. 
able t o  numerically compute derivatives of 
the proximity function, a smoothed c w e  is 
computed by f i t t i n g  the discrete function 
w i t h  a succession of cubic splines. 
accuracy of the Monte Carlo procedure was 
tes ted by computing p r o x b i t y  functions and 
t h e i r  derivatives fo r  cases where the 
results are known in analytical  form. 

A conrputer 

The fraction of points 

In order t o  be 

The 

Figures 5 and 6 show proximity functions 
and their derivatives fo r  square matrix 
blocks. Note tha t  the results of the Monte 
Carlo - integration give a close approxima- 
t ion t o  the analytical solution a s  given by 
equation (13) already for  5,000 integration 
points. However, small deviations a re  
magnified when interface areas a re  computed 
by differentiation. When 50,000 integration 
points are used, a good approximation is 
obtained fo r  interface areas, see Figure 6b. 

Figure 7 shows a two-dimensional 
stochastic f racture  pattern. was 
generated with a computer program developed 
a t  LBL, according t o  a given distribution of 
orientations and lengths, with random 
locations (Long et al., 1982). The proximity 
function fo r  this system, obtained by Monte 
Carlo - integration w i t h  100,000 integration 
points, is shown i n  Figure 8 ,  while Figure 9 
gives the interface areas as  obtained by 
numerical differentiation. 

5. summary 

The proximity function quantifies,  fo r  
a given fractured rock m a s s ,  t he  volume of 
rock matrix present i n  dependence upon the  
distance from the fractures.  This function 
and its f i r s t  derivative a r e  suff ic ient  t o  
completely define the geanetric parameters 
for  interporosity flow between rock matrix 
and fractures,  a s  required by t he  method of 

gaultiple interacting continua" (MIXI Pruess 
and Narasimhan, 1982b). For regularly shaped 
matrix blocks, proximity functions can be 
w r i t t e n  down i n  analytical  form, while fo r  
stochastic f racture  distributions they a r e  
obtained by means of Monte Carlo-integration. 
W e  are currently studying the dependence of 
proximity functions upon the  parameters of 
f racture  distributions,  and upon sample s i z e  
and specific realization of a stochastic 
distribution. A l s o ,  w e  have begun simula- 
t ions of f lu id  and heat flaw i n  geothermal 
reservoirs with r e a l i s t i c  f racture  distribu- 
tions. 

. 

It should be emphasized tha t  for  model- 
ing of flow i n  fractured rock masses, t he  
proximity function of the flow system can be 
computed once and for  a l l ,  ahead of actual 
flow simulations. A preprocessor program 
has been written (Pruess, 1982), which 
generates a l l  geaaetric parameters for 
interporosity flow i n  a format compatible 
with Lawrence Berkeley Laboratory's geo the r  
m a l  simulators S-79 and MIILKOM. The 
preprocessor can also interface with other 
integral  f i n i t e  difference simulators, such 
a s  TRUST (saturated-unsaturated flow), PT. 
(single-phase non-isothermal flow), and 
TRUMP (advectivediffusive heat and chemical 
transport) .  With the methods outlined i n  
this paper, modeling of f lu id  and heat flow 
i n  naturally fractured reservoirs is no more 
d i f f i c u l t  than simulations fo r  porous 
media. 
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Figure 1. B a s i c  computational mesh f o r  frac- 
tured porous m e d i u m ,  shown here f o r  
a 2-D case. The fractures enclose 
matrix blocks of l o w  permeability. 
which are subdivided i n t o  sequences 
of nested volume elements. 

P I p I I - 8 u l o  

Figure 2. I l l u s t r a t i o n  of t h e  MINC-concept 
f o r  an a rb i t r a ry  two-dimensional 
f r ac tu re  d is t r ibu t ion .  

Figure 3. MINC-partitioning f o r  an idealized 
f r ac tu re  systan. 
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Rectongulor blocks 

n lovers 

Distance from rock surface (cm) 

?igura 4. Proximity functions for Stanford 
l a rge  reservoir model. 
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Figure 5. (b) 50,000 integration points. 
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Figure 6. Derivative of proximity function 
for two-dimensional square 
matrix blocks (DMAX = 1) .  
(a)  5,000 integration points. 
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Figure 6. (b) 50,000 integration points. 

Figure 7 .  Two-dimensional stochastic 
fracture distribution. 
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Figure 8. Proximity function for stochastic 
fracture distribution. 
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Figure 9. Derivative of proximity function 
for stochastic fracture distribution. 
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