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ABSTRACT

Pressure transient solutions for constant rate
production and transient rate analysis for con
stant pressure production are presented for a
naturally fractured reservoir. The results ob
tained for a finite no-flow outer boundary =--

are surprising. Initially, the flow rate
shows a rapid decline, then it becomes nearly

constant for a certain period, and finally it
falls to zero. Ignoring the presence of a con
stant flowrate period in a type-curve match can
lead to erroneocus estimates of the dimensionl

ess matrix pressure and fracture pressure dis-
tributions are presented for both the constant
rate and constant pressure production cases. In

terference test for-constant rate production can

be interpreted for long times by means of the
line-source solution. For the constant = pres
sure production case, the pressure away from the
wellbore does not correlate well with the line
source solution.’

INTRODUCTION

Naturally fractured reservoirs or reservoirs
with double porosity behavior as they are . com
monly referred consist of heterogeneous porous
media where the opening (fissures and fractures)
vary considerably in size. Fractures and open
ings of large size form vugs and interconnected
channels,; whereas the fine cracks form block sys
tems which are the main body of the  reservoir.

| The porous blocks store most of the fluid -in

the reservoir and are often of low permeability,
whereas the fractures have a low storage capacity
and high permeability. Most of the fluid = flow
will occur through the fissures with the blocks
acting as fluid sources.

These systems have been studied = extensively in
the petroleum literature. One of the first such
studies was publighed by Pirson(1.953). In 1959
Pollard presented one of the first pressure tran
sient models available for interpretation of well
test data from two-porosity systems. The most com
plete analysis of transient flow in two-porosity
systems was presented by Barenblatt and Zheltow
(1960) - The Warren avad Root (1963) study  is
widely considered to be the forerunner of modern
interpretation of two-porosity systems. The be
havior of fractured systems has long been a top
ic of controversy. Warren and Root and Kazemi
(1969) have indicated that the graphical technji
que proposed by Pollard is susceptible to error

" termine the permeability thicknes

caused by approximations in the mathematical
model-nevertheless, the Pollard method is still
used. The most complete study of two-porosity
systems appears to be the Mavor and Cinco- ley
study in 1979. This study considers wellbore
storage and skin effect, and also considers pro
duction, both at constant rate and at constant
pressure. However, little information is pre-
sented concerning the effect of the size of the
system on pressure build-up behavior.

In this paper a literature review is presented
on the basic solutions which can be applied in
dealing with pressure transient analysis natural
ly fractured reservoirs.

PARTIAL DIFFERENTIAL EQUATIONS

The basic partial differential equations for flu
id flow in a two-porosity system were presented
by Warren and Root in 1963. The model has been
extended by Mavor and Cinco Ley (1979) toinclude
wellbore storage and skin effect. Da Prat (1981)
extended the model and developed a method tode
product .Kh.
Deruyck et all(1982) applied with success the
¥%arren and Root model to study interference data
from a geothermal field. )

The basic partial differential equations are: Da
Prat (1981).
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where W is the dimensionaless fracture storage
parameter: .
($c) : o
— k (3)
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and A controls the interporosity flow and is
given by
2
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A complete mathematical definition requires ad
ditional equations which represent the appro -
piate initial and boundary conditions.

"The iﬂitial boundary conditions is:

Pup = Pgp (rD, 0) =0 (5)
For a well producing at a constant pressure the
inner boundary ;mndition is:
P .
D

i T - } . (6)
) . rn-l
Where S is the skin factor
For a well producing at a constant flow rate
the condition is:

3p 3p
c fwd ( £D ) -1
T

D oty L) n
where:
c, = <
D 27h i (¢c)f+ (¢c)m 1. 7;2_ (8)
The skin effect condition is:
Pep
Pead = Pep ~ S| 50 9

D r.=1

Two outer boundary conditions are considerated

~ in this study: an infinitely large reservoir

and a closed outer boundary. For an infinitely
large reservoir, we have:

lim p.. (rD, tD) =0 (10)

r. - o )

For the closed outer boundary, the conditionis:
3P {11)

D
e | =0
ary [!b =%ep
The dimensionless flow-rate into the wellbore
is given by:

apD
apty) = = | 30 (12)
D rD-l-
where:
= _141.2 quB
7 Tkh Gl - p D (13)

METHOD OF SOLUTION

A common method for solving Egs. 1 and 2 is to
use the Laplace transformation. The equations
are transformed into a system of ordinary di -
fferential equations which can be solved analy
tically. The resulting solution in the trans-
formed space is a function of the Laplace va -
riable s, and the space variable,r_. To obtain
the solution in real time and space the inver-
se Laplace tranform is used. In the present
work, the inverse was found by using an algo -
rithm for approximate numerical inversion of
the Laplace space solution. This algorithm was
presented by Stehfest (1970).

TRANSIENT PRESSURE SOLUTIONS-CONSTANT FLOWRATE
PRODUCTION

The solutions for the dimensionless wellbore
pressure from either an infinite or a closed
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outer boundary system have appeared in several
places in the literature (see Mavor and Cinco-
Ley (1979) and Da Prat (1981). Fig. 1 shows the
solution for p for an infinite system for
two values of 03 and several values of A (C=o
and skin effect = o). At early times, p de-~-
pends on and W. For a given value of )\, as
time increases a period is reached where in the
pressure tries to stabilize due to flow from
the matrix. After this transition period, the
solution becomes the same as that for a homoge
neous system. Fig. 2 shows the solution for the
dimensionless wellbore pressure for a well lo-
cated in a closed outer boundary system. At
early times the solution depends on and ®
(assuming skin effect = o and C_= o) for any
value of A.Then the solution ~goes to a tran
sition period to finally meet the solution for
a homogeneous system. Fig. 3 shows the wellbare
storage effect on the Horner plot for a Ego
rosity system where w= 0.01 and A = 5.10 /.
is seen that low values of C_ have a large im-
pact on the initial straight line making impo-
ssible the evaluation of w. For large valuesof
C_, not only the initial straight line, but also
tRe transition zone is obscured by wellbore -
storage.

Po
It

The analysis of interference tests in two porg_
sity - systems has been the subject of study

for many years. These tests can be used to pro
vide information such as-mobility thicknesspro
duct, k h , and the porosity-compressibility -

H
thickness product,QCth- Kazemi (1969), based
on the two-porosity model of Warren and Root,
presented results for the fracture-pressuredis
tribution in the reservoir. In Kazemi's work,
the wellbore response to an interference test
is dependent on the pressure variations in the
fractures, rather than in the matrix. Hence, =
this study is limited to the case where the
wells used in the tests are completed in the
fractures. Streltsova-Adams (1976) considered
both fracture and matrix pressure distribution
and pointed out the importance of differencing
matrix flow and fracture flow in the analysis
of test made on fractured formations.Recently
Deruyck et al (1982) presented a systematic
approach for analyzing interference tests in
reservoir with double porosity behavior and
field tests conducted in a geothemal reser -
voir are discussed to illustrate the method.
Fig. 4 shows the solution for the dimensionless
fracture pressure us /rz for several values
of W and 6. The parameter 0 is equal to A rzn.
It was found to be a correlating group. Fig. 5
shows the solution for the dimensionless matrix
pressure for several values of the parameters
6(= Ax 2) and w.

TRANSIENT RATE SOLUTIONS ~CONSTANT PRESSURE PRO-
DUCTION
Although decline curve analysis is widely used,

methods specific to naturally fractured reser-
voirs do not appear to be available. Fig. 6

‘shows the dimensionless flowrate functions for

a well produced at a constant pressure from a
two-porosity system where w= 0.01 and A= 10-5.
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Fetkovich . (1980) observed that for homogeneous
systems at the onset of depletion (a type of
pseudosteady state) all solutions.for various
values of T _ develop exponential ‘rate decline,
and convergg to a single curve. This statement
is not true for two-porosity systems as ashown
in Fig. 6. It can be seen that the solutionsdo
not converge to a single line, Log-log type -
curve matching to analize rate-time data canbe
applied to naturally fractured systems. Howe -
ver, the relationship between

controlled by w and A, as wellqgs by otheg pa-
rameters. Thus more than cne type-curve may be
necessary. Figs. 7 to 20 show the solutions for
different values of w and A,

In the case of homogeneous systems, interferen
ce tests have been used with success in many
cases, Earlougher (1977). For wells producing
at constant inner pressure , Ehlig-Economides

“(1979) observed that, unlike the constant rate
" solution, the pressure distribution for cons -

tant inner pressure does not correlate with the
line-source solution. A different solution re-

sults for each value of r_.. Considering the ho .

mogeneous .reservoir solution, a particular ca-
se of the naturally fractured reservoir solu -
tion, it can be expected that the same depen -
dence on r_ applies for two-porosity systems,
Fig. 21 shows p__ vs t /r_2 for the case of

= 1000, and fRveraiPvalues of w and A. Fig.
29 shows the solution for the dimensionless ma
trix pressure p r_2, for a well produ—
ced at a constagg inner pressure,

INTERFERENCE EXAMPLE

The use of type~curve matching will be illus -
trated with a simulated injection test, During
an interference test, water was injected into

a well for 400 hours. The pressure response in
a well 250 £t away was observed during the in-
jection process. Reservoir properties and the

observed pressure data are given in table 1. -
The pressure change was graphed as a function

of time on tracing paper and then placed over

Fig. 4 (see Fig. 23). From the match, w and ©

can be obtained as parameters. From Fig, 23,

6= 1 and w= 0. 01 The fracture permeability is
given by.

141.2(-100)(1')(1) 0.4
480 (-10)

41ZSBu(fD

= 1,2 md

From the time - t /c2 match, the total stora
tivity is obtained: -

0.000264 kf::~/ P
{ (¢c) f+ (¢c)m} por ¢ 'tu/rzp

)

" = 0.000264 (1.2) 200
(250)2 1.5

=3.38 1077 psit

From w= 1 and the total storativity, the frac-
ture storativity is:

() = {(‘Iw)f + (¢e) )

= (0.01) { 3.38x10"" } = 3,38 10™° psi”’

as = 2 .
6 Artp = 1:

3] 1 -6
A 2 ooy -
k.
also from the relation®©= @ )—:E r'z =
3 ‘
8 k¢
o km - —_— =
2
L4 (2.2) 1_9x1o"5 md/ftz

(250)2

Thus', if km can be obtained from core analysis,
then the shape factor @ is equal to:

-5
g 1o9X107 2
¥m -

The shape factor O can provide information -
about the effective block size in the system,

DISCUSSION AND CONCLUSIONS

This work presents basic solutions that can be
used to analyse pressure or flowrate transient
data from a naturally fractured reservoir. The
model used assumes pseudo steady state flow -
from matrix to fractures. According to the li-
terature the solutions assuming. transient flow
have been presented by many authors: Raghavan
and Ohaeri (1981) presented declining rate type
curves for a constant producing pressure De -
ruyck et al (1982) presented solutions for the
pressure distribution throughout a reservoir
with double porosity behavior consideringboths
pseudo-steady state flow and transient interpo
rosity flow, The aithors concluded based on
field examples that the pseudo-steady state and
the transient intexporosity flow models are
shown to yield consistent interpretations.

From the solution presented in this work the fo
llowing conclusions can be derived:

1) The initial decline in flowrate is often

" not representative of the final state of
depletion.

2) The fracture permeability kf; total stora
tivity, 7
{ (d)c)m + (¢ c)f }; and the shape factor
"a" can be obtained from type curve mat -
ching.

3) Both dimensionless matrix pressure and frac
ture pressure are necessary for proper ana
lysis of interference tests.

4) For constant-rate production interference
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tests can-be analized at long-times using
the line-source solution,

5) In analyzing interference tests for cons -
tant-inner-pressure production, a different
solution for the pressure distribution re -
sults for each value of radial distance, .r,.
The pressure function does not correlate
with the line-source solution.

NOMENCLATURE

A= Drainage area, £t
B= formation volume factor, RB/STB
c= compressibility, ;:»si":L
h=  formation thickness, ft
k= permeability, md
p,..= wellbore pressure during the build-up pe-
ws -
riod, psi

p= average reservoir pressure, psi
Py dimensionless wellbore pressure

k. h :
141.2 g8y

Pep™ dimensionless fracture pressure

Ppp™ dimensionless matrix pressure
q= volumetric rate, B/D
9= dimensionless flowrate

141.2 g8y
ken Py P

r= radius, ft
!‘ws wellbore radius, ft
l'D= dimensionless radius, r/rw

re= reservoir outer boundary radius, ft
l‘eD= dimensionless outer boundary radius,re/rw

s= skin effect
t=  time, hours
tD= dimensionless time

2.637 107 k¢ t
{(¢c)m + (¢C)f ju r2

tm) _tn A‘;&, dimensionless

&= shut-in time, hr

Subscripts

£f= fracture
m= matrix
D= dimensionless

Greek

= - viscosity, cp
¢= porosity, fraction
o=  interporosity, flow shape factor, ft‘z

o km ,rwz . dimensionless
ke

w= —9c) £, dimensionless
{(qu:)f + (¢'c)m}

6= )csz, correlating group, dimensioctiless.
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TABLE 1
q = —I100 B/D r =25 ft
h =480 ft B, = 10 RB/STB
pp =0 po=1cp
tiny = 400 hr
t Py Ap =D —Py
hours (psig) (psi )
0 0 —
47 1 —-11
6.7 1 —11
115 12 —12
16.5 12,5 —12,5
265 13.5 ~13.5
46 155 —~15.5.
65 17 —17
98 195 —19.5
135 22 —22
200 26 —26
265 29 —29
- 400 335 —33.5
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