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USTRACT 

It is important t o  grasp the reservoir f luid 
behavior under operations i n  the geothermal 
reservoir development. The authors c lar i fy  
the calculation procedure of quasi-three- 
dimensional model and present a flow chart o? 
the model. As example calaulatiom, the 
developed simulator is applied to simplified 
geothermal reservoirs uhich contain heat flow 
from the deeper sones, 

INTRODUCTION 

In  the geothermal reservoir development, i t  
is important to  grasp the reservoir f luid 
behavior under operations. Generally i n  
mathematic model, f luid behavior in the 
reservoir is expressed by the three dimen- 
sional finit fference equations of mass 
and energy. lY-9 Three dimensional calcu- 
lations require large data preparation, 
computing time and storage. Considering 
these defects of hree-dimensional model, 

dimensional model. The equations of the 
mathematical model are  derived by vertical  
integration of three-dimensional equations. 
Although the vertical  equilibrium i n  the 
reservoir is assumed to  be achieved i n  order 
t o  obtain the alternative equations, the 
calculation procedure and the flou chart axe 
not published i n  their  paper. So, the 
authors c lar i fy  the calculation procedure of 
quasi-three-dimensional model and present a 
flow chart of the model i n  this paper. As 
example calculations, the developed simulator 
is applied to  simplified geothermal reser- 
voirs uhich contain heat f lou from the deeper 
tones. And, the calculated resul ts  on no 
heat flow case are  compared wi those of 

Faust and Mercer4 f presented quasi-three- 

three dimensional calculation. A 
THEORY - 
The behavior of three dimensional two phase 
flow i n  a geothermal reservoir is described 
by conservation equations for  mass and energy. 
Assuming potential and kinetic energy terms 
and capillary pressure terms e negligible, 
the equations are written as,v 

where 

The equations describing quasi-three-dimen- 
sional (areal) two phase flow are obtained by 
par t ia l  integration of Eq.1 and Eq.2 in the 
vertical  direction. 

The equations of areal model are written as, 
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where 

- 'xkm Pw + 'xkrs P s  

wx - PN YS 
- Kxkrw Pwhw + Kxkrs Pshs 

% -  pw P S  

In the ab0 e integration, Fauat and Kercer's 
technique47 detailed i n  Appendix is used. 

BOUNDARY CONDITIONS 

Boundary conditions a re  required f o r  pressure 
and enthalpy. 
boundary condition is applied except f o r  top 
and bottom boundaries. Convective and 
conductive fluxes a t  the reservoir top and 
bottom are  considered i n  Eq.3 and Eq.4. 
These terms include the derivatives >p/ae and 
3h/ae, which are  evaluated by pressure and 
enthalpy gradients i n  each grid. In addition 
t o  this, as a source term, heat flow r a t e  qb 
is specified across the reservoir bottom. 
Eq.4 is rewritten as, 

For this sindater, no flow 

f 

. 
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In Eqs.3 and 5 ,  independent variables 
a re  pressure and enthalpy of the stearn- 
water mixture. Saturated values of b, 
&, Pw, PS are  calculated direct ly  *om 
steam tables as functions of pressure 
and enthalpy. The density of the steam- 
water mixture and water saturation can 
be treated as functions of presaure 
and enthalpy. Several additional 
assumption are  necessary t o  describe 
behavior of geothermal fluid.  M r s t ,  
i t  is assumed that thermal equilibrium 
exis t  among a l l  phases, 
assumption, temperature is  treated as 
a function of pressure and enthalpy. 
The other assumptions a re  as follows. 
Viscosities a re  functions of pressure 
and temperature given f om steam tables. 
Porosity i s  a iunction4f of pressure, 
given by 6 = ai + p ( p  - pi). 
permeabilities a re  l inear  functions6y 
of water saturation, given by 
k, * (sv - Srn)/(l.O - swJ* 

With this 

Relati  e 

CALCULATION PROCEDURE 

Eqs.3 and 5 for the areal  model a re  
expanded i n  f i n i t e  difference formulas, 
and solved by the Newton-Raphson 
iteration. U s i n g  a d i rec t  method,6) f7) 
the equations are solved f o r  pressure 
and enthalpy at  each i terat ion.  

Flow chart  of calculation procedure i s  
shown i n  Fig.1. 
de ta i l  of this procedure. 

Step 1. 

The followings a re  

Read p a m e t e r s  required f o r  
the difference calculation (time 
step, block number, block s iee  and 
convergence cr i ter ion)  and reservoir 
data (permeability, elevations on 
the base and top of the reservoir, 
thermal conductivity, specific heat 
of reservoir rock and specific 
gravity of reservoir rock). 

reservoir f o r  each block (pressure, 
enthalpy, production r a t e  and 
inject ion rate) .  

Step 2. Read i n i t i a l  condition of 

a t a r t  

input data: I ’  
time interval  ~t 
block dimension 
block widths AI, A Y  
depth OS reservoir z l ,  22 
physical properties (Km,Svr,Cr) 
boundary conditions 

I 

1 

input init ial  conditions: 
average pressure 
average enthalpy 

calculate other ini t ia l  conditions: 
temperature 
porosity 

I 

calculate : temperature 
re la t ive  permeability 
density 
tranamimsibilitiea 
other coeif ic ients  

ah,  ap  using D4 ordering scheme calculate: 

I 
I no 

Ng. 1 Flow chart  OS quasi-thret-dimensional model 
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Step 3. C a l c u j a t j  the other init ial  

Step 4. 
conditions8 9 9  (temperature and porosity). 

As precondition of i terat ion,  
calculate variables required f o r  the first 
i te ra t ion  level. 

Calculate variables ( re la t ive perme- 
a b i l i t i e s ,  f lu id  densit ies,  trans- 
missibi l i t ies  and SO on) required f o r  
solving Eqs.3 and 

Step 5. 

and obtain 6p and &h 
using D4 ordering. 51 

Step 6. 

Step 7. 

Step a. 

Check convexgence for  pressure and 

Calculate values of pressure and 

Print  calculated values (pressure, 

enthalpy. 

enthalpy. 

enthalpy saturation, temperature and 
velocityj . 

Step 9. Check computing period. 

t ?ldd Reduction 

pig. 2 Geometry of Simplified 
Geothermal Reservoir Hodel 

Table 1 Initial Condition for  Example Calculation 

Length of reservoir, (cm) 5oooo 

Thickness of reservoir, (cm) 15000 
 rid size: A X ,  A Y ,  (cm) 5000 

Horizontal permeability, (darcy) 0.100 
Vertical permeability , (darcy) 0.0100 

Width of reservoir, (cm) 50000 

Porosity 0. '580 

Thermal conductivity, (cal/cm-sec-.C) 0. 450x1d2 
Specific heat of reservoir rock, (cal/g-*Ci 
Specific gravity of reservoir rock, (g-cm- ) 2.65 
Formation compressibility, (atm-l) 1.67116~ 
Vertical averaged pressure, [atm) 
Vertical averaged enthalpy, cal!g{ 
Vertical averaged temperature, ( c 

0.170 

Residual water- saturation 

40.0 
260 
248 

0.200 

T h i s  sample calculation i l l u s t r a t e  the appli- 
cation of the quasi-three-dimensional model 
t o  a simplified geothermal reservoir. 
grid f o r  the reservoir model is shown i n  Fig. 
2. The quasi-three-dimensional calculation 
is performed over l O x l 0  grids. The reservoir 
f lu id  is assumed t o  be pure water and to  be 
i n i t i a l l y  i n  the two phase zone. Parameters 
and ini t ia l  conditions used i n  this sample 
calculation are  given i n  Table 1. For this 
calculation, location of assumed production 
well i s  the grid point ( ,5). Initial pro- 

i s  l.MxlO5s. 
and the convergence of the model, the simu- 
l a t e r  is applied to  the geothermal systems. 
Assuming heat flow of 4.0~10'5 cal/sec-cm* 
and no mass flow from bottom of the reservoir, 
simulations of the thermal conduction and 
dispersion a re  carried out. 
assumed heat flow is not large enough to  
maintain the isoenthalpy production. 

Shown i n  Figs.4 and 5, the calc ated resu l t s  
i n  the author's another paper 1$ are 

The 

duction ra te  i s  0.683~10 3 g/sec. Time s tep 
After comfirming the s t a b i l i t y  

Fig.3 shows the 

-228- 

5 0 ~  o 5011 P 
256 c d / g  / - 

X-Direction 

pig. 3 Depthareraged enthalpy map for 
a bo-phase gcother!nal reservoir 
after 3OOdaya. Tbls gcothernal 
system imolns heat flow 
( 4 . M O +  ca.l/aae-an2) from 
ertedor of the reaarvolr. 

f 

i 

-_ 



J 

4 

= .  

i 

B, 

rr 
‘0 
‘;I 

6 
c. 

- 2  

0 : 5 
r( b 1  
0 d 

P 

I 1 
I 

1.01 I 
X-Diroction 

tic. 5 Depth awraged prrtsum drop d o n o  section A 
(R6.2) after 1006.7. for arod arid J-D d e l .  

01 I 
X-Dhction - 7. ? 

zl 

52 
8 = formation compressibility, atm-’ 

)a = viscosity, cp 

& = initial porosity, fraction p =density,  dcm3 

P elevation of the bottom of the 

= elevation of the top of the reservoir, 
reservoir, cm 

cm 
mg.. 4 Depth-aTer.gad f lu id  mlodw d o n g  

section A (Flc.2) after 1- 
md 3 D  model. 

compared with those of three dimensional $ = porosity, fraction 
calculation i n  case of no heat flow a t  the 
boundaries. HITAC 1200-H was used for  this 
computation. As to computing time, quasi- three-dimensional calculation required 1.578 Subscripts 
per i terat ion step and three-dimensional 
calculation required 10.38s per i terat ion Step. 
This indicates that reduction of computing 
time i s  performed by the quasi-three- 
dimensional model. These values mainly depend ordinate system 
on the grid number, so that, if the grid 
number become increase, the reduction Of 
computing time dll become larger. 
convergence conditions are  equal, whole com- 
puting time will  be more small for  the quasi- 
three-dimensional model, which needs less  
i terat ion steps because of its smaller grid 
number. 
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APPENDIX 

Derivation of quasi-three-dimensioaal equation 
by Faust and Mercer’s technique. 
I n  the equations of the areal model, parsme- 
tars  are expressed as depth averaged value 
given by 

where el, e and b are function of x-y space 
and time. 2For the following equation should 
hold. 

The diviation of 9 from <jb7is defined a s  

The above two equations are applied i n  the 
integration of Eq.l and Eq.2. I n  the areal 
equations, the deviation terms higher than 
second order can be omitted, and the discon- 
t inui t ies  i n  the quantities on the water- 
steam interface are negligible. 
assumptions and assuming gravity segregation, 
the equations of quasi-three-dimensional are 
derived. 

With those 
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