e

Proceedings Eighth Workshop Geothermal Reservoir hgine-rh\zg

Stanford University, Stanford, California, December 1982
SGP-TR-60

QUASI-THREE-DIMENSIONAL MODEL APPLIED TO
GEOTHERMAL RESERVOIR SYSTEM WITH HEAT FLOW FROM DEEPER ZONES

Seiichi Hirakawa and Makoto Ichikawa

The University of Tokyo, Faculty of Engineering
Bunkyo-ku, Tokyo 113, JAPAN

ABSTRACT

It is important to grasp the reservoir fluid
behavior under operations in the geothermal
reservoir development. The authors clarify
the calculation procedure of quasi-three-
dimensional model and present a flow chart of
the model. As example calculations, the
developed simulator is applied to simplified
geothermal reservoirs which contain heat flow
from the deeper gzones.

INTRODUCTION

In the geothermal reservoir development, it
is important to grasp the reservoir fluid
behavior under operations. Generally in
mathematic model, fluid behavior in the
reservoir 1s expressed by the three dimen-
‘sional finit? fference equations of mass
and energy.l)=3) fThree dimensional calcu-
lations require large data preparation;
computing time and storage. Considering
these defects of fthree-dimensional model,
Faust and Mercer?/ presented quesi-three-
dimensional model. The equations of the
mathematical model are derived by vertical
integration of three-dimensional equations.
Although the vertical equilibrium in the
reservolr is assumed to be achieved in order
to obtain the alternative equations, the
calculation procedure and the flow chart are
not published in their paper:. So, the
authors clarify the calculation procedure of
guasi-three-dimensional model and present a
flow chart of the model in this paper. As
examfle calculations, the developed simulator

“is applied to simplified geothermal reser-

voirs which contain heat flow from the deeper
gzones, And, the calculated results on no
heat flow case are compared wi;? those of
three dimensional calculation. )

THECRY

The behavior of three dimensional two phase
flow in & geothermal reservoir is described
by conservation equations for mass and energy.
Assuming potential and kinetic energy terms
and capillary pressure terums a.s:e negligible,
the equations are written as,
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The equations describing quasi-three-dimen~
sional (aresl) two phase flow are obtained by
partial integration of Eq.l and Eq.2 in the
vertical direction.

The equations of areal model are written as,
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~In the aboye integration, Faust and Mercer's
3gn>)] technique#/ detailed in Appendix is used.
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i and enthalpy. For this simulater, no flow
Dzl boundary condition is applied except for top
- b<q (whx-s‘g)l >z and bottom boundaries. Convective and -
: % conductive fluxes at the reservoir top ‘and
; . bottom are considered in Eq.3 and Eq.4.
'3p These terms include the derivatives ap/az and
- hy 3y)l 2 ay hz >z T hgz)lz 2h/oz, which are evaluated by pressure and
enthalpy gradients in each grid. In addition
to this, as a source term, heat flow rate q;

? 2p is specified across the reservoir bottom.
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In Eqs.3 and 5, independent variables
are pressure and enthalpy of the stean-
water mixture. Saturated values of h,
hg, Py Ps are calculated directly from
steam tables as functions of pressure
and enthalpy. The density of the steam-
water mixture and water saturation can
be treated as functions of pressure

and enthalpy. Several additional
assunption are necessary to describe
behavior of geothermal fluid. First,
it is assumed that thermal equilibrium
exist among all phases, With this
assumption, temperature is treated as

a function of pressure and enthalpy.
The other assumptions are as follows.
Viscosities are functions of pressure
and temperature given fyom steam tables.
Porosity is & functiont of pressure,
given by £ = f; +ﬂp-p) Relatiye
permeabilities are linear functions6

of water saturation, given by

Ky = (Sy - sw,;)/(l.o - Syp)e
CALCULATION PROCEDURE

Egs.3 and 5 for the areal model are
expanded in finite difference formules,
and sélved by the Newton-Raphson
iteration. Using a direct method,s) )
the equations are solved for pressure
and enthalpy at each iteration.

Flow chart of calculation procedure is
shown in Fig.l. The followings are
detail of this procedure.

Step 1. Read parameters required for
the difference calculation (time
step, block number, block size and
convergence criterion) and reservoir
data (permeability, elevations on’
the base and top of the reservoir,
thermal conductivity, specific heat
of reservoir rock and specific
gravity of reservoir rock).

Step 2. Read initial condition of
reservoir for each block (pressure,
enthalpy, production rate and
injection rate).

input data:

time interval At

block dimension

block widths AX,AY

depth of reservoir z1, 22
physical properties (Km,Swr,Cr)
boundary conditions

average pressure

input initial conditions:
average enthalpy

calculate other initial conditions:
temperature
porosity

ﬁnput mass production rate for each time step

calculate valuesat first iteration level:

(2p/2z, 2h/az, etc.)

S

-

calculate: temperature
relative permeability
density
transmissibilities
other coefficients

éalculatés 2h, 2p using D4 ordering scheme

no

convergence ?

yes

caluculate:

n+l | n+l
P 19h

Fig. 1
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» production, time ‘

print: . pressure
enthalpy
saturation
tenperature
velocity

Bimulation time ax Tmax

yes.

Flow chart of quasi-three-dimensional model




Step 3. Caleu}at? the other initial
conditions8)»9) (temperature and porosity).

Step 4. As precondition of iterationm,
calculate variables required for the first
iteration level.

Step 5. Calculate vsriables (relative perme-
gbilities, fluid densities, trans-
missibilities and so on) required for
solving Eqs.3 and 5, and obtain 8p and oh
using D4 ordering. )

Step 6. Check convergence for pressure and
enthalpy. .

Step 7. Calculate values of pressure and
enthalpy.

Step 8. Print calculated values (pressure,
enthalpy, saturation, temperature and
velocitys.

Step 9. Check computing period.

Fluid ‘Production

x Fig. 2 Geometry of Simplified

Geothermal Reservoir Model

Table 1 Initiel Condition for Example Calculation

simulations of the thermal conduction and

dispersion are carried out. Fig.3 shows the Pig. 3
assumed heat flow is not large enough to

maintein the isoenthalpy production.

Sﬁown in! Figs.4 and 5, the calculated results
in the author's another paper are
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Length of reservoir, {ecm) 50000
Width of reservoir, (cm) 50000
Thickness of reservoir, (cm) 15000
Grid size: Ax, oy, (cm) 5000
Porosity 0.3%80
Horizontal permeability, (darcy) 0.100
Vertical permeability, (darcy) 0.0100 _,
Thermal conductivity, (cal/cm-sec-°C) 0,450x10
Specific heat of reservoir rock, (cal/g—'C% 0.170
Specific gravity of reservoir rock, (g-em=2) 2.65 5
Formation compressibility, (atm-1) 1.67x10"
‘Vertical averaged pressure, (atm) 40.0
Vertical averaged enthalpy, cal/gg 260
Vertical averaged temperature, (°C 248
Residual water saturation 0.200
SAMPLE CALCULATION
This sample calculation illustrate the appli- 256 cal/e
cation of the quasi-three-dimensional model ;5
to a simplified geothermal reservoir. The
grid for the reservoir model is shown in Fig.
2. The quasi-three-dimensional calculation 257 cal/g
is performed over 10x10 grids. The reservoir g
fluid is assumed to be pure water and to be .
initially in the two phese zone. Parameters - 8
and initial conditions used in this sample H
calculation are given in Table 1. For this e
calculation, location of assumed production o]
well is the grid point (2,5). Initial pro-
duction rate is 0.683x10% g/sec. Time step
is 1.44x10%s, After comfirming the stebility .
and the convergence of the model, the simu- ’ soM O S0M ¥
later is applied to the geothermal systems. L1 '
Assuming heat flow of 4.0x10~5 cal/sec-cm : 256 cal/g
and no mass flow from bottom of the reservoir, X-Direction

Depth-averaged enthalpy map for

a two-pbase geothermal reservoir
after 300days. This geothermal

systen involves hezt flow

(4.0:10'5 cal/lac-cnz) from
extertior of the reservoir.
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Fig.. 4 Depth-averaged fluid velocity along
section A (Fig.2) sfter 100days areal
apd 3-D model.

Vcompared with those of three dimensional

calculation in case of no heat flow at the
boundaries. HITAC M200-H was used for this
computation. As to computing time, quasi-
three-dimensional calculation required 1.57s
per iteration step end three-dimensional
calculation required 10.38s per iteration step.
This indicates that reduction of computing
time is performed by the quasi-three-
dimensional model. These values mainly depend
on the grid number, so that, if the grid
number become increase, the reduction of
computing time will become larger. If the
convergence conditions are equal, whole com-
puting time will be more emall for the quasi-
three-dimensional model, which needs less
iteration steps because of its smaller grid
number.

KOMENCLATURE

b = reservoir thickmess, cm

Cp = specific heat of reservoir rock,
cal/g-*C

D = depth, cm 2

g = gravitationsl acceleration, cn/sec

h = gpecific enthalpy, cal/g -

K = absolute permeability, darcy

k. = relative permeability of the phase 1,
fraction ' :

Ky = reservoir thermal conductivity,
cal/em-gec-°C

P = reservoir pressure, atm

Py = initial reservoir pressure, atm

q, = heat flow rate across boundary,
cal/sec-cm2 ) 3

q'y = heat source term, cal/sec-cm

q', = mass source term, g/sec—cm

S = saturation, fraction

Su‘ = residual water saturation, = fraction

¢ = reservoir temperature, °C

me = period of simulation, sec

t = time, sec

At = time step size, sec

v = averaged phase velocity, cm/sec

X-Direction

Mg S 'Da‘pth averaged pressure drop along section &

(Tig.2) after 100days for aresl and 3-D model.

= elevation of the bottom of the
reservoir, om

g = elgvation of the top of the reservoir,

cm

£ = formation compressibility, ata~t

2 = viscosity, cp

¢ = porosity, fraction

¢i = initial porosity, fraction

f = density, g/cn’

Subscripts

h = enthelpy, m = mass,

n = iteration level, r = reservoir,
8 = stean, ¥ = water,

X,¥s2 = directions in the Cartesian co-
ordinate system

Operators !
v = divergence operator
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APPENDIX

Derivation of quasi-three-dimensional equation
by Faust and Mercer's technique,

In the equations of the areal model, parame-
ters are expressed as depth averaged value

given by

<Sb> = —%—f::c’bdz

where z;, %, and b are function of x-y space
and time. For the following equation should
hold. :

TN
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The diviation of 76 from <(,é> is defined as

N

¢ = ¢—=<¢
The above two equations are applied in the
integration of Eq.1 and Eq.2. In the areal
equations, the deviation terms higher than
second order can be omitted, and the discon-
tinuities in the quantities on the water-
steam interface -are negligible. With those
assumptions and assuming gravity segregation,
the equations of quasi-three-dimensional are

derived. -
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