2 ¢

.

Proceedings Eighth Workshop Geothermal Reservoir Engineering
Stanford University, Stanford, Californis, December 1982
SGP~-TR-60

THE MOVEMENT OF GEOTHERMAL FLUID IN THE CERRO PRIETO FIELD

AS DETERMINED FROM WELL LOG AND RESERVOIR ENGINEERING DATA

8. E. Halfman, M. J. Lippmann, and R. Zelwer

. " Earth Sciences Division
Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

ABSTRACT

A hydrogeologic model of the Cerro Prieto
geothermal field in its undisturbed state, de-
veloped on the basis of well log and reservoir
engineering data, is discussed.

According to this model, geothermal fluid
enters the field from the east through a deep
(>10,000 £t) sandstone aquifer which is over-
lain by a thick shale unit which locally pre-
vents the upward migration of the fluid. As it
flows westward, the fluid gradually rises
through faults and sandy gaps in the shale unit.
Eventually, some of the fluid leaks to the sur-
face in the western part of the field, while
the rest mixes with surrounding colder waters.

INTRODUCTION

The Cerro Prieto liquid-dominated geothermal
field is located in Baja California, Mexico,
about 20 miles south of the US-Mexico border
(Figure 1). A vast amount of subsurface geo~
logic and reservoir enginnering data have been
gathered from over 100 wells (some as deep as
11,600 ft) completed in this field (Figure 2).

T T T T T T

o a4
T Ao Boundary of Salton Trough
Ceor, Faults (doshed where uncertoin)
@@’@g{:‘;\_ @ Quoternary voicanoes
Nt EADLE

)

Kilometers
20

‘A
,lMFERINﬁVALLEY
Sraley

XBLSOI-67I8A

Figure 1. Regional geology of the Salton
Trough (i.e., Imperial and Mexicali Valleys)
and location of the Cerro Prieto area.
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and cross section A-A' at Cerro Prieto.

Jased on geochemical, mineralogical, and down-
hole temperature logs, it has been shown that
the geothermal fluid enters the field from the
east, gradually flowing to the west as it
ascends to shallower depths (Mercado, 1968 and
1976; Bermejo et al., 1979; Elders et al.,
1981). ' However, in the models developed by
these authors, the movement of hot fluids in
the subsurface is shown only schematically. We
will digcuss a hydrogeologic model for the
Cerro Prieto reservoir in its natural (pre-
production) state (Halfman et al., 1982). The
model provides details on the westward and up-
ward flow of geothermal fluids in the field and
the geologic features controlling this movement.

METHODOLOGY

First, a geologic model of the Cerxo Prieto
field was constructed based on geophysical and
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Meters Feet M-150 7-366 M-189 NE lithological well logs. Downhole temperature
3 profiles and well production interval data were
then incorporated into the geologic model to
2001 develop a geothermal fluid flow model that
1000 would show the actual fluid flow paths. This

4001 model was then used to identify the lithologic
: 2 and structural features that control the move-
60012000 Fomlfation FaultH ment of the geothermal fluid.
o prevmentoming Formation From the geologic model, we were able to iden-
1000 %01 Formation T tify faults on the basis of significant vertical
5 : displacements of formations and by recognizing
12004 4000 Formation g that sections or entire formations were missing
: Formation 6 3 ) in some wells (Figure 3). Seven distinct forma-
: 14001 4 ; ¥ tions were defined, based mainly on the inter-
i e |sooo 3 pretation of gamma-ray (GR), spontaneous poten—
ol [ Formation X : tial (SP), deep induction (ILD), and formation
3 % \ : density gamma-gamma (RHOB) logs (Halfman et al.,
18901000 \ Formation 1982).
Formation 4
20001 2 Using a different approach, the beds were cate~
000 gorized into three lithofacies groups (sandstone,
2001 sandy-shale, and shale) on the basis of the well
2400 log analysis criteria followed by Lyons and van
8000 de Kamp (1980). Basically, the sandstone group
26004 is comprised of thick, permeable, and well de-
) Formation | fined sandstone beds (with some interbedded
2800] *°% 2 i shales); the sandstone beds in the sandy-shale
Horizontal distance not to scale = group are thinner and less permeable (with a
2000] ol Fou"notmtme\ dip = higher percentage of intercalated shales), and
Formation =3 are yet thinner (<10 ft) in the shale group.
32001 : = After assigning the beds to the different litho-
XBL 8210-259 facies groups, lithofacies cross sections were
Figure 3. 8Simplified stratigraphy of the Cerro ::::z:\;c.:ted incorporating the faults previously

Prieto field. The traces correspond to gamma-

ray (GR) logsf The method used to group the different beds,

based mainly on the GR log, is illustrated in
Figure 4. This figure.(well M-150, a typical
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Figure 4. Well M-150, showing temperature profile; interpreted formation and lithofacies columns;
and gamma-ray (GR), formation density gamma-gamma (RHOB), and deep induction (ILD) logs. .
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Cerro Prieto well) shows the GR, RHOB, ILD and
temperature logs, as well as the interpreted
formation column, A/B contact, Shale Unit 0 and

Sand Unit 2, which will be discussed below.
i 14 B

RESULTS
Geologic Model

Three concealed normal faults (Faults H, L, ax’d
8), believed to have an important impact on the
natural (pre-exploitation) circulation of geo—
thermal fluid in the system, were identified
{(Figure 2), All three faults have a northeast-
southwest strike, dipping to the southeast.
Fault H has digplacements as great as 1650 ft
in the northeastern areas and as small as 1000
ft in the southwest. Faults L and 8§ have dis-
placements of about 200 and 400 ft, respectively
(Halfman et al., 1982).  The existence of these
faults have also been inferred from geophysical
and mineralogical data (Majer and McEvilly,
1982; williams, 1982). g

In Figure 5, the three types of lithofacies
distinguished in this study are shown correl-
ated across section A-A'. Two main sedimentary
unite, one comprised mostly of the shale group
(Shale Unit 0), and another comprised of mostly
the sandstone group (Sand Unit Z) were identi-
fied. These two units, along with the faults,
will be shown to play an important role in con-
trolling the flow of the geothermal fluid.

The well log readings indicate that some of the
gediments in the Cerro Prieto field have been
hydrothermally altered. The sandstones and

shales above Shale Unit 0 show fairly normal log

Figure 5. Lithofacies cross section A-A', showing well locations, lithofacies groups, faults, =
temperature profiles (the parts of the temperature profiles shown by heavy lines indicate temper-
atures 300°C or greater), producing intervals, A/B contacts, Shale Unit 0, Sand Unit Z, and arrows
indicating direction of geothermal fluid flow.

readings for a sedimentary environment (Figures
4 and 5). The high ILD readings in the upper
3,000 feet, which may look unusual, are actually
only due to fresh water sandstones (Lyons and
van de Kamp, 1980; Seamount and Elders, 1981).
Shale Unit 0 and the underlying Sand Unit Z,
however, show some anomalous log values because
they have been affected by the heat and fluid
moving through the subsurface.

Shale Unit 0, especially its lower part, acts

as a barrier to the upward migration of geother-
mal fluid and convective heat flow. This is
substantiated by the lithology, temperature and
low porosity readings obtained from the logs
{Figure 4). -The lower portion of Shale Unit 0
consists mainly of thinly bedded sandstones and
shales and lacks any thick permeable sandstone
beds that would permit fluid flow. This is con-
firmed by the general sharp rise in temperature
gradient observed near the top of Shale Unit 0
(Figure 5), indicative of strata through which
heat is transferred by conduction rather than
convection. ~ Furthermore, the unusually high
RHOB (shales generally >2.6 gm/cm3) and ILD
(shales generally >6.5 ohm-m) values commonly
found near the base of Shale Unit 0 indicate

low porosity, especially in wells southeast of
Fault H. The density values have been shown by
Seamount and Elders (1981) to be much higher
than expected from normal compaction of sedi-~
ments at these depths. Ershaghi and Ghaemian
(1980) explain that the unusual high resistiv-
ity readings may be due to porosity loss result-
ing from chemical reactions and also to drastic
reduction in clay conductivity. Thus Shale
Unit 0 is a thick, relatively impermeable, low-
porosity body that acts as a local cap rock, as
will be shown below. By a local cap rock, we
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mean a geologic unit of lower permeability
which overlies the reservoir, locally prevent~
ing the upward migration of fluid.

Sand Unit Z, below Shale Unit 0, permits the
flow of geothermal fluids. This is confirmed
by its lithology, temperature profile, high
porosity indicated by the logs, and the depths
of the producing intervals. The upper portion
of this unit consists of thick sandstone beds
interbedded with some shales. The vertical
temperature profiles in Sand Unit Z usually
show a fairly constant temperature of about
300°C or slightly greater (Halfman et al, 1982).
This constant temperature is indicative of
circulating fluids; i.e., a region where heat
is transferred by convection rather than con-
duction. Most of the producing intervals in
wells east of the railroad tracks and deeper
ones west of them (Figures 2 and 5) are located
in Sand Unit Z. The low ILD and RHOB values of
the sandstone beds of this unit indicate high

' porosity, possibly due to secondary {(dissolu-

tion) porosity (Lyons and van de Kamp, 1980).
Thus Sand Unit 2 has thick, permeable, high-
porosity sandstone beds that act as conduits
for the geothermal fluid.

Also shown in cross section A-A' (Figure 5) are
the A/B contacts, and the producing intervals.
The A/B contact separates the unconsolidated
(Unit A) from the underlying indurated (Unit B)
sediments (Puente and de la Penha, 1978). The
induration of the sediments is believed to be
due to post—-depositional thermal effects which
modified the deeper materials (Unit B) leaving
the shallower ones (Unit A) relatively unaffec~
ted (Elders et al., 1978).

Based on the depths of the producing layers,
the Comision Federal de Electricidad has iden-
tified two liquid-dominated resexvoirs at Cerro
Prieto. The shallower one, designated A by
Prian (1979) and @ by Sanchez and de la Peha
(1981), is restricted to the area west of the
railroad tracks and corresponds to the sandier
layers of the upper part of Shale Unit 0 (Fig-
ure 5). The deeper and hotter reservoir, des-
ignated B or B by the same authors, is found in
Sand Unit Z throughout the field.

Geothermal Fluid Flow Paths

Using an approach suggested by Howard (1981),
it was found that the actual fluid flow paths
become readily apparent when downhole tempera-
ture profiles and well production intervals
(Bermejo et al., 1979; personal communication,
1982) were superimposed on the lithofacies
cross section A-A' (Figure 5). 1In this section,
the portions of the temperature profiles shown
by heavy lines indicate temperatures of 300°C
or greater. The maximum temperatures of cooler
wells are indicated next to the corresponding
curve.

From Figure 5, it can be seen that the tempera-
ture profiles show sharp increases in gradient
near the A/B contact, and that the depth of the
A/B contact (Cobo, 1981), producing intervals,

and increases in temperature gradient are ob-
served at progressively greater depths towards
the east. Well M-117 does not conform to this
trend, however, and will be discussed below.

Comparison of the temperature profiles with the
lithology of wells M-104, M-150, and NL-1 (Fig-
ure 5) indicates that the sharp increases in
temperature gradient occur near the boundary
between Shale Unit 0 and the overlying sand-
stone group. In wells E-3, M-29, and M-9, this
increase is observed near a shallower sghale,
which is found in well M-29 at the same depth
as the A/B contact. The increase in tempera-
ture gradient, therefore, suggests that the
shale units must be barriers to convective heat
transport; i.e., they are essentially acting as
local cap rocks.

According to Elders et al. (1982) and Goldstein
et al. (1982), the heat source for the Cerro
Prieto system is in an area of current mafic
rock intrusion beneath the eastern regions of
the field. The invaded xrocks heat the circu-
‘lating fluid, which is thought to enter the
field from the east through Sand Unit Z (Res~
ervoir B) after which it moves westward toward
Fault H (the arrows in Figure 5 indicate the
flow of geothermal fluid). The fluid then
moves up Fault H until it encounters Sand Unit
Z once again. A small portion of the fluid
continues up Fault H, resulting in a tempera-
ture of 300°C at a relatively shallow depth in
well M-117. Most of the fluid, however, moves
westward through Sand Unit 2 in the upthrown
block, west of Fault H. This essentially hori-
zontal flow continues to the area near well :
M-10, where there exists a sandy gap in Shale
Unit 0 which permits the communication between
the reservoirs @ and B. 1In this area, the geo-
thermal fluid flows upward, resulting in-high-
temperatures at shallow depths in well M-~10.
some of the fluid enters the southwestern part
of Shale Unit 0, which is sandiexr here than in
the east, and constitutes the Reservoir &,

Then the fluid moves westward until encounter-
ing Fault L near well M-29. There, the fluid
flows upward through the fault and then west-
ward through the sands above Shale Unit 0.
Fluid that does not enter Shale Unit 0 contin-
ues to flow westward through the underlying
sand Unit Z (Reservoir B). Eventually, some
fluid leaks to the surface through the Cerro
Prieto Fault Zone, which bounds the field to
the west (see Figure 2), and the rest mixes
with the colder waters that surround the geo—
thermal anomaly.

Based on cross section A-A' and other sections
given by Halfman et al. (1982), it is inferred
that most of the geothermal fluid flows through’
high porosity, permeable sandstone beds in Sand
Unit Z (Reservoir g), underlying the low-poros-
ity, impermeable Shale Unit 0, which acts as a
local cap rock. Figure 6 shows a contour map
of the top of the g reservoir; the postulated
direction of geothermal fluid flow through
these sandstone beds is indicated by the arrows.
As shown in this figure, the fluid is generally
believed to enter the field (at great depth)
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from the east, gradually moving westward (and
rising to shallower depth), and finally reach-
ing the surface in the western regions of the
field. Several wells to the southeast are
cooler (i.e., M-189). This suggests that these '
wells are bypassed by the hot fluids entering .
the field,

SUMMARY AND CONCLUS IONS

By integrating the geologic model of Cerxo
Prieto with downhole temperature profiles and
well production intervals, we have identified
the geothermal fluid flow paths in the.field.
It has been shown that the movement of hot
fluids in the subsurface is strongly controlled
by stratigraphic and structural features. Our
model indicates that a continuous cap rock does
not exist at Cerro Prieto which would prevent
the upward migration of geothermal fluids to
the surface. This supports the conclusion of

‘Grant et al. (1981) and Grant and O'Sullivan

(1982) that the reservoir, especially its west-
ern part, is a leaky aquifer.

The results of our model are consistent with
mineralogical observations and interpretations
(Elders et al., 1981), and with reservoir engi-
neering and geochemical studies (Mercado, 1976;
Grant et al., 1981) carried out on this geo-
thermal system, and was used to simulate the
behavior of the Cerro Prieto field in its nat~-
ural state and under exploitation (Lippmann and
Bodvarsson, 1982; Tsang et al., 1982).
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