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ABSTRACT 

A hydrogeologic model of the Cerro Prieto 
geothermal f i e ld  in its undisturbed state,  de- 
veloped on the basis of w e l l  log and reservoir 
engineering data, is discussed. 

According t o  th i s  model, geothermal f luid 
enters the f i e ld  from the east  through a deep 
(>10,000 f t )  sandstone aquifer which is o v e r  
la in  by a thick shale unit  which locally pre- 
vents the upward migration of the fluid. 
flows westward, the f luid gradually r ises  
through faul ts  and sandy gaps i n  the shale unit. 
Eventually, some of the f luid leaks t o  the sur- 
face in the western part of the f ie ld ,  while 
the rest mixes w i t h  surrounding colder waters. 

INTRODUCTION 

The Cerro Prieto liquid-dominated geothermal 
f i e ld  is located i n  Baja California, Mexico, 
about 20 miles south of the US-Mexico border 
(Figure 1). A vast amount of subsurface g e e  
logic and reservoir enginnering data have been 
gathered frcm over 100 w e l l s  (some as  deep as 
11,600 f t )  completed in  this f ie ld  (Figure 2) .  
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Figure 1. 
Trough (Le., Imperial and Mexicali Valleys) 
and location of the Cerro Prieto area. 

Regional geology of the Salton 
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Figure 2. 
and cross section A d '  a t  Cerro Prieto. 

-sed on geochemical, mineralogical, and down- 
hole temperature logs, it has been shown that  
the geothermal f luid enters the f i e ld  from the 
east, gradually flowing t o  the west as  it 
ascends t o  shallower depths (Mercado, 1968 and 
1976; Bermejo et al., 1979; E l d e r s  et  al., 
1981). However, i n  the models developed by 
these authors, the movement of hot f luids in 
the subsurface is shown only schematically. 
w i l l  discuss a hydrogeologic model for  the 
Cerro Prieto reservoir i n  its natural (pre- 
production) s ta te  (Halfman et al., 1982). The 
model provides details on the westward and up- 
ward flow of geothermal fluids i n  the f i e ld  and 
the geologic features controlling this wvement. 

Location of wells, principal faults,  

W e  

METKODOLOGY 

First ,  a geologic model of the Cerro PrietO 
f i e ld  was constructed based on geophysical and 
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Figure 3. 
Prieto field.  
ray (GR) logs. 

Simplified stratigraphy of the Cerro 
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lithological w e l l  logs. Downhole temperature 
profiles and w e l l  production interval data were 
then incorporated into the geologic model to 
develop a geothermal f lu id  flow model that  
would show the actual f luid flow paths. 
model was then used to identify the lithologic 
and structural  features that  control the move- 
ment of the geothermal fluid. 

From the geologic model, w e  w e r e  able t o  iden- 
t i f y  faul ts  on the basis of significant vertical  
displacements of formations and by recognizing 
that  sections or entire formations were missing 
i n  some wells (Figure 3). Seven dis t inct  forma- 
tions were defined, based mainly on the inter- 
pretation of gamma-ray (GR), spontaneous poten- 
t i a l  (SP), deep induction OLD) ,  and formation 
density gamma-gamma (RIIOB) logs (Halfman e t  al., 
1982 1. 

This 

Using a different approach, the beds were cate- 
gorized into three lithofacies groups (sandstone, 
sandy-shale, and shale) on the basis of the w e l l  
log analysis c r i te r ia  followed by Lyons and van 
de Kamp (1980). Basically, the sandstone group 
is comprised of thick, permeable, and well de- 
fined sandstone beds ( w i t h  some interbedded 
shales); the sandstone beds i n  the sandy-shale 
group are thinner and less  permeable (with a 
higher percentage of intercalated shales), and 
are yet thinner (<lo f t l  i n  the shale group. 
After assigning the beds t o  the different litho- 
facies groups, l i thofacies cross sections were 
constructed incorporating the faul ts  previously 
defined. 

The method used to group the different beds, 
based mainly on the GR log, is  i l lust rated i n  
Figure 4. This figure ( w e l l  M-150, a typical 
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Figure 4. 
and gamma-ray (GR), formation density gamma-gamma (RAOB), and deep induction (ILD) logs. 

Well M-150, showing temperature profile; interpreted formation and l i thofacies columns; 
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temperature prof i les  (the parts of the temperature prof i les  shown by heavy lines indicate temper 
atures 300.C or greater) ,  producing intervals,  A/B contacts, Shale Unit 0, Sand Unit z, and arrows 
indicating direction of geothermal f lu id  flow. 

Lithofacies cross section A+' ,  showing w e l l  locations, l i thofacies  groups, faul ts ,  

Cerro Prieto w e l l )  shcws the GR, MOB, ILD and 
temperature logs, as well as the interpreted 
formation column, A/B contact, Shale Unit 0 and 
Sand Unit Z, which w i l l  be discussed below. 

I 

msms 

Geologic Model 

Three concealed normal f a u l t s  (Faults H, L, and 
S) ,  believed t o  have an important impact on the 
natural (pre-exploitation) circulation of geo- 
thermal f l u i d  i n  the system, were ident i f ied 
(Figure 2).  A l l  three f a u l t s  have a northeast- 
southwest s t r ike,  dipping t o  the southeast. 
Fault E has displacements as great as 1650 f t  
in the northeastern areas and as m n a l l  as 1000 
f t  i n  the southwest. Faults L and S have dis- 
placements of about 260 and 400 f t ,  respectively 
(Halfman et  al., 1982). The existence of these 
f a u l t s  have a l so  been inferred fran geophysical 
and mineralogical data (Majer and McEvilly, 

0 

19821 W i l l i a m s ,  1982). 

In  Figure 5 ,  the three types of l i thofacies  
distinguished i n  t h i s  study are shown correl- 
ated across section A+'. Two main SeUimentary 
units,  one comprised mostly of the shale group 
(Shale Unit 01, and another compri6ed Of mostly 
the sandstone group (Sand Unit 2 )  were identi- 
f ied.  These two units,  along with the faul ts ,  
w i l l  be shown t o  play an Important r o l e  in con- 
t r o l l i n g  the  flow of the  geothermal fluid.  

The w e l l  log readings indicate that some of the 
sediments i n  the Cerro Prieto f i e l d  have been 
hydrothermally altered.  The sandstones and 
shales above Shale Unit 0 show f a i r l y  normal log 

readings fo r  a sedimentary environment (Figures 
4 and 5 ) .  The high ILD r e a d i n g  i n  the upper 
3,000 feet ,  which may look unusual, a r e  actually 
only due to fresh water sandstones (Lyons and 
van de Kamp, 19801 Seamount and E l d e r s ,  1981). 
Shale Unit 0 and the underlying Sand Unit Z, 
however, show some anomalous log values because 
they have been affected by the  heat and f l u i d  
moving through the subsurface. 

Shale Unit 0, especially its lower part, acts 
a s  a barr ier  to the  upward migration of geother- 
m a l  f l u i d  and convective heat flow. This is 
substantiated by the  lithology, temperature and 
l a w  porosity readings obtained fran the logs 
(Figure 4). The lower portion of Shale Unit 0 
consists mainly of thinly bedded sandstones and 
shales and lacks any thick permeable sandstone 
beds t h a t  would permit f l u i d  flow. 
firmed by the  general sharp rise in temperature 
gradient observed near t he  top of Shale U n i t  0 
(Figure 5 ) ,  indicative of s t r a t a  through which 
heat is transferred by conduction rather than 
convection. Furthermore, the unusually high 
RHOB (shales generally >2.6 g d c m 3 )  and ILD 
(shales generally >6.5 ohm-m) values co~unonly 
found near the base of Shale Unit 0 indicate 
l o w  porosity, especially in wells southeast of 
Fault 8. 
Seamount and E l d e r s  (1981) t o  be much higher 
than expected from normal canpaction of sedi- 
ments a t  these depths. Ershaghi and Ghaemian 
(1980) explain that the unusual high resis t iv-  
ity readings may be due to porosity loss result-  
ing from chemical reactions and also to drast ic  
reduction i n  clay conductivity. 
Unit 0 is a thick, re la t ively impermeable, low- 
porosity body t h a t  acts as a local  cap rock, a s  
w i l l  be shown below. 

This is con- 

The density values have been shown by 

Thus Shale 

By a local  cap rock, we 
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mean a geologic unit  of lower permeability 
which werlies the reservoir, locally prevent- 
ing the upward migration of fluid. 

Sand Unit 2, below Shale Unit 0, permits the 
flow of geothermal fluids. 
by its lithology, temperature profile, high 
porosity indicated by the logs, and the depths 
of the producing intervals. The upper portion 
of this unit consists of thick sandstone beds 
inter@edded w i t h  some shales. The vertical  
temperature profiles i n  Sand Unit 1. usually 
show a fa i r ly  constant temperature of about 
300.C or slightly greater (Halfman et a l ,  t982 
This  constant temperature is indicative of 
circulating fluids; i.e., a region where heat 
is transferred by convection rather than con- 
duction. Most of the producing intervals in  
wells east of the railroad tracks and deeper 

This is confirmed 

ones west  of them (Figures 2 and 5)  are located 
i n  Sand U n i t  2. The low ILD and MOB values of 
the sandstone beds of this unit indicate high 
porosity, possibly due t o  secondary (dissolu- 
t ion) porosity (Lyons and van de KBmp, 1980). 
Thus Sand Unit Z has thick, permeable, high- 
porosity sandstone beds that  act as conduits 
for  the geothermal fluid. 

Also shown in cross section A d '  (Figure 5 )  are 
the A/B contacts, and the producing intervals. 
The A/B contact separates the unconsolidated 
(Unit A )  from the underlying indurated (Unit B )  
sediments (Puente and de l a  Pe-na, 1978). The 
induration of the sediments is believed t o  be 
due t o  post-depositional thermal effects which 
modified the qeper  materials (Unit B )  leaving 
the shallower ones ( U n i t  A )  relatively unaffec- 
ted (Elders et  al., 1978). 

Based on the depths of the producing layers, 
the Comisi6n Federal de Electricidad has iden- 
t i f ied  two liquid-dominated reservoirs a t  Cerro 
Prieto. The shallower one, designatedh by 
Prian ( 1979) and a by SIanchez and de l a  P e k  
(1981). is restricted t o  the area west of the 
railroad tracks and corresponds t o  the sandier 
layers of the upper part of Shale Unit 0 (Fig- 
ure 5) .  The deeper and hotter reservoir, des- 
ignated B or 8 by the same authors, is found in  
Sand Unit 2 throughout the field.  

Geothermal Fluid Flow Paths 

Using an approach suggested by Howard (19811, 
it was found that  the actual f luid flow paths 
become readily apparent when dawnhole tempera- 
ture profiles and w e l l  production intervals 
(Bermejo et  al., 1979; personal communication, 
1982) were superimposed on the lithofacies 
cross section A d '  (Figure 5 ) .  In this section, 
the portions of the temperature profiles shown 
by heavy l ines  indicate temperatures of 300.C 
or greater. 
wells are indicated next to  the corresponding 
curve. 

The maximum temperatures of cooler 

From Figure 5, it can be seen that  the tempera- 
ture  profiles show sharp increases in  gradient 
near the A/B contact, and that  the depth of the 
A/B contact (Cobo, 1981), producing intervals, 

and increases i n  temperature gradient are ob- 
served a t  progressively greater depths towards 
the east. W e l l  M-117 does not conform t o  th is  
trend, however, and w i l l  be discussed below. 

Conparison of the temperature profiles w i t h  the 
lithology of wells M-104, M-150, and NL-1 (Fig- 
ure 5 )  indicates that  the sharp increases in 
temperature gradient occur near the boundary 
between Shale Unit 0 and the overlying sand- 
stone group. In  wel l s  E-3, M-29, and M-9, this 
increase is observed near a shallower shale, 
which is found i n  w e l l  M-29 a t  the same depth 
as  the A / B  contact. The increase in tempera- 
ture gradient, therefore, suggests that  the 
shale units m u s t  be barriers t o  convective heat 
transport; i.e., they are essentially acting as  
local cap rocks. 

According t o  Elders e t  a l .  (1982) and Goldstein 
et  a l .  (19821, the heat source for the Cerro 
Prieto system is i n  an area of current mafic 
rock intrusion beneath the eastern regions of 
the field.  The invaded rocks heat the circu- 
lating fluid,  which is thought t o  enter the 
f ie ld  fran the east  through Sand Unit Z (Res- 
ervoir 8 )  af ter  which it moves westward toward 
Fault H (the arrows in  Figure 5 indicate the 
flow of geothermal fluid).  The f luid then 
moves up Fault H unt i l  it encounters Sand Unit 
Z once again. A small portion of the fluid 
continues up Fault H, resulting i n  a tempera- 
ture of 3OOOC a t  a relatively shallow depth in  
w e l l  M-117. M o s t  of the fluid,  however, moves 
westward through Sand Unit Z i n  the upthrown 
block, west of Fault H. 
zontal flow continues t o  the area near w e l l  
W-10, where there exists a sandy gap i n  Shale 
Unit 0 which permits the canmunication between 
%e reservoirs a and 8 .  In this area, the geo- 
thermal fluid flows upward, resulting in  high 
temperatures a t  shallow depths in  w e l l  M-10. 
Some of the fluid enters the southwestern part 
of Shale Unit 0, which is sandier here than in  
the east, and constitutes the Reservoir a. 
Then the f luid moves westward unt i l  encounter- 
ing Fault L near w e l l  M-29. There, the fluid 
flows upward through the fau l t  and then w e s t -  
ward through the sands above Shale Unit 0. 
Fluid that does not enter Shale Unit 0 contin- 
ues t o  flow westward through the underlying 
Sand Unit Z (Reservoir 8 ) .  Eventually, some 
fluid leaks t o  the surface through the Cerro 
Prieto Fault Zone, which bounds the f ie ld  to 
the west  (see Figure 21, and the rest mixes 
w i t h  the colder waters that  surround the geo- 
thermal ancnnaly. 

Based on cross section A d '  and other sections 
given by Halfman et  a l .  (19821, it is inferred 
that most of the geothermal fluid flows through 
high porosity, permeable sandstone beds i n  Sand 
Unit Z (Reservoir 61, underlying the low-pros- 
i ty ,  impermeable Shale Unit 0, which acts  as  a 
local cap rock. Figure 6 shows a contour map 
of the top of the 8 reservoir; the postulated 
direction of geothermal fluid flow through 
these sandstone beds is indicated by the arrows. 
AS shown in this figure, the fluid is generally 
believed t o  enter the f ie ld  ( a t  great depth) 

This essentially hori- 
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frcln the east, gradually moving westward (and 
rising t o  shallower depth), and finally reach- 
ing the surface in the western regions of the 
field.  Several w e l l s  t o  the southeast are 
cooler (Le., M-189). This suggests that  these 
wells are bypassed by the hot f luids entering 
the field.  

SUMMkRY AND CONCLUSIONS 

By integrating the geologic m o d e l  of Cerro 
Prieto w i t h  dawnhole temperature profiles and 
wel.1 production intervals, we have identified 
the geothermal f luid flaw paths in  the field.  
It has been shown that  the movement of hot 
fluids in  the subsurface is strongly controlled 
by stratigraphic and structural features. 
model indicates that  a continuous cap rock does 
not exist  a t  Cerro Prieto which would prevent 
the upward migration of geothermal fluids t o  
the surface. This supports the conclusion of 
Grant et  al. (1981) and Grant and O'Sullivan 
(1982) that the reservoir, especially its west- 
ern part, is a leaky aquifer. 

Our 

The results of our model are consistent w i t h  
mineralogical observations and interpretations 
(Elders et  al., 19811, and w i t h  reservoir engi- 
neering and geochemical studies (Mercado, 19768 
Grant e t  al., 1981) carried out on this geo- 
thermal system, and was used to simulate the 
behavior of the Cerro Prieto f ie ld  in its nat- 
ural  s ta te  and under exploitation ( L i p p n n  and 
Bodvarsson, 19821 Tsang et  al., 1982). 
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