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ABSTRACT

In the "double-porosgity" approach to the
simulation of rigid geothermal reservoirs
there are several options available in formu-
lating the governing equations. The most
basic method requires for each fluid phase
the solution of four equations: the mass

and energy balances for both the fractures
and the porous matrix. It is customary to
sum the equations for the fluid phases to
eliminate condensation terms from the equa-
tions. When a double porosity approach is
employed, fracture-matrix exchange terms
arise; these terms require constitutive
assertions to solve the resulting equations,
Alternatively, one may add the fracture and
porous matrix equations together. This
procedure not only eliminates the troublesome
fracture-matrix exchange terms from explicit
consideration but also reduces the number of
dependent variables and equations. The various
summation procedures result in the transfer of
information to terms which usually lead to a
more diffuse solution.

INTRODUCTION

Equations of the motion for steam and water in
a geothermal reservoir considered as a porous
medium have been presented by many authors
(e.g., Garg-et al., 1978; Faust and Mercer,
1979). 1In this paper we examine the fractured
porous medium case. ' The so-called double-
porosity or double~continuum approach will be
employed. - Having presented the primitive
equations we will examine the implications of
summing certain of them. Thé paper extends the
work of Kazemi et al. (1976), O'Neill and .
Pinder (1981), and Pinder and Shapiro (1982).
We are particularly concerned about ways
detailed information can be masked or lost
through use of the summed equations.

CONCEPTUAL MODEL

In Figure 1, each of the six central blocks
(la-3a, 1b-3b) represents a set of balance
equations for mass, momentum and energy. Each
is associated with liquid, vapor, or solid in
either fractures or matrix. There are thus

30 equations in this description of a fractured
porous geothermal reservoir. Even at this level
of complexity, the system has been simplified.
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Nevertheless let us take Figure 1 and the
assoclated equations as our point of departure.

Although it is possible to consider the liquid,
vapor, and rock phases of a porous medium
separately, it is common to combine the balance
equations for the 3 phases (la-3a) to yield a
single set of equations, Ia. Similarly, we
combine (1b-3b) to form the set Ib. In summing
across rows of the figure we have thus reduced
from 30 to 10 the number of equations to be
solved. The specification of fracture-matrix
exchange terms i1s unfortunately an outstanding
problem.

An alternative scheme for equation reduction is
to sum columns, e.g., combine la and 1b to form
Zl, In this case the condensation terms will
appear in our equations although the fracture-
matrix exchange terms will not.

Finally, all the exchange terms can be com-
pletely eliminated by adding all the equations
together to form L=l + I2 4+ 13 = Za + Ib.
This set of equations is generally used in
current geothermal models.

One might actually wonder about the information
costs paid for the equation simplificdtions
achieved through this summation procedure. To
determine this we must examine in more detail
the strategy outlined above.

THE PRIMITIVE EQUATIONS

We begin with notation. Let the subscript o
denote the alpha-th phase, and let the sub-
script A denote the lambda-th topophase
(fractures or porous blocks).

If A is a property on thf macrogcopic, or
measurable, scale then IJJL and . are thevalues
of ¢ for the liquid (L) ™in the fractures (f)
and for the vapor (V) in the matrix (m), res-
pectively. This notation.allows us to distin-
guish - the type of rock comprising the porous
matrix from the £111 in the fractures.

The primitive equations corresponding to the
entries of Figure 1 are:




(1) Mass
A A
: at(p:) + 1-(p°\_73) =R +R

(2) Momentum

A A
at(pay_z)+v (pvv)- Vt pag
-p+2
PHE
(3) Energy
3(\0}‘A+—p Iv | ) + 9. [(p

t  aa
2 Palull >za1 - Ty,

- V°t)"vA - p)‘v)‘~g =T + TA
- = - a-a o a

subject to
4 = L(r, +&h= 1 3 (ru-n-r)
' a A a A

=% I (T + T ) =
e A

where p}‘, v:, g::, e:, g, and qA are the

partial mass density, velocity, partial stress,
specific internal energy, body force,and par-
tial heating, The right-hand side terms
denote the exchange of mass energy and momen-
tum between the phases and topophases. The
subscripted term indicates exchange from all
other phases in the A topophase, while the
superscripted term means exchange from all
other topophases for all phases. Note that,
for example,
& @ +H= 8,
o

I (R +R) = R,
A [+ 3 [+ R

z I (R + RA) =0
o
a A
The symbols 3_ and Ve are the partial
derivative wikh respect to time and the

divergence operator.

SUMMING OVER PHASES, DISTINCT TOPOPHASES

We now consider an approach for fractured
media which echoes current methodology in
simple porous medium analyses of geothermal
systems. The procedure is to sum the balances
(1)-(3) over the subscript a, i.e., we will
obtain one equation for the fractures and
another for the matrix, each of which embodies
the three phases rock, liquid, and vapor. In
the ensuing sections, we will only write the
energy balance to conserve space and because
the mass and momentum equations are similarly
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obtained.

We define the inner part of the stress and the
heating by

A A

(6a) :I = I t,
o

A A

(6b) q ¢ z Sa
o

The phase-summed energy equation can now be
written

2 2
3 lohced + 1A 4 et + Lpud)y.

A
+pv( . 2Iv I)] + v [pn,g(en+ 2Iv I )
:2<eL+1|v|)pv(e+ ])1

A A A,A
- Vg - Telggve F Y YR

A A )\ A AA - = TA
- (ppvp * L + Py ) 3
subject to
(8 I ™ - o.
A

While these equations retain the basic formal
structure of equations (1) - (3), they appear
to be easier to treat. The reason is that the
inter~phase exchange terms are summed leaying
ai residuis only inter-topophase terms R",
P”, and T”. Unfortunately, the constitutive
expressions for these terms are not well
understood.

Equation (7) can be written in terms of phase-

averaged variables. To expedite this pro-
cedure we introduce new notation:

(9 p = Iop
[+ 1

o
AA A A
(10 » v L Pava
o
Ao A_ A
D9y g - v
AL A A
a2 g g - T G
2
A A
(13) pe:-z(pe +—p] I
A A A A A A
(A4 qe= g+ ﬁ LEa Uy = (e
2
1 A A A
+v2 ul‘:ai )‘:al'

Note that



I (e
a

Summing equation (3) over a and us:l.ng the above
definitions we obtain

as) a (ot + 3 oMt

subject to equation (8).

SUMMING OVER TOPOPHASES, DISTINCT PHASES

We now present the second summing alternative
designed to reduce the number of governing
equations. In this case we will obtain
balance statements for rock, liquid, and vapor.
As before, we regretably begin the section

with additional nomenclature: .
A
(16) Py 3= b P
A
e A A
an Pava’ i Poda

-A‘- A’_
(18) Yot Yo TV

A A=A=A

Q9 e, = i (_._,a P uuuu)
‘ A A A=A 2
(200 p.e = I (p e +— | |
()
A
. A=A A, A
(21 9= ilg + ta Ys -4 pu(rea
llull )-X]

In addition we note that
s " »

I (pzua) = 0,

A ~ ~
The governing energy equat:lon becomes:
(22) 3(pe +—p Iv l)

+ 9 lp v (e, +—1V | )l - Vg,

Y ga Va " Pa¥a'8 T Tu

subject to

(23) I T =0
o
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SUMMING OVER PHASES AND TOPOPHASES

For those stubborn readers who have doggedly
pursued the development to this point, we now
combine balance equations (1) - (3) over all
pseudophases; that is, over all phases (sub-
script o ) and all topophases (superscript 1).
The resulting lumped set of equations will have
the form of a single-phase flow and energy
transport equations of a porous medium continuum,

We begin again with new nomenclature:

(24) p =% I (P:)
[+ A

25) vi=d 5z 5 o
- P a A ~
A A
(26) itV "V
s A ATATA
@n t:= = i (ga-pa oo
A
(28) pe:= I X (pe + lu l)
A
. AL AT
29 gi= I §[3a+£a2u
2
A
- el + 2 o2[ul a1,

Moreover it follows that

The governing energy equation is then

. 1 2 1 2
(30) 3 (pe + 5 olvl) + ¥-[(oe + Solv| vl

- !.S - -V-OE 2 pv.g = (),

DISCUSSION

Each set of equations has its advantages and
disadvantages. The first set (1-3) is
unattractive due to the number of equations
which must be solved and the large number of
exchange terms which must be specified.

The second set of equations represented by (7)
or (15) offers a reasonable model. The topo-
phase characteristics are kept clearly separate,
so that in the absence of fractures the system
of equations easily reduces to the standard
geothermal equations. ' However, one is left
with the problem of defining the exchange terms
between the topophases.

The third set of equations has great initial

appeal because the dependent variables are
written for each phase, which coincides with
field data (e.g., quality of produced fluid is




obtained, not quality of fluid produced from
fractures). On the otherhand, a number of
conceptual difficulties arise because the
distinctive production mechanisms of fractures
and matrix may be obscured, Moreover, there
remains the difficulty of determining the
exchange term between the phases.

The final set of equations corresponds to the
most widespread technology for studying geo-
thermal reservoirs -— fractured or not. The
fractured reservoilr is considered, in this
scheme, to be a porous medium, and fractures
or fracture zones are incorporated by
adjustments to material properties.

Let us consider now the question of information
transfer within the equations. Each equation
summation has generated a new set of dependent
variables which are related to the primitive
variables through their defining equations.
Each summed balance equation contains terms
which describes the contributions of the
primitive variables. Of Rarticular interest
are the heat flux terms q (14), q (21), and
q(29) which must be expressed in ferms of the
a@veraged variables to solve the resulting
system of equations. The functional form of
these constitutive relationships is generally
diffusive (behaves like Fick's first law),
i.e., the information lost in defining the
new summed variables is imbedded in a
diffusion~generating term. Consequently,

the summed equations are inherently more
diffusive than the primitive equations and
their solutions will therefore be more
smeared. We note that in current practice
equation (7) rather than (15) is used (in the
absence of fractures), avoiding the transfer
of information to the heat flux terms. The
outstanding issue now is the significance of
this phenomenon for practical applications.
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