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Introduction  While flow in fractured porous
media is a phenomenon often encountered in
reservoir simulation, there exists no gener-
ally accepted simulation methodology. Ore can
catalogue existing approaches as either dis-
crete fracture or continuum. As the name
implies the discrete fracture model considers
each fracture as a geometrically well-defined
,entity wherein the fluid behavior is des-
cribed using some variant of classical fluid
mechanics. The geometry of the porous blocks
is also assumed known and the pore fluid
behavior is determined via the equations
describing the physics of flow through porous
media. The two systems are coupled through
conservation constraints along the fracture-
porous block interface. Discrete fracture
models have been popular for some time. Early
work was conducted by Berman (1953)

and Crawford and Collins (1954); recently
Grisak and Pickens (1980) used this approach
to examine mass transport.

The continuum model, sometimes referred to as
the double porosity model , does not attempt
to describe the behavior in each porous block
or fracture explicitly. Rather one abandons
this detailed level of observation and alter-
natively examines the physical phenomenon
from a more distant perspective. At this
higher level of observation, one considers
only the average properties of the pores and
fractures. These properties are in turn
represented by functions which are assumed to
satisfy certain smoothness conditions con-
sistent with the fundamental postulates of
continuum mechanics. This approach relies
more heavily on constitutive theory to
establish meaningful experiments to determine
these property functions. The concept of the
continuum model, as applied to fractured
reservoirs, is generally attributed to
Barenblatt and Zheltov (1960). Only recently
however have the mathematical-physical under-
pinnings of this approach been carefully
examined. Duguid and Lee (1977) were the
first to recognize the necessity of adhering

to continuum principles in equation formulation

A recent summary of work in this area can be
found in Shapiro (1981).

The Model Problem Although both modelling
approaches have received considerable atten-
tion, little effort has been expended in

studying the relationship between them. The
outstanding question is whether the continuum
model can adequately represent the mathemati-
cal-physical behavior of the discrete system.
To address this problem, we have constructed
a discrete fracture model and a corresponding
continuum model. The discrete fracture model
is shown in figure 1. 1t consists of a set of
infinitely long prisms with square cross-
sections.

The equations describing fluid flow in the
fractures are, for the X coordinate direction

J
y=0

=y .2
(1) Dyp + D, (ov ) = 5 ov

(mass conservation)

and
(2) (DtvX + Vxvax) + DXP - { §u+ A)D)z(\-/x
12\7x i 0 5 )
+ ut v { = pv \ =0
12 Xt Ly y=0

(momentum conserv tion)
where p is fluid density,
P is fluid pressure,
\-'x is the average fluid velocity,
u IS the shear fluid viscosity,
A is the bulk fluid viscosity,
¢ is the fracture thickness, and
Dt(°) and DX(-) are partial derivatives
in time and the X coordinate
direction respectively.

A similar set of equations can be written for
the y direction.
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The equation describing flow in the porous
blocks is
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where Ce i s medium compressibility,
g is fluid compressibility,
k is matrix permeability, and

$ is porosity.

The continuum equations for the porous medium

and fractures are given by (Shapiro, 1981).
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where «f and A® are coefficients in

the mass exchange function.

The terms on the right hand side of (4) and
(5) represent the interaction between the
blocks and the fractures.

Parameter Estimation and Analysis The
immediate objective is to determine theability
of equations (4) and (5) to describe the
physical response of the fractured porous
medium system represented by equations (1),
(2) and (3). To examine this hypothesis, ug
determine the unknown parameters «f and A
using the solution to (1), (2) and (3). In
other words we use the discrete fracture
model and equations (1), (2) and (3) as our
experimental observations and solve for the
unknown parameters. TO establish the
robustness of the continuum model we sub-
sequently compare the solutions obtained
using the two approaches. The parameters
used in this mathematical experiment are
listed in table 1. The two solutions are
presented in figure 2.

It is apparent from figure 2 that the con-
tinuum model generated a solution qualita-
tively similar to that generated by the dis-
crete fracture model. Experiments conducted
using REVs of different sizes indicate that
the continuum model solution is relatively
unaffected by this parameter and that the
continuum parameters are temporally stable.
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Comparison with the earlier continuum
representation of Barenblatt indicates that
his formulation generates a solution somewhat
different than either the discrete fracture
or continuum formulations presented herein.
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Table 1

Experimental Properties

Property Symbol
1) Porous medium properties
Porosity $
Permeabi lity k

Matrix and Fluid Compressibility (¢Cf + pB)

2) Fracture properties

Thickness L
Fracture spacing L
Fluid velocity at inlet Vo
3) Fluid properties
Compressibil ity Ce
Viscosit i
Re?erencg density Py
Reference pressure Po

E-08cm?
E-11gm/dyne-cm

0.48E-10cm?/dyne
1.3E-02 dyne/cm2-sec
1.0

0.0

gm/cm3
dyne/cm?

s
0

B
)
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Figure 1: Diagrammatic representation of a discrete fracture system.
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Figure 2: Pressure response calculated using discrete fracture and continuum

models by Shapiro and Barenblatt.
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