

USE OF ENVIRONMENTAL ISOTOPES AS NATURAL TRACERS IN A REINJECTION EXPERIMENT AT LARDERELLO

Sergio Nuti, Claudio Calore and Pietro Noto

Istituto Internazionale per le Ricerche Geotermiche, (CNR),
Via del Buongusto 1,
56100 Pisa, Italy

Abstract Reinjection of the discharge from the power-plants of a geothermal field can cause serious, irreversible damage to the field itself, so that such operations must be monitored continuously. Tracer techniques are particularly useful for this purpose.

In some reinjection studies tritiated water was used as a tracer, but this method has certain disadvantages as well as advantages, one disadvantage being the destruction of the natural tritium balance in the reservoir.

The natural abundances of tritium at Larderello were, and are still, used to study field recharge from meteoric waters, so that another tracing method had to be applied to avoid disrupting these studies. The discharge fluid from the power-stations is traced naturally by its ^{180}O and D compositions with respect to the steam composition of the field. As these isotopes do not create the same difficulties as tritium we are checking their possible utilization as tracers.

This paper presents the results obtained by applying this method in the first phase of a reinjection experiment now under way in a central area of the field which has been exploited for long periods. Some limits of this method are also discussed.

Introduction Because of the limited natural recharge of the Larderello geothermal field (Petracco and Squarci, 1975), the decision was taken to study the possibility of recharging it artificially by reinjecting the waste from the geothermoelectric power-plants back underground in some suitable points of the field itself. This procedure would also solve the problem of getting rid of these effluents whose composition is such that they cannot be discharged into the runoff waters or the shallow aquifers.

In a vapour-dominated field such as that of

Larderello, with a heterogeneous reservoir and fracture-derived permeability, one cannot predict with any certainty the effects induced by reinjection. For example, one could expect a decrease in steam enthalpy and/or in the amount of steam produced. In order to avoid eventual irreversible negative effects to the field some experiments must be made prior to launching a full-scale reinjection programme.

These experiments will provide useful information on the complex phenomenology of vapour-dominated systems only if the tools used are adequate.

In this respect the tracer tests assume a role of considerable importance, as they can provide information on the processes occurring in the reservoir and on eventual modifications to these processes; they can also be used to calculate the amount of injected water reappearing as steam in the fluids produced and individuate any preferential pathways of the fluids

The problem is to find a routine work method that creates as little disturbance as possible to the system, but which also produces the maximum of data.

In the reinjection tests currently being conducted in a central area of the Larderello field, which has been exploited for the past 20-odd years, a study is being made of the potential of the stable isotopes ^{180}O and D as tracers.

The reasons for undertaking a reinjection programme at Larderello, the problems connected with this programme and the results from the engineering viewpoint are described in a paper by Giovannoni et al. (1981).

Environmental isotopes as natural tracers In some geothermal fields tritiated water has been used as a tracer in reinjection studies, as in The Geysers (Gulati et al., 1978) and at

Ahuachapan (Einarsson et al., 1975). As outlined by Gulati et al., this method has its negative as well as positive aspects. Among the former are the fact that the method requires expensive and time-consuming enrichment analyses and that its application destroys the natural tritium balance in the reservoir.

The natural tritium abundance at Larderello has been, and is still, used in studies of field recharge by meteoric waters (Panichi et al., 1974, 1978). Another tracer method had thus to be adopted to avoid compromising these studies.

Environmental tracers have, on the other hand, been used for some time now in geological studies in merit of their being natural tracers.

The isotopic abundances of **oxygen-18** and deuterium in the waters have helped to solve many hydrogeological problems. Problems more closely tied to an exploited geothermal field have also been investigated by means of the stable isotopes. During recent years especially, some interesting conclusions have been reached on subjects such as deep temperatures, physical state of the water and origin of some components of the geothermal fluid (Noto et al., 1979; Panichi et al., 1979; Nuti et al., 1980).

In the reinjection experiment now under way at Larderello, in an area with high temperatures and pressures of about 5 ata, the steam from the monitored productive wells had a composition ranging between -1.5 and -3 in $\delta^{18}\text{O}$ and -37 to -42 in δD . All the δ values given in this paper refer to differences per mil from **VIENNA-SMOW**, the international isotope standard for waters defined by the International Atomic Energy Agency of Vienna (Gonfiantini, 1978).

After leaving the turbines the steam is condensed, and the condensed water passes to the cooling towers where a considerable fraction is lost to the atmosphere in the form of vapour. Because of this process the residual water is greatly enriched in the heavy isotopes **oxygen-18** and deuterium. Throughout the experiment the isotopic composition of the injected water was in fact more or less constant with respect to $\delta^{18}\text{O}$ and δD , both being near to a value of +5, and far from the value of the "undisturbed" wells. So the discharge water is traced naturally by its stable isotopic composition and no artificial or radioactive tracers need be added to the system, avoiding all the negative effects this type of

interference entails, including those to the environment. The only disturbance is thus that brought on by reinjection itself.

The sampling and analysis techniques can be carried out as routine field operations, which are easy to apply and cheaper than tritium measurements.

Moreover, this method, as opposed to the pulse techniques, permits us to monitor the system systematically throughout the reinjection test, so that we can immediately obtain information on any variations undergone by processes occurring in the reservoir. Theoretically some negative aspects could exist in this method. There could be an isotopic exchange between the water and the rocks, but this phenomenon, if it did take place, would affect the oxygen only. Again, an isotopic re-equilibration could take place between the water and gas species, but this is a theoretical possibility only, as the latter represents only 2.8 mles percent of the geothermal fluid at Larderello and could, therefore, have little effect on the isotopic composition of the water. Furthermore, 90% of the gas is CO_2 , so that the hydrogen would, again, be unaffected.

The last, and most serious, negative aspect is the possibility of an isotopic fractionation of the water during phase change.

Results of the tracing experiment The injection well chosen for the experiment, W0, lies in a central area of the field, where exploitation has been under way for more than 20 years but temperatures have remained high (more than 24°C in the reservoir).

The monitored wells are distributed all round well W0, at distances of 150 to more than 700 metres (Fig.1). The isotopic composition of the steam produced by the wells in this zone is nearly uniform, so that it would be only slightly affected by any change in the original fluid flow pattern ensuing from reinjection.

In the first phase of this experiment a total of 30-35 m^3/h of water was injected for about 3 months, 105 m^3/h for about 20 days and 50 m^3/h for another 3 months.

After injection began the isotopic composition of the fluid in the monitored wells shifted towards the positive values of the reinjected water, and began decreasing when reinjection was reduced to 50 m^3/h .

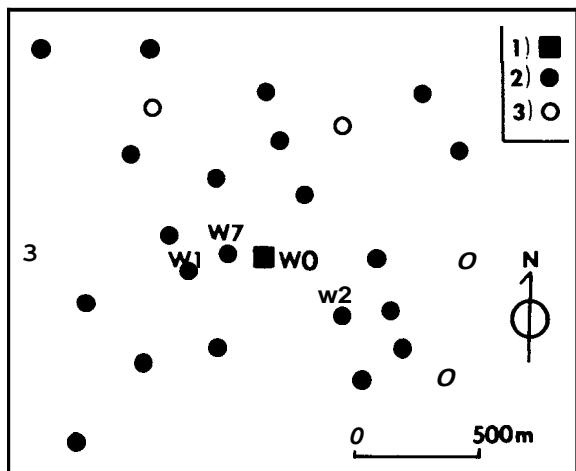


Figure 1 Location of the wells in the area west of Larderello affected by the reinjection test. 1) reinjection well; 2) production wells; 3) shut-in wells.

Once the test ended the composition returned to its earlier "undisturbed" values, while well W0 started producing steam whose isotopic composition was slightly more positive than that of the nearby wells (Fig. 2). The deuterium showed the same behaviour as the oxygen-18. This alone shows that at least part of the injected water vaporizes and that this steam joins the fluid produced by the surrounding

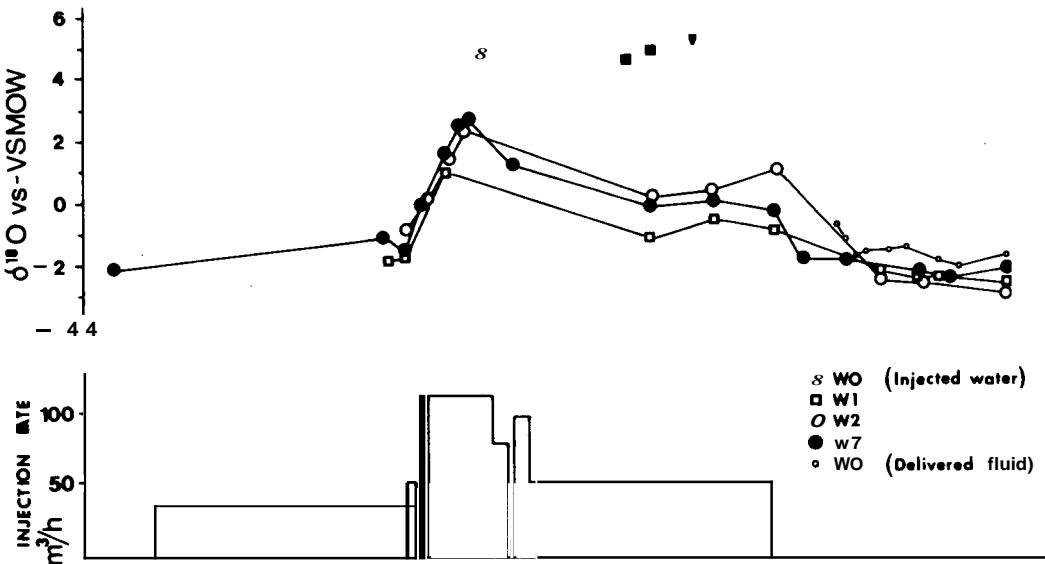

wells.

Figure 3 shows the trend of the isotopic composition of the fluids produced in wells W2 and W7 during this phase of reinjection, in a δD - $\delta^{18}\text{O}$ diagram. The high linear correlation coefficients and the position of the points along straight lines joining the "undisturbed" composition of the wells to that of the reinjected water suggest that a simple mixing process has taken place, with no disturbing phenomena related to isotopic exchange or fractionation. The fact that no isotopic fractionation has occurred suggests that the vaporization process does not produce two phases but a steam phase only, i.e., every portion of the injected water participating in the boiling process is completely vaporized.

In these conditions the amount of injected water returning in the fluid produced by the wells can be calculated by the following balance equation:

$G_I = G_{WH} (\delta_{WH} - \delta_R / \delta_I - 6)$, where G is the flow-rate, I , WH and R are subscripts representing the fluid coming from injected water, fluid produced by the wells and original fluid respectively.

Figure 4 shows the spatial distribution of the fraction of injected water versus the to-

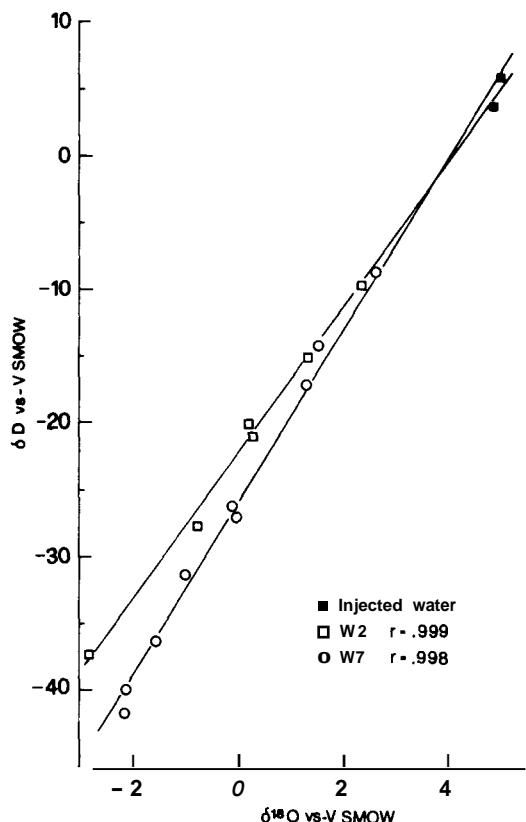


Figure 3 Variation in isotopic composition, in a δD - $\delta^{18}\text{O}$ diagram, of the condensate of the fluid produced by wells W2 and W7 during the reinjection test.

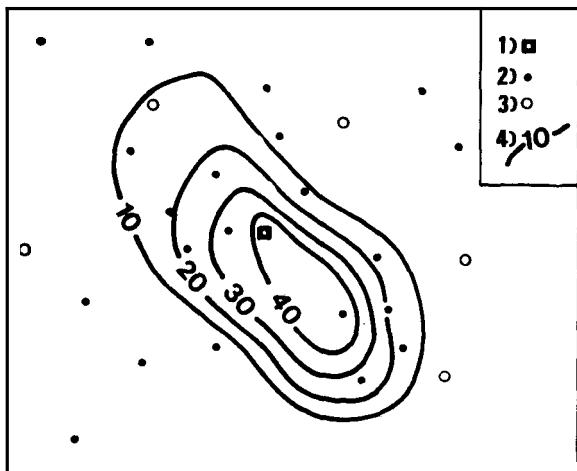


Figure 4 Contribution of injected water to production. 1), 2) and 3) as in Fig.1; 4) percentage ratio of injected water recovered as steam to the total fluid produced by the wells.

tal fluid produced by the wells about 20 days before the test ended.

The fact that the wells most affected by reinjection lie *along* a NW-SE alignment, the lack of correlation between the distance from the reinjection well to the others and the contribution of reinjected water in their steam show that the injected water has found preferential pathways in the underground.

This consequently confirms that the reservoir cannot be compared to a homogeneous and isotropic porous medium.

In conclusion, artificial tracers are unnecessary in vapour-dominated fields with certain favourable conditions, as the stable isotopic composition of the reinjected water already acts as a natural tracer. By monitoring the isotopic composition of the condensate of the productive wells in the area affected by reinjection we were able to ascertain that the injected water vaporizes and contributes to production, to calculate the amount of injected water re-entering the surrounding wells and to individuate the preferential pathways taken by this water in the underground.

In our opinion these results prove that tritium is not always the best tracer for reinjection studies in vapour-dominated geothermal systems.

References

- Einarsson, S.S., Vides, A., and Cuellar, G. (1975), "Disposal of Geothermal Waste Water by Rejection". Proc. 2nd U.N. Symp., San Francisco, Vol. 2, 1349-1363.
- Giovannoni, A., Allegrini, G., Cappetti, G., and Celati, R. (1981), "First Results of a Rejection Experiment at Larderello". Proc. 7th Workshop Geothermal Reservoir Engineering, Stanford, 16-18 December, 1981.
- Gonfiantini, R. (1978), "Standards for Stable Isotopes Measurements in Natural Compounds". Nature, Vol. 271, 534-536.
- Gulati, M.S., Ligman, S.C. and Strobel, C.J. (1978), "Tritium Tracer Survey at The Geysers". Geothermal Resources Council, Trans., 2, 237-239.
- Noto, P., Nuti, S., Panichi, C. and Gonfiantini, R. (1979) "Environmental Isotopes in Geothermal Water Investigation". Proc. 2nd Workshop on Isotopes in Nature, Leipzig.
- Nuti, S., Noto, P. and Ferrara, G.C. (1980) "The System $\text{H}_2\text{O} - \text{CO}_2 - \text{CH}_4 - \text{H}_2$ at Travale, Italy:

Tentative Interpretation". *Geothermics*, Vol.9-3/4, 287-296.

Panichi,C., Celati,R., Noto,P., Squarci,P., Taffi, L. and Tongiorgi,E. (1974) "Oxygen and Hydrogen Isotope Studies of the Larderello, Italy, Geothermal System". In: *Isotope Techniques in Groundwater Hydrology*, Vol.2, IAEA, Vienna, 3-28.

Panichi,C. and Gonfiantini,R. (1978) "Environmental Isotopes in Geothermal Studies". *Geothermics*, Vol.6-3/4, 143-161.

Panichi,C., Nuti,S. and Noto,P. (1979), "Use of Isotopic Geothermometers in the Larderello Geothermal Field". In: *Isotope Hydrology 1978*, Vol.2, IAEA, Vienna, 613-630.

Petracco,C. and Squarci, P. (1975), "Hydrological Balance of Larderello Geothermal Region". Proc. 2nd U.N. Symp. on the Development and Use of Geothermal Resources, San Francisco, Vol.1, 521-530.