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Abstract Arrays of interconnected permeable
fracture spaces that form fracture ladders pro-
pagate small amplitude fluid pressure signals
in much the same way as slabs of porous forma-
tions. Data from geothermal fields in Iceland
indicate that the fracture width there is of
the order of 1 to 2 mm and the signal diffusiv-
ity 20 to 100 m®/s. Well interference tests
are not likely to furnish data to distinguish
between fracture ladders and equivalent porous
slabs.

Introduction The majority of medium to high-
temperature geothermal systems are embedded in
formations of igneous origin that generally
are characterized by a fracture dominated flu-
id conductivity. The fractures are of elasto-
mechanical/tectonic and/or thermoelastic or
possibly chemoelastic origin. The fracture
conductivity is invariably highly heterogen-
eous, anisotropic and is quite often confined
to flat sheet-like structures such as fault
zones and volcanic dikes. Quantitative rela-
tions relevant to axisymmetric Darcy type flow
i n homogeneous/isotropic porous media general-
ly do not apply to such situations and an un-
critical standard type interpretation of well
test data from fractured reservoirs is there-
fore likely to lead to faulty conclusions.
Unfortunately, since little is known about the
dimensions and distribution of fractures in
the various types of natural settings, itis
difficult or even impossible to derive rele-
vant quantitative relations. It is, neverthe-
less, of considerable interest to obtain some
measure of the discrepancy that would result
from an application of the standard interpre-
tational procedures. The purpose of this
short note is to discuss a few very simple con-
cepts and relations that are useful in the pre-
sent context.

The Fracture Ladder For the present purpose,
we Wil consider a specific case of a compos-
ite fracture conductor consisting of a linear
array of interconnected individual fracture
spaces of similar dimensions as displayed in
Fig. 1. VW will refer to this system as a
fracture ladder. The individual fractures or
|ladder-elements are assumed to have a quasi-
rectangular shape with a characteristic edge
length L. The two surfaces are welded togeth-
er at the edges. The width of the open frac-
ture space may vary over the L x L element
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area, and there may even be some asperities
where the opposite surfaces meet, but we as-
sume that they touch without a solid weld.
From the elastomechanical point of view, the
fracture element acts as an open space of an
edge length L. Moreover, we assume that with
regard to fluid flow, the fracture element
has a well defined average flow width h. No
specific assumptions have to be made as to the
type of interconnection except that the fluid
can flow freely between adjacent ladder ele-
ments and that the specific flow conductance
can be taken to be approximately uniform over
‘the length of the ladder. Obviously, itis
possible to generalize this model by envi-
sioning a system of parallel ladders that are
interconnected along their entire length and
form a fracture sheet.

The principal physical parameters of the lin-
ear ladder consisting of one strand of ele-
ments are easily defined. At steady-state
laminar flow conditions, the vertically inte-
grated fluid conductivity of a fracture space
of width h between two parallel planes that
would be referred to as the transmissivity
CF is obtained on the basis of the well known
cubic law (Lamb, 1932)

¢, = h¥/12y (1)

where v is the kinematic viscosity of the
fluid. At these conditions, the mass flow
through a unit length of the fracture is q =
CFVp where vp is the pressure gradient, and
hence the local flow over the ladder is Q =
Lepvp.

Figure 1 The Fracture Ladder



lo obtain the hydraulic capacitivity or stor-
age coefficient of the ladder, we assume that
the element walls are elastic Hookean with a
rigidity u. Moreover, let the volume elas-
tance of a fracture space of volume V be de-
fined by e = dV/dp where p is the internal
pressure that is assumed to be uniform, Since
no analytical expression is available for the
elastance of a rectangular fracture element,
we will resort to approximating the element by
a circular or penny-shaped element of equal
area such that the diameter is 1.12L. The
elastance of the penny-shaped cavity of diame-
ter d has been obtained by Sneddon (1346) as
e = d3/4u where Poisson’s relation of equal
Lame parameters has been assumed. Based on
this result the elastance of a fracture ele-
ment would approximately be e = (1.12L)3/4u or
about L3/3u. Hence, the elastance per unit
area, that is, the capacitivity is

sp = (L/3u) + he

where « is the compressibility of the fluid.
We can usually take that # is of the order of
1019 to 2 x 10'% Pa and assuming that the
fluid is liquid water with x = 5 x 10719 pa~1,
the product xu = 5 to 10. The second term on
the right of (2) can then be neglected when
L>>30h. In general, this condition holds and
we will therefore simplify the expression for
sc by neglecting the fluid compressibility
term. Itis to be noted that the above ex-
pression for sg neglects the possible presence
of* satellite fracture that may contribute to
the capacitivity.

(2)

On the basis of (1) and the simplified version
of (2) follows the laminar flow diffusivity of
the ladder

_ — h3
ap = cpfosp = h¥u/4Ln (3)

where n is the absolute viscosity of the fluid.
Moreover, there may be leakage from the frac-
ture ladder into the adjacent formation. On a
1inear laminar flow model, the fluid loss per
unit area of the ladder would be characterized
by a coefficient b such that the leakage is bp
where p is the fluid pressure in the ladder.
We have no way of arriving at any expressions
for this coefficient that has to be treated as
a purely experimental parameter.

The Ladder and the Porous Slab It is interest-
ing to compare the parameters of the fracture
ladder to those of a homogeneous/isotropic
porous slab with Darcy type flow of the thick-
ness H, permeability k and hydraulic capaci-
tivity (storage coefficient) s. The thickness
of the slab of equal transmissivity is ob-
tained by

(4)

H = h3/12k (5)

Mcreover, assuming equal transmissivity, the
ratio of the diffusivities is

aS/aF = L/3usH

kH/v = h3/12v
such that

(6)

Finally assuming equal diffusivities, the ra-
tio of the transmissivities is
co/cp = 3usH/L (7)

Borehole/Fracture Contacts Itis quite evi-
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dent that because of the small cross sections
available, the local flow-velocities from
fracture spaces into boreholes may be quite
high and the flow regime therefore highly tur-
bulent. The above relation for the laminar
type transmissivity is then invalid and has to
be revised. The resulting relatively large
fracture/borehole contact resistance can be
derived as follows.

Consider a borehole of diameter D which cuts
a horizontal fracture of width h as shown in
Fig. 2 Let the fluid be incompressible, of
density p and the mass flow out of the frac-
ture be M Moreover, let the fluid pressure
at a distance r from the center of the hole

be p(r) and the fluid velocity there be v(r).
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Figure 2 Borehole/Fracture Contact

W have then
M = 2arhpv v = M/2nrhp (8)

The pressure loss over the distance dr is due
to the conversion of potential energy into
kinetic energy and friction heat, viz.

dp = -pvdv + (fov2dr/2h) (9)

the wall friction is represented by the second
term on the right of this equation that is de-
rived in the same manner as for the case of
pipes and where f is the friction coefficient
of the fracture. Assuming that the formation
pressure at a large distance from the bore-
hole is py this equation is easily integrated
for p and we obtain

p=p, = (M?/812h2p)[(1/r?) + (f/hr)]
If the pressure in the borehole is py, the
following expression is obtained for the mass
flow into the hole

M= /2 hD [o(p-pp)/(1+(fD/20))11/2 (1)

Abbreviating (po=pp) = Ap and (1/mv2) = 0.23,
we define the contact resistance of the bore-
hole

R

or

(10)

ap/M = (0.23/hD)[(2p/ ) (1+(£D/2h))11/2 (12)



Clearly, these results hold only for the tur-
bulent region around the borehole. Little
data is available on the values of the fric-
tion coefficient f for natural fractures, but
based on experimental data for pipes with
rough walls, we can expect that f~ 005 to
0.10 (see, for example Moody, 1947). It
should be pointed out that because of the qua-
dratic terms in (9), the mass flow M is not a
linear function of Ap and R therefore depends
on Ap. The principal application of equation
(11) is for the estimating of the fracture
width h in field cases where M and Ap are
known.

Field Data Little information is available on
the dimensions of fractures in nature. Per-
haps the most accessible extensive data is on
some of the geothermal reservoirs in Iceland
(Thorsteinsson, 1976, Bjornsson, 1979). Itis
well known that the hydrological systems of
Iceland are embedded in fracture dominated
flood-basalts of late Tertiary to Pleistocene
age. This material enables us to make at-
tempts at estimating fracture widths in some
of the Iceland reservoirs. Very briefly, we
can proceed as follows.

(1) Borehole production data in various geo-
thermal fields in Iceland indicate that major
fracture conductors can produce mass flows
from a few up to a few tens of kg/s at pres-
sure differentials of a few 10° Pa A figure
of M= 10 kg/s at ap = 4 x 105> Pa is quite re-
presentative of the performance of a produc-
tive individual fracture in a borehole of

D =022 m Assuming that the conditions set
forth in the previous section hold, equation
(11) with f = 0.06 gives then an estimate of
h =13 mm.

(2) Well interference testing in 4 geothermal
fields in Southwestern Iceland have yielded
transmissivities of cg = 26 x 107 to

25 x 107 ms. Reinterpreting these results in
terms of single fracture systems flowing water
at 100°C with v = 3 x 1077 m2/s, we obtain
with the help of equation (1) above the esti-
mate of h = 1 to 2 mm  Moreover, during the
same tests, unit area capacitivities (storage
coefficients) of sp = 1 x 108 to 4 x 1078
m/Pa were obtained. Equation (2) then yields
estimates of L = 400 to 1600 m and the result-
ing diffusivities are ap = 20 to 100 m?/s.

(3) Itis of interest to note that fracture
widths can also be estimated on the basis of
the overall flow resistance in individual geo-
thermal systems. Knowing the distance of re-
charge, the available pressure differential
and other parameters, it is possible to arrive
at estimates of an average h. The present
writer has obtained along these lines results
that compare well with the above estimates.
Unfortunately, space does not permit a discus-
sion of this method.

Signal Propagation On the above premises, we

now arrive at the basic equation for the pro-
pagation of pressure signals along a fracture
ladder. Assuming a homogeneous/isotropic flat
ladder and neglecting inertia forces, the bas-
ic equation is the diffusion equation in two
spatial dimensions for the fluid pressure p,
viz. ,

PSLA.D + bp + cFﬂzp =m (13)

where p is the density of the fluid, T, = =V,
is the Laplacian in two dimensions and mis a
source density. The leakage term on the left
can be eliminated by a transformation p = u .
exp(-bt) where u is a new dependent variable.
The principal small amplitude propagation par-
ameters, the penetration depth and the skin
depth (assuming b = 0)

_ 1/2 _ 1/2
dP = (aFt) and dS = (2aF/w) (14)
where t is time and w the angular frequency,
follow then in the usual way.

The pressure signal diffusivities indicated by
the Iceland data are quite high and signal
propagation therefore rapid. For example, at
agp = 50 m’/s the penetration depth for a per-
iod of 10s is about 700 m Itis interesting
to note that the fracture structures simulate
porous slabs of H = 20 to 60 m and permeabili-
ties of the order of k = 107*! = 10 darcy.

The global permeabilities of the host systems
appear, nevertheless, to be orders of magni-
tude smaller (Bodvarsson and Zais, 1978).

Under the circumstances assumed here, an in-
terference test would not provide data to dis-
tinguish between the two models, the ladder
and the slab, and an interpretation on the
basis of slabs only can therefore lead to
erroneous conclusions.
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