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INTRODUCTION 

All numerical simulators of geothermal reservoirs depend upon an accurate 
representation of the thermodynamics of steam-water systems. These relationships 
are required to render tractable the system of balance equations derived from the 
physics of flow through porous media. While it is generally recognized that the 
steam-water system (Le. two phase) is not in thermodynamic equilibrium, equihbrium 
thermodynamics are employed in its description. In this paper, we .present an 
alternative view based on non-equilibrium thermodynamics. The underpinnings of this 
approach are found in a branch of topology generally referred to as "catastrophe 
theory". CThom, 19753 

THERMODYNAMICS 

Consider the thermodynamic relationships presented in figure 1. Generally 
available theory dictates the use of the curve (A-B-D-F-G) in desribing the change 
in density encountered in moving from the single-phase water region (A-B) through 
the two phase region (B-D-F) to the single phase steam region (F-G). Thus, there is 
one pressure and temperature for the steam-water mixture irrespective of its 
liquid-gas composition. This is the curve (A-B-D-F-G) that is now employed in all 
geothermal simulators known to the authors. Note that the "kinks" encountered a t  
points B and F lead to discontinuous derivatives with respect to the thermodynamic 
variables; this, in turn, generates serious numerical problems. 

With the recognition that "metastable" water and steam states could, and indeed 
do, exist in the two-phase region, attention focused on the use of V a n  der Waals' 
equation t o  describe the thermodynamics of the two phase region. This curve 
(A-B-C-D-E-F-G) indicates that metastable water can exist along (B-C) and metastable 
steam along (E-F). The curve (C-D-E) does not correspond to a stable or even 
metastable state and is never observed. While these curves are of theoretical 
interest they do not, in and of themselves, enhance our understanding of the 
non-equilibrium two-phase region because the dynamics of the system are lacking. 

CATASTROPHE SURFACES 

The dynamics of the two-phase region can be uncovered using catastrophe theory. 
While the mathematical foundations of catastrophe theory are rather abstract, the 
practical ramifications are easily understood. The catastrophe surface representing 
the V a n  der Waals' equation for the steam-water system is presented in figure 2. I t  
is simply the three-dimensional representation of the information presented in 
figure 1; temperature has been added as a third coordinate. In the nomenclature of 
catastrophe theory this surface is referred to as the "slow manifold". 

The information presented in figures 1 and 2 is combined in figure 3. The letter 
nomenclature is the same as that appearing in figure 1. The reader is encouraged a t  
this point to examine the three figures until the surface appearing in figure 2 is 
evident in figure 3. I t  is this figure that will guide us through the two phase 
region. 
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THERMODYNAMIC EVOLUTION 

We begin by identifying a location in thermodynamic space of figure 3 designated 
by the numeral 1. This represents the initial condition or state at a physical 
point in our geothermal simulator. In this instance the point is in the hot water 
region of the well documented Arihara experiment CArihara e t  al, 19761. A s  the 
numerical simulation of this experiment evolves through time the pressure decreases 
dramatically and the thermodynamic state of the point of observation evolves along 
the trajectory defined by the curve (1-2). A t  the point denoted by the numeral 2, a 
second phase begins to appear. According to the catastrophe theory concept a t  this 
point, the specific volume of the steam. phase is denoted by the thermodynamic state 
at point 4 and that of the water phase by the location 2. The trajectory continues 
along the line (2-3). During ths  interval of time the evolution of the specific 
volume of the water phase is described by the curve (2-3) and that of the steam 
phase by the curve (4-5). A t  the point 3, the thermodynamic trajectory describing 
the behavior at our observation point suddenly changes. Suddenly the state moves 
along the h e  (3-5) and only steam exists at this point in the system. Thereafter, 
the evolution of the state of the system at the observation point is described by 
the trajectory (5-6). 

While this description may appear quite straight-forward, it is certainly 
unorthodox. It  proposes an evolution in water and steam densities within the 
two-phase region whereas current thinking assumes the steam and water densities do 
not change within the two phase region and are described by the two points 2 and 5 
respectively as when the two fluids are maintained at equilibrium. The difference 
in our approach arises from our intention to model behavior in the two-phase region 
when the fluids are not in equilibrium. Our approach also requires the existence of 
different pressures for water and steam within the two-phase region. In other 
words, the pressure of the steam associated with the point 4 is quite different than 
that of the water described by point 2 although these thermodynamic states would 
coexist in the proposed thermodynamic model. The existence of a higher pressure in 
the steam phase than the water phase is apparent to anyone who has watched a pan of 
boiling water. Because the steam forms a bubble, it must have a higher pressure 
than the surrounding water. 

PRACTICAL SIGNIFICANCE 

Let us now investigate the practical ramifications of the above theoretical 
argument. Figure 4 presents saturation profiles computed for the Arihara experiment 
using the standard approach and the methodology founded on Van der Waals' equation 
and catastrophe theory. While the solutions are similar in shape, they are quite 
different in magnitude.. Unfortunately, because the exact solution is unknown we 
cannot determine unequivocally which solution is more accurate. 

A second more subtle difference in the two approaches involves the numerical 
treatment of the phase change. Because there is no sudden discontinuity in the 
derivatives of the thermodynamic variables when one crosses the two-phase boundary, 
the non-linear aspects of the problem are less troublesome. Early test runs suggest 
an order of magnitude larger bme steps can be accommodated with the new approach as 
compared to the same simulator formulated using the standard equfibrium 
thermodynamic methodology. 
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CONCLUSIONS 

Geothermal simulation whch accounts for the non-equilibrium thermodynamic nature 
of the steam-water system generates saturation profiles similar to but distinctly 
different from those obtained using standard methodology. The approach is 
intuitively simple, mathematically rigorous, and gives rise t o  a system of algebraic 
equations more amenable t o  solution than those generally encountered in alternative 
formulations. 
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Figure 1 : Thermodynamic relat ionships  f o r  a steam-water system employing 
equilibrium theory and Van der h'aals' s t a t e  equation. 

Figure 2 :  Geometry of the Van der Waals' s t a t e  equation. 
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Figure 3: Morphological representation of steam-water dynamics as  the  
Riemann-Hugoniot catastrophe. 
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Figure 4 :  Contrast i n  sa tura t ion  prof i les  from topological and standard 
s t a t i s t i c a l  estimates o f  thermodynamic var iables  f o r  the two-phase 
doma i n . 




