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1S GEOTHERMAL SIMULATION A "CATASTROPHE"?

V.V. Nguyen and George F. Pinder
Princeton University

INTRODUCTION

All numerical simulators of geothermal reservoirs depend upon an accurate
representation of the thermodynamics of steam—water systems. These relationships
are required to render tractable the system of balance equations derived from the
physics of flow through porous media. While it is generally recognized that the
steam—water system (i.e. two phase) is not in thermodynamic equilibrium, equilibrium
thermodynamics are employed in its description. In this paper, we present an
alternative view based on non—equilibrium thermodynamics. The underpinnings of this
approach are found in a branch of topology generally referred to as "catastrophe
theory”’. [Thom, 1975]

THERMODYNAMICS

Consider the thermodynamic relationships presented in figure 1. Generally
available theory dictates the use of the curve (A-B—D—-F—G) in desribing the change
in density encountered in moving from the single—phase water region (A-B) through
the two phase region (B—D—F) to the single phase steam region (F—G). Thus, there is
one pressure and temperature for the steam—water mixture irrespective of its
liquid--gas composition. This is the curve (A-B-D—F—G) that is now employed in all
geothermal simulators known to the authors. Note that the "kinks” encountered at
points B and F lead to discontinuous derivatives with respect to the thermodynamic
variables; this, in turn, generates serious numerical problems.

With the recognition that "metastable” water and steam states could, and indeed
do, exist in the two—phase region, attention focused on the use of Van der Waals'
equation to describe the thermodynamics of the two phase region. This curve
(A~B—C—-D-E—F—G) indicates that metastable water can exist along (B—C) and metastable
steam along (E—F). The curve (C—D—E) does not correspond to a stable or even
metastable state and is never observed. While these curves are of theoretical
interest they do not, in and of themselves, enhance our understanding of the
non—equilibrium two-—-phase region because the dynamics of the system are lacking.

CATASTROPHE SURFACES

The dynamics of the two—phase region can be uncovered using catastrophe theory.
While the mathematical foundations of catastrophe theory are rather abstract, the
practical ramifications are easily understood. The catastrophe surface representing
the Van der Waals' equation for the steam—water system is presented in figure 2. It
is simply the three—dimensional representation of the information presented in
figure 1; temperature has been added as a third coordinate. In the nomenclature of
catastrophe theory this surface is referred to as the "slow manifold".

The information presented in figures 1 and 2 is combined in figure 3. The letter
nomenclature is the same as that appearing in figure 1. The reader is encouraged at
this point to examine the three figures until the surface appearing in figure 2 is
evident in figure 3. It is this figure that will guide us through the two phase
region.
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THERMODYNAMIC EVOLUTION

We begin by identifying a location in thermodynamic space of figure 3 designated
by the numeral 1. This represents the initial condition or state at a physical
point in our geothermal simulator. In this instance the point is in the hot water
region of the well documented Arihara experiment [Arihara et al, 1976]. As the
numerical simulation of this experiment evolves through time the pressure decreases
dramatically and the thermodynamic state of the point of observation evolves along
the trajectory defined by the curve (1-2). At the point denoted by the numeral 2, a
second phase begins to appear. According to the catastrophe theory concept at this
point, the specific volume of the steam. phase is denoted by the thermodynamic state
at point 4 and that of the water phase by the location 2. The trajectory continues
along the line (2-3). During this interval of time the evolution of the specific
volume of the water phase is described by the curve (2—3) and that of the steam
phase by the curve (4—5). At the point 3, the thermodynamic trajectory describing
the behavior at our observation point suddenly changes. Suddenly the state moves
along the line (3—-5) and only steam exists at this point in the system. Thereafter,
the evolution of the state of the system at the observation point is described by
the trajectory (5-—6).

While this description may appear quite straight—forward, it is certainly
unorthodox. It proposes an evolution in water and steam densities within the
two—phase region whereas current thinking assumes the steam and water densities do
not change within the two phase region and are described by the two points 2 and 5
respectively as when the two fluids are maintained at equilibrium. The difference
in our approach arises from our intention to model behavior in the two—phase region
when the fluids are not in equilibrium. Our approach also requires the existence of
different pressures for water and steam within the two—phase region. In other
words, the pressure of the steam associated with the point 4 is quite different than
that of the water described by point 2 although these thermodynamic states would
coexist in the proposed thermodynamic model. The existence of a higher pressure in
the steam phase than the water phase is apparent to anyone who has watched a pan of
boiling water. Because the steam forms a bubble, it must have a higher pressure
than the surrounding water. ’

PRACTICAL SIGNIFICANCE

Let us now investigate the practical ramifications of the above theoretical
argument. Figure 4 presents saturation profiles computed for the Arihara experiment
using the standard approach and the methodology founded on Van der Waals' equation
and catastrophe theory. While the solutions are similar in shape, they are quite
different in magnitude. Unfortunately, because the exact solution is unknown we
cannot determine unequivocally which solution is more accurate.

A second more subtle difference in the two approaches involves the numerical
treatment of the phase change. Because there is no sudden discontinuity in the
derivatives of the thermodynamic variables when one crosses the two—phase boundary,
the non-linear aspects of the problem are less troublesome. Early test runs suggest
an order of magnitude larger time steps can be accommodated with the new approach as
compared to the same simulator formulated using the standard equilibrium

thermodynamic methodology.
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CONCLUSIONS

Geothermal simulation which accounts for the non—equilibrium thermodynamic nature
of the steam—water system generates saturation profiles similar to but distinctly
different from those obtained using standard methodology. The approach is
intuitively simple, mathematically rigorous, and gives rise to a system of algebraic
equations more amenable to solution than those generally encountered in alternative
formulations.
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Figure 1: Thermodynamic relationships for a steam-water system employing
equilibrium theory and Van der Waals' state equation.
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Figure 2: Geometry of the Van der Waals' state equation.
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Figure 4:
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Morphological representation of steam-water dynamics as

Riemann-Hugoniot catastrophe.
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