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INTRODUCTION 

The primary objective of modeling a geothermal system i s  t o  be 
able  to predic t  with s o m e  confidence the energy production capacity 
and longevity of the f i e l d  under various production and inject ion 
scenarios. To achieve t h i s  goal, a modeler needs t o  construct a 
comprehensive mathematical model based on available data and vali-  
date  t h i s  model against  the production his tory of the  f i e ld .  This, 
i n  turn,  requires  the data associated with the evolution of the 
f i e l d  due to its exploitation. Typically, t h e  information related 
t o  the var ia t ions i n  the mass flow ra t e ,  enthalpy, pressure, temper- 
a ture  and f l u i d  saturat ion a s  a function of t i m e  i s  used t o  val idate  
the model. The production data is rout inely measured a t  the well- 
head whereas most reservoir models canpute the changes i n  the t em-  
perature,  pressure,  enthalpy, f l u i d  velocity and other physical 
propert ies  of the f l u i d  a t  the sandface. To val idate  any model, 
wellhead data must be corrected t o  r e f l e c t  the downhole conditions. 
In  t h i s  paper, w e  sha l l  confine ourselves to  the discussion of 
computing bottomhole pressures from t h e  measured wellhead data by 
using a wellbore model. Several wellbore models which canpute 
wellhead conditions from the  given bottomhole data have been ci ted 
i n  the  l i t e r a t u r e .  (Sanyal, e t  a l . ,  1979; Aydelotte, 1980; Gould, 
1974). Such calculat ions a re  of i n t e re s t  i n  predicting the condi- 
t i ons  under which an optimum production could be obtained fran a 
given well. This approach does not suit us since our primary goal 
i s  t o  study the  evolution of the f i e l d  due to production. The 
following paragraphs a re  devoted t o  the  discussion of the wellbore 
model and i ts  describing equations, comparison between the computed 
and measured pressures and t h e  e f f ec t  of measured wellhead param- 
e t e r s  on the downhole pressures i n  the well. Finally a wellbore 
m o d e l  with multiple i n s i d e  diameters is  discussed and the e f fec t  
of w e l l  scal ing on the bottom hole pressures is  studied. 

WELLBORE MODEL 

The steady s t a t e  computer program WELFLO used i n  t h i s  study 
ca lcu la tes  the bottomhole conditions i f  the wellhead conditions 
such a s  m a s s  flow r a t e ,  pressure and enthalpy (or dryness f ract ion)  
a re  prescribed. The length of open interval  and heat  loss from the 
w e l l  bore are also considered i n  the program. However, the  e f f ec t  
of the rad ia l  pressure gradient responsible fo r  inflow t o  the w e l l  
is not taken in to  account. The total mass inflow t o  the w e l l  is 
assumed t o  be dis t r ibu ted  evenly throughout the open interval .  
Also, in-place in te rna l  energy i n  the open in te rva l  i s  assumed con- 
s tan t .  The equations, describing a t rans ien t  two-phase flow through 
a w e l l  are discussed i n  Miller (1979).  The steady-state equations 
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of m a s s ,  momentum and energy a s  obta ined  f r m  t h a t  se t  f o r  a con- 
s t a n t  diameter  w e l l  are as fol lows:  

a 
ax - ( P U )  = 0 ( 1 )  

P 1 - a x I  P J 
4H + -  
Di (Tres - Tw) ( 3 )  

The above equat ions  d e s c r i b e  average f l u i d  p r o p e r t i e s  over  t he  
cross s e c t i o n  and t h u s  do not  s a t i s f y  t h e  no-sl ip  boundary condi- 
t i o n  a t  t h e  w a l l  of t h e  w e l l .  The s l ip  is given as a func t ion  of 
f low regime. The limits of  these  reg ions  (bubble ,  s l u g ,  t r a n s i t i o n  
and mis t )  t h a t  w e r e  used are def ined  i n  Orkiszewski ( 1967) S l i p  
for t h e s e  reg ions  i s  d iscused  i n  Orkiszewski, (1967) and Wallis 
(1969).  The program uses  an overall f r i c t i o n  f a c t o r  a s  descr ibed  
i n  Chisholm (1973).  Empirical r e l a t i o n s ,  c o r r e l a t i n g  steam t a b l e s  
for t h e  p r o p e r t i e s  of w a t e r  and w e t  steam a r e  used i n  the program 
(Miller,  1978). These r e l a t i o n s  are accura t e  t o  wi th in  5% of t h e  
steam t a b l e  values .  

MEASURED AND COMPUTED P R E S S W S  I N  WELL M90 

A n  a t tempt  w a s  made t o  c a l c u l a t e  t h e  p re s su res  a t  va r ious  
depths  i n  t h e  bore and then  to compare them with those  measured i n  
t h e  Cerro Prieto w e l l s .  F igure 1 shows the measured and computed 
pressures i n  w e l l  M - 9 0  €or the given wellhead conditions. The w e l l  
is of uniform diameter. Calculated pressure p r o f i l e s  f o r  t w o  dif-  
f e r e n t  wellhead pressures are shown i n  the  f igu re .  One of them i s  
for the measured wellhead pressure of 37.4 kg/cm2 gauge. 
computed pressures are l o w e r  than those  measured throughout t he  
depth  of t h e  w e l l  wi th  a m a x i m u m  d i f f e r e n c e  of about 11%'at  a depth 
of  1380 meters. The second c a l c u l a t e d  p r o f i l e  is for t he  wellhead 
pressure of 39.5 kg/cmzgauge which i s  obta ined  by extending t h e  
measured pressure p r o f i l e  to t h e  sur face .  The m a x i m u m  pressure 
d i f f e r e n c e  in this case is on ly  about  6%. It w a s  observed f r a n  t h e  
computer ou tput  t h a t  a two-phase s l u g  f low regime e x i s t e d  through- 
o u t  t h e  w e l l  and t h u s  a d r a s t i c  change i n  pressure g r a d i e n t  is not  
l i k e l y  near  the wellhead. I n  o t h e r  words, one would expect a 
wellhead p r e s s u r e  of 39.5 kg/cm* gauge a t  the  wellhead i f  t h e  
pressures measured i n  t h e  w e l l  are correct. Or  a l t e r n a t i v e l y ,  i f  
t h e  measured wellhead pressure of 37.4 kg/cm2 gauge i s  correct, 
then  t h e  measured downhole pressures should be i n  error. Th i s  

The 
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shows tha t  there ex i s t s  a discrepancy between the pressures meas- 
ured a t  the wellhead and those i n  the  well. As i n  any other f i e l d  
work or experimentation, such discrepancies do arise a s  a d i rec t  
r e su l t  of human errors ,  instrumental errors  or both. The computed 
and measured p ro f i l e s  for  M-90 are  i n  good agreement. However, i t  
must be emphasized tha t  even a 5% er ror  i n  the  calculation can 
lead t o  a - l a r g e  absolute error. For M-90, 5% er ror  is about 70 
ps i .  A comparison between the  measured and computed pressures in 
the Cerro Prieto w e l l  M-51 was also made. It was found that 
computed pressures were w i t h i n  6-7% of those measured i n  the well. 

EFFECT OF HEAT LOSS AND OPEN INTERVAL ON COMPUTED DOWNHOLE PRESSURE 

The ef fec t  of heat loss fran the wellbore to the surroundings 
on the w e l l  pressure was also studied by considering tha t  a l i nea r  
temperature prof i le  (assumed t o  approximate the natural geothermal 
gradient) ex i s t s  in t h e  reservoir a t  a distance ( R 1 )  of 1 m and 5 m 
from the well. A hyperbolic prof i le  was then f i t t e d  between the 
well and the geothermal gradient to  obtain the temperature gradient 
a t  the well. It was found t h a t  the maximum pressure drop associated 
with heat loss for  R1 = 1 m was about 2.5% while negligibly s m a l l  
f o r  R1 = 5 m i n  w e l l  M-90. Thus, f o r  a l l  p rac t ica l  purposes, steady 
state heat transfer from C e r r o  Prieto production w e l l s  can be 
neglected. a u l d  ( 1974) also arrived a t  the same conclusion for  
high production wells. To study the effect  of t h e  thickness of 
open internal  on the bottom hole pressures, we varied t h e  thickness 
from 10 m t o  160 m i n  the w e l l  M-90. It was found tha t  an increase 
of only about 0.5% occurred i n  the bottom hole pressures for  an 
open interval  of 160 m. Thus, f o r  all the cases discussed here- 
a f t e r ,  w e  assume tha t  the heat loss fran the well i s  negligibly 
small, and t h a t  the  depth of the open interval  i s  equal t o  t h e  
distance between two nodes i n  the f i n i t e  difference mesh. 

EFFECTS OF WELLHEAD PARAMETERS 

A s  noted, a poss ib i l i ty  e x i s t s  that the measured wellhead 
parameters such a s  pressure, mass flow r a t e ,  dryness fraction, 
enthalpy, e tc . ,  may be i n  e r ror  by a few percent. Thus, i t  seems 
appropriate t o  f i n d  the e f f ec t  of such er rors  on the calculated 
downhole pressures i n  t h e  w e l l .  We varied three important w e l l -  
head parameters (mass flow r a t e ,  pressure, and enthalpy) w i t h i n  
+20% of t he i r  measured value in well M-90 and calculated the change 
on the bottom hole pressures. 
- 

Table 1 shows bottom hole pressures (BHP) for  different  mass 
flow r a t e s  i n  well M-90. For a 20% increase in mass flow r a t e  a t  
t h e  wellhead, t h e  bottom hole pressure increased by about 6.5% the 
f o r  a 20% decrease i n  flow r a t e  there is about 5% decrease i n  BHP. 
The difference between wellhead and downhole pressure i s  not 
affected s ignif icant ly  by t h e  mass flow ra te .  However, it maybe 
noted tha t  the wellbore model i s  independent of the reservior. 

Table 2 shows the e f fec t  of w e l l  head pressures (WHP) on t h e  
BHP i n  w e l l  M-90. It may be observed tha t  a 20% increase i n  WHP 
r e su l t s  i n  an increase of about 25% i n  BHP while a 20% decrease i n  
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t h e  WHP l e a d s  to  about 18% decrease i n  BHP. The error i n  the  WHP 
i n  t h i s  case  shows up d i r e c t l y  i n  the  BHP. 

E f fec t  of enthalpy on BHP is  shown i n  Table 3. It may b e  
observed t h a t  an enthalpy inc rease  of 20% reduces BHP by about 14% 
bu t  a corresponding decrease l eads  to  an increase  of about 70% i n  
BHP. An increase  i n  enthalpy r e s u l t s  in more steam and l i g h t e r  
f l u i d  g iv ing  rise to  lower pressures a t  the bottom of t h e  w e l l  as 
shown i n  Table 3. BHP i s  not  a f f ec t ed  as much by an  inc rease  i n  
enthalpy a s  it does by decreasing t h e  same. This  may be  a t t r i b u t e d  
t o  t h e  f a c t  t h a t  a decrease i n  the  enthalpy r e s u l t s  in a denser ,  
heavier  f l u i d  g iv ing  rise t o  higher p re s su res  a t  t he  bottom of t h e  
w e l l .  E f f ec t  of flowing dryness f r a c t i o n  a t  the  wellhead on BHP 
w a s  also s tudied .  I t  w a s  found t h a t  a v a r i a t i o n  i n  enthalpy a f -  
f e c t s  t he  downhole pressures more than a corresponding change i n  
t h e  dryness f r ac t ion .  The f l u i d  en tha lp i e s  a t  Cerro P r i e t o  w e l l s  
are ca l cu la t ed  by using dryness f r a c t i o n  and steam p r o p e r t i e s  a t  
t h e  separa tor  pressure. Thus, it is advisable  t o  compute BHP by 
us ing  dryness f r a c t i o n  rather than enthalpy t o  avoid t h e  possibil- 
i t y  of  a compounding e r ro r .  

EFFECTS OF WELLBOm DIAMETER AND SCALING 

I n  add i t ion  to  t h e  measured wellhead da ta ,  t h e  in s ide  diameter 
of the  w e l l  i s  needed t o  c a l c u l a t e  t he  BHP. A s tudy  w a s  done t o  
f i n d  i t s  e f f e c t  on the  ca l cu la t ed  bottom hole  pressures .  T a b l e  4 
shows t h e  ca l cu la t ed  BHP i n  M-90 f o r  var ious  in s ide  r a d i i .  The 
BHP w a s  41% more f o r  1 2  cm i n s i d e  diameter and 150% more for 8 cm 
diameter compared t o  t h a t  for 16.3 cm diameter. Thus, i n  the  8 cm 
diameter case,  a reduct ion of 76% i n  area leads  t o  a much higher 
i nc rease  ( 1 5 0 % )  i n  t he  downhole pressure.  This  f i g w e  may b e  
u n r e a l i s t i c  s i n c e  a l a r g e  reduct ion i n  the  a rea  is assumed through- 
out t h e  wellbore. In any event ,  it is  c l e a r  t h a t  t he  e f f e c t  of 
i n s i d e  diameter on the  BHP is  considerable .  Some Cerro Prieto 
w e l l s  do have l a rge  scale deposits. For example, w e l l  M-30, which, 
as  of  1976, had s c a l i n g  i n  excess of 60 mm at a depth of 1,500 
m e t e r s .  Similar scale deposits w e r e  a l s o  observed i n  many o t h e r  
wells i n  the  f i e l d .  Thus, t o  obta in  reasonable va lues  f o r  down- 
hole  pressures, it is  necessary t o  have a computer program which 
accounts f o r  v a r i a t i o n s  i n  the  wellbore diameters.  Using t h e  
c o n t r o l  volume concept, t h e  following equat ions of m a s s ,  momentum 
and energy w e r e  der ived f o r  a f i n i t e  volume i n  which the  diameter 
change occurred. 
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In d e r i v i n g t h e  above equations,  w e  have neglected energy 
d i s s i p a t i o n  due to f r i c t i o n  and eddy los ses .  In these  equat ions 
'up' s tands  f o r  the  upstream side and 'down' f o r  the downstream 
s ide .  Subscr ipt  E s tands  f o r  l i q u i d  and g f o r  steam. Given the  
condi t ions  a t  po in t  'up' ,  t h e  parameters a t  p i n t  'down' could 
be ca lcu la ted .  Figure 2 shows the  computed and ca l cu la t ed  pres- 
s u r e s  in the  C e r r o  Prieto w e l l  M - 9 1 .  The ins ide  diameter of t he  
w e l l  changes a t  a depth of about 1940 meters. It was found f r o m  
the  computer ou tput  t h a t  a t w o  phase s lug  flow e x i s t s  in the  w e l l  
above 900 metres and a s i n g l e  phase l i q u i d  water flows below 
950m. A change i n  the  pressure g rad ien t  a t  about 900-1000 m depth 
is  not iced.  It is c l e a r  from t h e  f i g u r e  that  there  is an exce l l en t  
agreement between the  measured and computed pressures .  The 
percentage d i f f e rence  i n  BHP i s  less than 1 % .  

W e l l  M-39 of C e r r o  Prieto f i e l d  was a l s o  selected to s h o w  t h e  
e f f e c t  of m u l t i p l e  i n s i d e  casing diameters on downhole pressures 
(F igure  3 ) .  Production da ta  f o r  June 1976 w a s  used t o  canpute 
downhole pressures .  Pressures  ca l cu la t ed  using t h e  a c t u a l  casing 
diameters are h ighes t  among a l l  t h e  cases shown. Pressure gradi-  
e n t  between 1000 m t o  1100 m depth change in response to  changes 
i n  i n s i d e  casing diameters. Higher p re s su re  g rad ien t s  below 1200 
meters i n d i c a t e  s i n g l e  phase l i qu id  flow. The computed p res su res  
for the  uniform i n s i d e  diameters of 0 .2012  m and 0.2736 m, a s  
shown in Figure 3, are lower than those obtained us ing  t h e  ac tua l  
diameters. In  f a c t ,  bottom hole  pressures decrease by 31.6% and 
67.8% f o r  t he  i n t e r n a l  diameter of 0 .2012  m and 0.2736 m, respec- 
t i v e l y .  Pressures  ca l cu la t ed  assuming a uniform diameter of 
0.177 m were very  close to  those cauputed using t h e  actual casing 
diameter. This i n d i c a t e s  t h a t  t h e  g rav i ty  e f f e c t  dominates the  
pressures more than the  i n e r t i a  e f f e c t  when t h e r e  i s  s i n g l e  phase 
l i q u i d  flow. Unfortunately,  no data for measured downhole pres- 
sures w e r e  a v a i l a b l e  t o  c o m p a r e  wi th  these  computed pressures. 
These results i n d i c a t e  t h a t  the  computed downhole pressure may b e  
s i g n i f i c a n t l y  i n  e r r o r  i f  actual i n s i d e  cas ing  diameters are not  
taken i n t o  account. 
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Figure 4 shows the  e f f e c t  of s i z e  and p o s i t i o n  of t h e  scale 
depos i t s  or of a l i n e r  of 200 m length  on the  pressure  d i s t r ibu -  
t i o n s  i n  the  Cerro P r i e t o  w e l l  M-51. Pressures  are l a r g e r  f o r  
t h i c k e r  scale deposits s ince  one would require higher pressures 
t o  push the  f l u i d  through a s m a l l  opening. A l i n e r  of small 
diameter set  near the  wellhead needs higher  b o t t o m  ho le  p re s su re  
compared t o  the  one set near  t h e  b o t t o m  of the  w e l l  bore. This  
is  due to t h e  p re s su re  propagation i n  the  w e l l  bore. A similar 
prof i le  w a s  measured i n  t es t  11-3 of the  w e l l  BR-11 where s o l i d  
scale d e p o s i t s  up t o  2 inches t h i c k  were found i n  the l i n e r  
(Gould, 1974). 

CONCLUSIONS 

W e  have found t h a t  ca l cu la t ed  downhole p re s su res  a r e  quite 
s e n s i t i v e  t o  measured w e l l  head condi t ions and w e l l  i n s i d e  diameter 
da t a .  The parameters t o  be measured, i n  order  of decreasing 
accuracy, are w e l l  i n s i d e  diameter,  wellhead pressure, dryness  
f r a c t i o n  and mass flow r a t e .  Based on the  da t a  presented w e  
cons ider  t h a t  LBL's canputer program WELE'LO calculates reasonable 
downhole condi t ions  provided t h a t  accura te  da t a  is  provided. 

ACKNOWLEDGEMENTS 

W e  want to  thank t h e  Coordinadora Ejecut iva de C e r r o  Prieto 
of CFE f o r  making a v a i l a b l e  the  da t a  used i n  t h i s  study. This work 
was performed under the  auspices  of  t he  U. S. Department of Energy, 
Divis ion of Geothermal Energy, under con t r ac t  No. W-7405-ENG-48. 

NOMENCLATURE 

Aup(down) = i n s i d e  area of t h e  w e l l  a t  upstream (downstream) 

Aav = average area of the w e l l  = 
D i  = i n s i d e  diameter of t h e  w e l l ,  m 
e = i n t e r n a l  energy, of the  s t e a m - w a t e r  m i x t u r e ,  J/kg 
ea( g) = i n t e r n a l  energy of w a t e r  (steam), J /kg  
f = c o e f f i c i e n t  of f r i c t i o n  in the  two-phase flow 
9 = g r a v i t a t i o n a l  acce le ra t ion ,  m/sec2 
H 
P = pressure i n  the  w e l l  a t  any cross sec t ion ,  Pascals  
Tres = r e s e r v o i r  temperature, OK 
T W  = W e l l  temperature, OK 
U = mass averaged ve loc i ty  i n  x-direct ion,  m/sec 

= v e l o c i t y  o f  water (steam) i n  the  w e l l ,  m/sec U a ( g )  U r  
= s l i p  v e l o c i t y  = ve loc i ty  of steam - ve loc i ty  of water, 

X = coordinate  axis passing through the center  of t h e  w e l l ,  

a = s a t u r a t i o n  of steam 
Ax = i n t e r v a l  between two nodes i n  t h e  f i n i t e  d i f f e rence  scheme, m 
P 
P Q ( ~ )  = dens i ty  o f  water (steam) i n  the  w e l l ,  kg/m3 

s i d e ,  m2 
+ %,,)/2, m2 

= f i l m  h e a t  t r a n s f e r  c o e f f i c i e n t  i n  the  w e l l ,  J / s ec -m2-OK 

d sec  

upward p o s i t i v e ,  m 

= dens i ty  of  t he  steam-water m i x t u r e ,  Kg/m3 
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TABLE 1: E f fec t  of mass f l o w  r a t e  on the  b o t t o m  hole pressures 
(B.H.P.)  i n  the C e r r o  Prieto w e l l  M-90 

-~ 
PERCENTAGE MASS E'LOW RATE B.H. Po 

CHANGE ( T o n n e s / h r  1 ( K g / m  2-g) % D I F F  B.H.P. 
+20% 195.60 95.6 146 +6.5 
+15% 187.45 94 0685 +4 -8 
+lo% 179.30 92.601 4 +3.184 
+ 5% 171.15 91 1352 +1.57 

0% 163.00 89.71 22 0 - 5% 154.85 88.3324 -1 - 5 2  
-1 0% 146.70 86 996 -2.99 
-1 5% 138.55 85.9179 -4.18 
-20% 130.40 84 9890 -5.2 

TABLE 2: W e l l  head pressures and corresponding b o t t o m  hole 
pressures (B.H.P.)  i n  the C e r r o  Pr ie to  w e l l  M-90 

PERCENTAGE WELLHEAD PRESSURE B. He Po 
CHANGE ( Kg/ CIU 2- g 1 ( Kg/ an 2-g) % D I F F  B.H.P. 

+20% 47.40 112.776 +25.42 
+15% 45.43 107.047 +19.10 
+lo% 43.45 101 205 +12.66 
+ 5% 41 - 4 8  95.2621 + 6.12 

0% 39.5 89.71 22 0% - 5% 37.53 84 90 74 - 5.29 
-1 0% 35.55 80.6937 - 9.94 
-15% 33 58 77.0025 -14.00 
-20% 31.6 73.7 173 -17.63 

TABLE 3: E f f e c t  of w e l l  head en tha lpy  o n  the downhole 
pressures i n  the C e r r o  Prieto w e l l  M-90 

PERCENTAGE ENTHALPY B.H.P. 
CHANGE ( K c a l / k g )  ( Kg/ 2-g) % D I F F  B.H.P. 

+20% 387.60 77. 1392 -13.85 
77.6372 -13.31 +lo% 355.30 

+ 5% 339.15 80.455 2 -1 0.20 
0% 323.00 89.71 22 0 - 5% 306.85 1 t 1.342 +23.83 

-1 0% 290 70 131 156 +45.67 
-15% 274.55 146.203 +6 2. 252 
-20% 258.40 153 3 16 +70 09 

TABLE 4:  E f f e c t  of w e l l  ins ide  diameter on the bottom hole 
pressures in the C e r r o  Prieto- w e l l  M-90 

B.H. P. % D I F F  
( m) (m2) (m2) (Kg/m2-gauge) B.H. P. 

I N S I D E  RADIUS AREA % A R E A  CHANGE 

0.08172 2 . 0 9 8 ~ 1  0'2 0 89.7122 0 
0.06 1 . 1 3 0 9 7 ~ 1 0 ' ~  -46.1 127.071 41.17 
0.04 5 . 0 2 6 5 ~ 1 0 ' ~  -76.04 225 592 149.74 
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Figure 1. Measured and 
calculated pressures in the 
Cerro Prieto well M-90. 
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Figure 3. Effect of inside 
diameter on the calculated 
pressures for the Cerro 
Prieto well M-39. 
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Figure 2. Computed and 
measured pressures in the 
Cerro Prieto well M-91. 
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Figure 4 .  Effect of size and loca- 
tion of scaledeposits on the pres- 
sures in the well. 




