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DETERMINATION OF TDS I N  GEOTHERMAL SYSTEMS 
BY WELL-LOG ANALYSIS 

Susan L.  Brown, B r i a n  D. Gobran and S u b i r  K.  Sanyal  
S t a n f o r d  U n i v e r s i t y  Pe t ro leum Research I n s t i t u t e  

ABS TRACT 

An estimate of t h e  chemis t ry  of t h e  f l u i d  w i t h i n  a geothermal  
r e s e r v o i r  i s  r e q u i r e d  t o  e s t a b l i s h  t h e  g e o l o g i c a l  s o u r c e  and t h e  
p o s s i b l e  envi ronmenta l  impact  of t h e  f l u i d  as w e l l  as s c a l i n g  and 
c o r r o s i o n  problems which might  develop d u r i n g  p r o d u c t i o n .  While a 
d e t a i l e d  a n a l y s i s  of t h e  chemical  composi t ion  of a geothermal  f l u i d  
c a n  o n l y  b e  o b t a i n e d  from a water sample,  a n  estimate of t h e  t o t a l  
d i s s o l v e d  s o l i d s  (TDS) i n  e q u i v a l e n t  sodium c h l o r i d e  (NaC1) concent ra -  
t i o n  can b e  o b t a i n e d  from w e l l  l o g s .  TDS can  a l s o  be u s e f u l  i n  geo- 
l o g i c a l  c o r r e l a t i o n  between w e l l s .  TDS can b e  determined d i r e c t l y  
from a p u l s e d  n e u t r o n  l o g  and a p o r o s i t y  l o g ,  ( i f  t h e  t y p e  of forma- 
t i o n  i s  known), o r  from t h e  water r e s i s t i v i t y ,  %, and t h e  t e m p e r a t u r e ,  
T .  
method u s e s  a d u a l  i n d u c t i o n  focused  l o g  and i n f o r m a t i o n  from t h e  l o g  
heading .  Next,  i s  found by employing an  e l ec t r i ca l  l o g  and a 
p o r o s i t y  l o g .  The l a s t  approach u t i l i z e s  t h e  spontaneous p o t e n t i a l  l o g  
and h e a d e r  d a t a .  Examples are provided  t o  i l l u s t r a t e  t h e  t e c h n i q u e s  
d e s c r i b e d  which u t i l i z e  c a l c u l a t e d  v a l u e s  of  % t o  de te rmine  TDS. 

Three approaches  are  used t o  f i n d  R, and t h u s  TDS. The f i r s t  

INTRODUCTION 

The t o t a l  d i s s o l v e d  s o l i d s  found i n  geothermal  f l u i d s  p r o v i d e  
i m p o r t a n t  i n f o r m a t i o n .  From t h i s  i n f o r m a t i o n  p r o p e r  p r o d u c t i o n  
equipment can  b e  chosen and p o s s i b l e  problems may b e  a n t i c i p a t e d .  
TDS can b e  c a l c u l a t e d  from v a r i o u s  combinat ions of w e l l  l o g s :  
(1)  p u l s e d  n e u t r o n  l o g  and a p o r o s i t y  l o g ;  (2)  d u a l  i n d u c t i o n  focused  
l o g ;  ( 3 )  an  e l ec t r i c  l o g  and a p o r o s i t y  l o g ;  o r  ( 4 )  spontaneous 
p o t e n t i a l  l o g .  The accuracy  of each method depends on t h e  e s t i m a t e d  
c o n s t a n t s  needed i n  each a n a l y s i s  and how w e l l  t h e  assumptions under- 
l y i n g  each method are v a l i d .  

THEORY 

Using t h e  Thermal Decay T i m e  Log, t h e  f o l l o w i n g  e q u a t i o n  can  b e  
w r i t  t e n  : 

P o r o s i t y  can b e  determined from a p o r o s i t y  l o g  o r  from knowledge of t h e  
f i e l d .  
8 and 1 2  f o r  a s a n d s t o n e  dominated r e s e r v o i r ) .  
can  b e  c a l c u l a t e d  a t  a p a r t i c u l a r  depth .  

I f  t h e  l i t h o l o g y  i s  known, Cma can b e  assumed (eg.  Cma i s  between 
Using t h i s  approach C, 
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I f  ($ and C l o g  v a r y  c o n s i d e r a b l y  o v e r  t h e  zone of i n t e r e s t ,  
a more a c c u r a t e  estimate of Cma .can b e  de te rmined  by p l o t t i n g  C l o g  
v e r s u s  @. By r e a r r a n g i n g  e q u a t i o n  1, t h e  f o l l o w i n g  e q u a t i o n  i s  
o b t a i n e d  : 

T h i s  i s  t h e  e q u a t i o n  of a s t r a i g h t  l i n e  w i t h  a s l o p e  of (1 - C ) and 
i n t e r c e p t  of C 
(I$, Clog) d a t a  can b e  used t o  o b t a i n  C 

W 
( a t  + = 0 ) .  Thus, a least  s q u a r e s  l i n e a r  f i t  % t h e  

from t h e  i n t e r c e p t  and s l o p e .  m a  
W 

Once Cw i s  d e t e r m i n e d ,  TDS is  found from t h e  c o r r e l a t i o n  c h a r t  shown 
i n  F i g u r e  1 (Schlumberger ,  1979) .  This  c h a r t  shows TDS as a f u n c t i o n  of 
Cw a t  75'F and 200°F. The f o l l o w i n g  e q u a t i o n  d e s c r i b e s  t h i s  c h a r t :  

where 

a = -O.O00007(T) - 0.003 

b = 0.0016(T) + 2.881 

c = -0.0247(T) - 63.172 

and T i s  g iven  i n  d e g r e e s  F a h r e n h e i t .  

The n e x t  s e c t i o n  d e s c r i b e s  t h e  methods which c a l c u l a t e  R, and t h e n  
TDS. The f i r s t  method employs t h e  r e s i s t i v i t y  of t h e  f l u s h e d  zone,  RxO, 
and t h e  r e s i s t i v i t y  of t h e  zone of i n t e r e s t ,  R t ,  o b t a i n e d  from a d u a l  
i n d u c t i o n  focused  l o g .  The l o g  heading  p r o v i d e s  i n f o r m a t i o n  n e c e s s a r y  
t o  t h i s  a n a l y s i s ;  t h e  b i t  s i z e  used t o  d r i l l  each s e c t i o n  of t h e  w e l l ,  
t h e  t y p e  of mud b e i n g  c i r c u l a t e d ,  t h e  r e s i s t i v i t y  and t e m p e r a t u r e  of  
t h e  mud and mud f i l t r a t e  (Qf a t  Tmf and R, a t  Tm), t h e  depth  and temper- 
a t u r e  a t  bottom h o l e  (TBH), and t h e  s t a n d  o f f .  Using Arp ' s  e q u a t i o n  
(Arps,  1 9 5 3 ) ,  Gf can b e  c a l c u l a t e d  a t  any depth  g i v e n  t h e  t e m p e r a t u r e  
a t  t h a t  d e p t h :  

(4)  

Temperature l o g s  are g e n e r a l l y  run  i n  geothermal  w e l l s .  I f  a t e m p e r a t u r e  
l o g  is  a v a i l a b l e  i t  can  b e  used t o  f i n d  t h e  t e m p e r a t u r e  a t  t h e  depth  of 
i n t e r e s t .  Otherwise ,  knowledge of t h e  t e m p e r a t u r e  g r a d i e n t s  w i t h  depth  
i n  a f i e l d  can  b e  u t i l i z e d  by working up from t h e  bot tomhole tempera ture .  
It i s  known t h a t  t h e s e  t e m p e r a t u r e s  are  time-dependent,  b u t  the s m a l l  
changes o v e r  t i m e  s h o u l d  n o t  s i g n i f i c a n t l y  a f f e c t  t h e s e  r e s u l t s .  I f  t h e  
d e p t h  of i n t e r e s t  i s  i n  t h e  c o n s t a n t  t e m p e r a t u r e  zone,  i t  can  b e  used.  The 
f o r m a t i o n  r e s i s t i v i t y  f a c t o r ,  F,  i s  g i v e n  by: 
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F = -  Rt 
R 

W 
or 

xo 2 R 
F = -  

Assuming a geothermal  r e s e r v o i r  i s  100% water s a t u r a t e d ,  S 
e q u a t i o n  6 becomes: 

= I, xo 

(7)  
xo F = -  

R 

Rmf 

S o l v i n g  e q u a t i o n s  5 and 7 a n  e q u a t i o n  d e s c r i b i n g  R i s  o b t a i n e d :  
W 

Rt 
w R  Rmf 

R = -  

xo 

Using t h i s  e q u a t i o n ,  Q can b e  c a l c u l a t e d  f o r  any d e p t h .  
v a l u e s  o b t a i n e d  from a Dual I n d u c t i o n  L a t e r o l o g  l o g  are  a deep,  
medium, and s h a l l o w  r e s i s t i v i t y  (RID, Rm, Rs) f o r  each d e p t h .  A f t e r  
r e a d i n g  t h e  v a l u e s  from t h e  l o g  and c a l c u l a t i n g  t h e  r a t i o s  R /RID and 
RIrl/RID a c h a r t  s imi la r  t o  t h e  one shown i n  F i g u r e  2 (Schlumterger ,  
1979)  can b e  used t o  o b t a i n  Rxo/Rt and Rt/RID. 
and Rt can b e  c a l c u l a t e d .  
c o r r e c t i o n s  of t h e  l o g  d a t a  may b e  n e c e s s a r y .  These c o r r e c t i o n s  compen- 
sate  f o r  b o r e h o l e  e f f e c t s  and bed s i z e .  

The a c t u a l  

From t h e s e  r a t i o s ,  Rxo 
However, b e f o r e  u s i n g  t h e  c o r r e l a t i o n  c h a r t ,  

I f  a n  a n a l y s i s  i s  d e s i r e d  o v e r  a zone, a p l o t  i s  made of Rt v e r s u s  
Qo f o r  a l l  d e p t h s  i n  t h a t  zone. 
p l o t  is  o b t a i n e d  by r e a r r a n g i n g  e q u a t i o n  8: 

The e q u a t i o n  which d e s c r i b e s  t h i s  

R 

xo 
R W R = -  

A l i n e  can  be drawn through t h e  p o i n t s  which goes through t h e  o r i g i n  
and h a s  a s l o p e  of k/Qf. €$,,f i s  assumed t o  b e  c o n s t a n t ,  so  R, can  
b e  d i r e c t l y  o b t a i n e d .  

The n e x t  method used t o  f i n d  Rw u s e s  a n  e l ec t r i c  l o g  and a p o r o s i t y  
l o g .  For a g i v e n  l i t h o l o g y ,  F can  b e  c a l c u l a t e d  by: 

where t h e  c o n s t a n t s  a ,  and m y  are  l i t h o l o g y  dependent  parameters .  
can b e  o b t a i n e d  from a p o r o s i t y  l o g  and Rt from an  e l ec t r i ca l  l o g ,  R, can 
be c a l c u l a t e d  from t h e  f o l l o w i n g  e q u a t i o n ,  d e r i v e d  from e q u a t i o n s  10 and 6 .  

I f  6 
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Rt@m 
R = -  

W a 

I n  many cases, t h e  l i t h o l o g y  i s  known and t h e  a p p r o p r i a t e  v a l u e s  can 
b e  s u b s t i t u t e d  f o r  m and a. For  a compacted f o r m a t i o n  a = 1 and m = 2,  
which reduces  e q u a t i o n  11 t o :  

2 
Rw = Rt@ 

I f  t h e  l i t h o l o g y  i s  n o t  w e l l  
a n o t h e r  procedure .  Rw and F 

S u b s t i t u t i n g  e q u a t i o n  10 and 
g i v e s :  

d e f i n e d  , t h e  f o l l o w i n g  a n a l y s i s  y i e l d s  
are a l s o  r e l a t e d  by ( A r c h i e ' s  e q u a t i o n ) :  

s n = -  FRW 

Rt 

13 and t a k i n g  t h e  l o g a r i t h m  of b o t h  s i d e s  

S i n c e  S i s  assumed t o  b e  1, n l o g  Sw w i l l  b e  z e r o .  T h i s  g i v e s :  
W 

l o g  R t = - m l o g  @ + l o g  (aRw) 

Assuming t h e  l i t h o l o g y  and s a l i n i t y  a r e  c o n s t a n t  o v e r  a zone,  an  i n d i c a t i o n  
of t h e  c o n s t a n t s ,  a and m ,  can b e  found by p l o t t i n g  l o g  Rt v e r s u s  l o g  @. 
The l i n e  o b t a i n e d  w i l l  have a s l o p e  of -m and ,  a t  @ = 1, t h e  i n t e r c e p t  
w i l l  b e  l o g  (a%) .  Although t h i s  does n o t  o b t a i n  t h e  c o n s t a n t ,  a ,  d i r e c t l y ,  
i t  can  be found from a n  independent  v a l u e  of Rw. 
could  b e  used w i t h  a v e r a g e  v a l u e s  of R and @. T h i s  v a l u e  of t h e  c o n s t a n t ,  
a, can t h e n  be used f o r  f u r t h e r  c a l c u l a t i o n s .  

For  example, e q u a t i o n  12 

t 

The l a s t  method used t o  c a l c u l a t e  R, needs o n l y  t h e  Spontaneous 
P o t e n t i a l  Log. The s t a t i c  spontaneous  p o t e n t i a l  v a l u e ,  SSP ,  i s  r e l a t e d  
t o  \ by: 

where K = 6 1  + 0.133T (Schlumberger ,  1 9 7 9 ) .  Rmf can b e  found from t h e  
l o g  heading  and T can b e  o b t a i n e d  by a t e m p e r a t u r e  l o g  o r  known 
t e m p e r a t u r e  g r a d i e n t .  So, a t  any d e p t h ,  

(SSP/K) Rw = Rmf10 
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A f t e r  i s  o b t a i n e d  from any of  t h e  t h r e e  methods d e s c r i b e d  above,  
TDS can b e  found from a nomograph f o r  N a C l  s o l u t i o n s  such as t h e  one 
shown i n  F i g u r e  3 (Schlumberger,  1979) .  Knowing t h e  r e s i s t i v i t y  and 
t e m p e r a t u r e ,  TDS i n  ppm of N a C l  e q u i v a l e n t s  a t  75OF can b e  found.  T h i s  
nomograph can be  f i t t e d  by t h e  f o l l o w l n a  e q u a t i o n  ( D r c s s e r ,  1980) :  

N a C l  (@ 75'F) = l o x  (18)  eq 

where 

3.562 - l o g  (R75 - 0.0123) 
x =  

0.955 

and 

R75 - RT 75 + 6.77 
- (T + 6 * 7 7  

EXAMPLES 

Because of t h e  d i f f i c u l t y  i n  o b t a i n i n g  d a t a ,  examples are 
p r e s e n t e d  from one w e l l ,  US Geothermal A - 1 ,  i n  t h e  Geysers ,  C a l i f o r n i a  
f i e l d .  I t  was chosen because  i t  provided  t h e  b e s t  s u i t e  of l o g s .  
However, r e a s o n a b l e  zones were s t i l l  d i f f i c u l t  t o  i d e n t i f y  and t h e s e  
examples are p r i m a r i l y  f o r  i l l u s t r a t i v e  purposes .  U n f o r t u n a t e l y ,  no 
p u l s e d  n e u t r o n  l o g  w a s  r u n  i n  t h i s  w e l l .  The f i r s t  example u s e s  a 
Dual I n d u c t i o n  L a t e r o l o g ,  a Spontaneous P o t e n t i a l  l o g ,  and a Tempera- 
t u r e  l o g .  The l o g s  were r u n  i n  t h e  f a l l  of 1974. Twenty f e e t  of a 
zone w e r e  examined, beginning  a t  a depth  of 2602 f t .  From the l o g  
heading  t h e  b i t  s i z e  was 12% i n .  w i t h  a 1 . 5  i n .  s t a n d o f f .  The tempera- 
t u r e  g r a d i e n t  w a s  found from t h e  t e m p e r a t u r e  l o g  (25'F/100 f t ) a r o u n d  t h e  
depth  of i n t e r e s t  and a t  2500 f t ,  T = 225OF. T h e r e f o r e ,  a t  2600 f t ,  
T = 250°F. R, i s  1 1 . 9  S2-m a t  540F o r  2.82 a-m a t  2500F. 
6.79 0-m a t  65OF o r  1.90 0-m a t  250OF. 
no b o r e h o l e  c o r r e c t i o n  was n e c e s s a r y .  
were t a k e n  from t h e  l o g  and F i g u r e  2 ( R x o / R ,  = 20) w a s  used t o  f i n d  
t h e  r a t i o s  from which Rt and so are c a l c u l a t e d .  
d a t a  and F i g u r e  4 shows t h e  p l o t  of so v e r s u s  R,. The s l o p e  of  t h e  l i n e  
i s  &/R,f = 0.475. M u l t i p l y i n g  by &f g i v e s  R, = .9025. Using F i g u r e  3 ,  
TDS = 1840 ppm. 

R is 
Vf F o r  t h e  g i v e n  b i t  s i z e  and R, 

Values f o r  RLL8, RIM, and RID 

T a b l e  1 p r e s e n t s  t h i s  

An independent  c a l c u l a t i o n  of R, f o r  t h i s  zone can b e  done u s i n g  
t h e  Spontaneous P o t e n t i a l  curve .  Looking a t  t h e  Spontaneous P o t e n t i a l  
l o g ,  t h e  SSP v a l u e  cor responding  t o  t h i s  zone i s  -23 mV. K i s  found t o  
b e  94.25 and R, i s  c a l c u l a t e d  t o  b e  1.082. From F i g u r e  3 TDS i s  found 
t o  b e  1860 ppm. 
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The n e x t  example u s e s  a n  I n d u c t i o n - E l e c t r i c a l  l o g  and a Compensated 
Neutron l o g  r u n  i n  J a n u a r y ,  1975. 
beginning  a t  a d e p t h  of  5200 f t .  
R, f o r  each  d e p t h .  
t h i s  f i g u r e ,  i t  can  b e  s e e n  t h a t  most p o i n t s  l i e  t o g e t h e r  w i t h  several 
o t h e r s  b e i n g  w i d e l y  s c a t t e r e d .  To h e l p  draw a r e a s o n a b l e  l i n e  through 
t h e s e  p o i n t s ,  Humble's formula  c a n  b e  used s i n c e  i t  o b t a i n s  r e l i a b l e  r e s u l t s  
f o r  most sed imentary  f o r m a t i o n s .  
and a v e r a g e  v a l u e s  of 4 = 19%, and Rt = 31 SZ-my and a v e r a g e  R, of 1 . 4 1  
SZ-m i s  o b t a i n e d .  The c o n s t a n t ,  a ,  can t h e n  b e  c a l c u l a t e d  t o  b e  0.39. 
By i t e r a t i n g  on t h e  c o n s t a n t ,  a ,  and R,, a v a l u e  of 0.497 f o r  t h e  c o n s t a n t ,  
a ,  g i v e s  a c l o s e  approximat ion  t o  t h e  average  Q c a l c u l a t e d  from Humble's 
formula .  
i s  de termined .  For  t h i s  zone R, w a s  found t o  b e  1 . 5 3  R-m. No t e m p e r a t u r e  
l o g s  were a v a i l a b l e  a t  t h i s  d e p t h ,  s o  T = 2800F w a s  assumed (bot tomhole 
t e m p e r a t u r e  w a s  285OF a t  6280 f t ) .  Using F i g u r e  3 ,  TDS is  980 ppm. 

F o r t y  f e e t  of a zone w e r e  examined 
T a b l e  2 l i s ts  t h e  d a t a  and computed 

From F i g u r e  5 shows t h e  p l o t  of  l o g  4 v e r s u s  Rt. 

Using Humble's formula ,  F = 0.62/42*15 

R, is  t h e n  c a l c u l a t e d  f o r  each depth  and a n  a r i t h m e t i c  a v e r a g e  

CONCLUSIONS 

Four methods t o  f i n d  TDS from w e l l  l o g s  have been p r e s e n t e d .  I f  a 
complete  s u i t e  of l o g s  i s  a v a i l a b l e  f o r  a g i v e n  zone, several methods 
can  be employed t o  o b t a i n  TDS. By u s i n g  more than one method a n  
i n d i c a t i o n  of t h e  a c c u r a c y  may b e  de te rmined .  However, each method 
can  be used i n d e p e n d e n t l y  s o  even w i t h  a minimum amount of d a t a  a n  
estimate of TDS can b e  de te rmined .  However, t h e  methods should  b e  
done s t a t i s t i c a l l y  t o  s u c c e s s f u l l y  account  f o r  l i t h o l o g i c a l  d i f f e r e n c e s  
and bad d a t a  p o i n t s  w i t h i n  a zone. These methods are dependent  upon 
t h e  accuracy  of t h e  c o n s t a n t s  needed,  such  as t h e  r e s i s t i v i t y  of  t h e  
mud f i l t r a t e  and t h e  t e m p e r a t u r e .  Also,  t o o  l a r g e  a b o r e h o l e  ( g r e a t e r  
t h a n  1 4  i n . )  c a n  c a u s e  t h e  r e s i s t i v i t y  measurements t o  b e  i n a c c u r a t e  
because  of t h e  i n c r e a s e d  b o r e h o l e  e f f e c t s .  I n  a l l  methods,  t h e  l i t h o l o g y  
must b e  t a k e n  i n t o  account  because  i t  can  s i g n i f i c a n t l y  a l te r  t h e  l o g  
r e a d i n g s ,  e s p e c i a l l y  from t h e  p o r o s i t y  t o o l s .  
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F i g u r e  5. R versus 6 for Example 2 
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