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Introduction

The recovery of geothermal energy for power generation in~
variably involves the withdrawal of very substantial amounts of
heat/water from the subsurface. For example, the commercial
operation of a 100 MW power plant in a liquid dominated reservoir
situation will require the recovery of about 5x101®J/yr of heat
and a mass flow of water of about 5x1010kg/yr. A number of con-
spicuous phenomena are associated with this rate of production.
Usually there are changes in the subsurface temperature, a
significant rate of lowering of the local reservoir fluid pres-
sure and an associated lowering of the ground water surface in
the production region. Moreover, there are more subtle effects
such as subsidence, strain and tilt of the ground surface, changes
in the local gravity field and changes in the subsurface electrical
conductivity. All these phenomena represent responses of the
reservoir to production and convey information on the evolution
of the system. The recording of these signals can therefore be
helpful in reservoir monitoring during production. Obviously,
the evolutionary pressure phenomena are known to everyone engaged
in reservoir engineering and the recording of reservoir pressure
in available boreholes and of the groundwater level are standard
tools in production monitoring. Although ground subsidence and
changes in the gravity field have been recorded in a few cases,
the elastomechanical phenomena have not received much attention.

The purpose of this brief note is to present a preliminary
evaluation of the potential of the elastomechanical methods in
practical reservoir engineering and related areas. Assuming
simple relevant situations, the strength of the field signals
will be estimated and compared to other ground surface data such
as gravity and D.C. electrical signals that are also of interest
in reservoir monitoring. Because of greater difficulty in ob-
serving surface strain, we will limit our discussion to vertical
ground displacement and tilt signals.

Basic Relations

For the sake of brevity we will consider only liquid domina-
ted reservoirs embedded in porous/permeable half-spaces that are
ultrasimple in the sense that the formation can be taken to res-
pond in bulk as a homogeneous and isotropic Hookean solid.
Because of the two-phase situation, all elastic parameters are
composite and will consequently have to be defined properly.
Moreover, Hooke's law must be generalized to include the effects
of the pore or fracture fluid (see for example, Nur and Byerlee,
1971). 1In the present note, where only orders of magnitude are
of- interest, we will circumvent a more detailed discussion of
these aspects by assuming that the saturated formation has
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empirically well defined effective elastic parameters. Armed with
this set of quite strong but useful assumptions, we are now in the
position of considering the effects listed in the introduction
above.

Let the (x,y) plane of our coordinate system be placed in the
surface % of the half-space with the z-axis vertically down. The
general field point is P = (x,y,z). We assume that the reser-
voir is in equilibrium at the onset of production at time t = 0.
Having at a later time produced a certain mass of fluid, we can
assume that the subsurface temperature field has been perturbed
by an amount T(P) and the subsurface fluid pressure field by p(P).
Clearly, since the fluid pressure vanishes in the drained forma-
tion there is a discontinuity in the pressure field at the ground-
water level.

Let the formation displacement vector resulting from both
perturbations be W(P) = (u,v,w)(P). Moreover, let X and u be the
effective Lamé parameters, k the effective bulk modulus, v the
Poisson ratio and o the effective thermal expansivity of the fluid/
rock systems. Since the half-space is assumed to be Hookean, the
elastomechanical equations for the displacement are

PG - () V9-d = b, (1)
where I = -V2 is the Laplacian operator and g is the body force

density field resulting from the temperature and pressure pertur-
bations. The boundary condition at the ground surface I is that
of no stress. In the present case, b is a sum of two terms, one
of thermoelastic origin associated with the perturbation tempera-
ture field T and a second one that results from the perturbation
p of the pore pressure. Because of the discontinuity at the
groundwater surface, it is convenient to split the second contri-
bution into two parts, one associated with the perturbation
pressure field in the wet formation and the other one resulting
from the draining of the formations by the subsidence of the
groundwater level. We have thus

b = -vf, (2)
where
f=f_+f +f (3)
T p g

where the f's are scalars and the subscript T refers to temperature,
p to fluid pressure, and g to groundwater level.

On the basis of the theory of thermoelasticity (Boley and
Weiner, 1960) we obtain the first factor

£, = okT (4)
There is some uncertainty as to the proper form of f;. This fac~
tor depends quite heavily on pore/fracture geometry and connec-
tivity. For the present purpose we will adapt the classical
procedure of Biot (1941) by assuming
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fp op (3
where 6 is a positive dimenionless factor quantizing the effects
of the pore pressure p on the rock matrix. Clearly, this factor
is less than unity, but actual values may vary within rather wide
limits. Few experimental results are available. We can only
quote elastomechanical data collected by Rice and Cleary (1976)
from which values of 6 = 0.2 to 0.8 can be inferred. The lower
values apply to samples of marble and granites whereas the higher
values are obtained for sandstones. Along the same lines the
third factor on the right of (3) can also be estimated on the
basis of (5) where p is then the negative hydrostatic pore pressure
in the drained rock above the groundwater level. Given p(P) gnd
T(P), the problem of solving (1) for the displacement vector u(P)
is now well defined.

A simple procedure of solving (1) at the above defined con-
ditions has been presented by Bodvarsson (1976). We will refrain
from discussing details of the method and quote only the result
of main interest, that is, the expression for the vertical dis-
placement component w at the ground surface . Let S = (x,y,0)
be a field point on I and Q@ = (x',y',z') be the source point;

then
w(s) = [a,(5,0£Qdv, (6)

where dvg = dx'dy'dz' and gw(S,P) is the appropriate Green's
function 3

8, (5>Q) = [(1-v)/m(x2m)]z' /gy (7)
where
roq = xx P+ oyt 4 @)’ ()

is the distagce from Q to S. The tilt vector g(S) is obtained

from (6) by t = ~Vpw where V4 = (9x,9x,0), the horizontal gradi-
ent in Z. This vector can thus be expressed in the same form as
(6) by

t(s) = [B(s,Q£dv 9

Q

here h = -V
where h = -V, g.

Simple Situations

To present an overview of relevant field amplitudes, we will
consider ground surface displacement and tilt fields generated
by temperature or pressure perturbations within bounded compact
source regions. Moreover, let the average depth of the source
region be rather larger than its greatest linear dimension. Ob-
viously, this situation is best portrayed by a spherically
symmetric source region of radius R placed such that the depth
d of the center is a few times larger than R. In the case of the
first two factors in (3) the integrals in (6) and (9) can then
be quite well approximated by simple expressions. With regard
to the ground surface displacement we are most interested in the

maximum value w, that is obtained at the point 0 vertically above
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the center of the region. Assuming the Poisson relation A = yu
that applies quite well to common rock, and taking that z'ﬁrOQﬁd,
we obtain on the basis of (6) and (7) that

v = (15/36m)av/d% = 0.134v/d> (10)

where

AV = (1/K) ffva (11)

is the total volume increment. In the particular case that f is
homogeneous over a spherical region of radius R equation (10)
leads to 3 9

wo = (5£/9k)R7/d (12)

A little algebra reveals that the maximum ground surface tilt
is obtained at a distance (d/2) from the center 0 and amounts to

i

t = 0.1lav/a> (13)
or in the spherical case
3,,3
= (0.48f/k)R7/d (14)

As already emphasized these expressions hold for the tem-
perature znd pressure perturbations involving fr and fp in
equation (3). Since the third factor fg results from the low-
ering of the groundwater level the source region for this effect
is quite different from the compact region assumed above in the
case of fT and fp. In fact, fg is generated by an unloading of
the half-space because of the drainage of the formations above
the groundwater level. This results in two effects. First, a
contraction of the drained formation as indicated directly by
equations (3) and (5). Second, the unloading results in an
upward displacement of the ground surface due to elastic rebound
of the entire half-space. The second effect can be estimated on
the basis of the Bussinesq formula for the surface loaded half-
‘space (Love, 1927). Although analytical expressions are available
for the form of the drained volume (Bodvarsson, 1977), we will
here assume that to the first approximation, the form is that of
a disk of thickness h and a diameter D. Using (3), (5) and the
Bussingesq formula in combination with Poisson's relations we ob-
tain then upon some algebra the maximum vertical ground surface
displacement that occurs at the center of the disk

w = ¢goh[(6h/5u) - (3D/8u)] (15)

where ¢ is the porosity, g the accelation of gravity and p the
density of the fluid. It is important to emphasize again that
this result is based on the assumption of a compact homogeneous/
isotropic half-space. The secend term in (15) will dominate under
such circumstances. However, the presence of unconsolidated non-
Hookean surface layers would invalidate the first term in (15) and

generally lead to very much greater displacements as observed in




-342-
some areas (see for example Hatton, 1970).

An estimate of the maximum ground surface tilt associated with
the second term in (15) is given by

L = -3¢gph/bu (16)

Gravity- and D.C. Conduction Changes

Assuming the same situation as above, the lowering of the
groundwater level leads to a reduced g-field at the center of the
disk of.

Ag = -2my¢ph (17)

where y = 6.67x10_llSI is the gravitation constant.

Referring again to a temperature perturbation T(P) within
a compact source region, we can assume that the electrical
conductivity within the region is increased by oj(P) over the
homogeneous half-space that has an uniform conductivity oco. More-
over, let there be an impressed horizontal unidirectional, uniform
electrical field E, that is scattered by the conductivity
inhomogeneity. In the particular case that the source
region is homogeneous spherical of radius R with the center at a
depth d, the horizontal electrical field at the ground surface
right above the center is given approximately by (Grant and West,
1965)

E = Eq(1-a) (18)

where 3 3
a = [201/(ol+300)]R /d (19)

Discussion

Continued production of the magnitude referred to in the
introduction may lead to average reservoir source region pres-
sure declines of the order a few 10°Pa. The groundwater level
may be lowered by a few tens of meters and there may be a tem-
perature decline of the order of a few tens of centigrades.
Focusing our attention on the particular case of T = 50°C, p =
5x10°Pa and assuming k = 2x1010Pa and 6 = 0.4, we find that
fr = 100fp. Clearly, the thermoelastic effects tend to dominate
the pressure effects and thereby also the effects of the lowered
groundwater level. Moreover, in conjunction with T = 50°C let
@ = 2x10-5/°C, R = 300 m and d = 103m. Equation (10) and (13)
give then the values wyp = 15 mm and tp = 12 prad. Referring to
the same situation, let o] = -0.20, and equation (19) gives
a = -0.004. Assuming ¢ = 0.05, h = 50 m, p = 10%kg/m3, we obtain
from (17) Ag = 107°% m/s? = 0.1 mgal.

Vertical ground displacement can be monitored with a preci-
sion of about one mm, surface tilt with a few 10~} prad, gravity
with about 10 pgal and D.C. conduction in producing geothermal ar-
eas with no better precision than perhaps one part in 100. Although

the above numerical data are grossly inadequate, the results,
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nevertheless, tend to indicate that in the absence of adequate bore-
hole data, tilt observations at properly designed solid rock surface
stations evidently offer the most appropriate method of monitoring
large scale reservoir temperature evolutionary processes taking place
at moderate depths.
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