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Introduction 

The recovery of geothermal energy for power generation in- 
variably involves the withdrawal of very substantial amounts of 
heat/water from the subsurface. For example, the commercial 
operation of a 100 MW power plant in a liquid dominated reservoir 
situation will require the recovery of about 5x10l6J/yr of heat 
and a mass flow of water of about 5x1010kg/yr. 
spicuous phenomena are associated with this rate of production. 
Usually there are changes in the subsurface temperature, a 
significant rate of lowering of the local reservoir fluid pres- 
sure and an associated lowering of the ground water surface in 
the production region. Moreover, there are more subtle effects 
such as subsidence, strain and tilt of the ground surface, changes 
in the local gravity field and changes in the subsurface electrical 
conductivity. All these phenomena represent responses of the 
reservoir to production and convey information on the evolution 
of the system. The recording of these signals can therefore be 
helpful in reservoir monitoring during production. Obviously, 
the evolutionary pressure phenomena are known to everyone engaged 
in reservoir engineering and the recording of reservoir pressure 
in available boreholes and of the groundwater level are standard 
tools in production monitoring. Although ground subsidence and 
changes in the gravity field have been recorded in a few cases, 
the elastomechanical phenomena have not received much attention. 

A number of con- 

The purpose of this brief note is to present a preliminary 
evaluation of the potential of the elastomechanical methods in 
practical reservoir engineering and related areas. Assuming 
simple relevant situations, the strength of the field signals 
will be estimated and compared to other ground surface data such 
as gravity and D.C. electrical signals that. are also of interest 
in reservoir monitoring. Because of greater difficulty in ob- 
serving surface strain, we will limit our discussion to vertical 
ground displacement and tilt signals. 

Basic Relations 

For the sake of brevity we will consider only liquid domina- 
ted reservoirs embedded in porous/permeable half-spaces that are 
ultrasimple in the sense that the formation can be taken to res- 
pond in bulk as a homogeneous and isotropic Hookean solid. 
Because of the two-phase situation, all elastic parameters are 
composite and will consequently have to be defined properly. 
Moreover, Hooke's law must be generalized to include the effects 
of the pore or fracture fluid (see for example, Nur and Byerlee, 
1971). 
of.interest, we will circumvent a more detailed discussion of 
these aspects by assuming that the saturated formation has 

In the present note, where only orders of magnitude are 
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empirically well defined effective elastic parameters. Armed with 
this set of quite strong but useful assumptions, we are now in the 
position of considering the effects listed in the introduction 
above. 

Let the (x,y) plane of our coordinate system be placed in the 
surface C of the half-space with the z-axis vertically down. The 
general field point is P = (x,y,z). We assume that the reser- 
voir is in equilibrium at the onset of production at time t = 0. 
Having at a later time produced a certain mass of fluid, we can 
assume that the subsurface temperature field has been perturbed 
by an amount T ( P )  and the subsurface fluid pressure field by p(P). 
Clearly, since the fluid pressure vanishes in the drained forma- 
tion there is a discontinuity in the pressure field at the ground- 
water level. 

Let the formation displacement vector resulting from both 
perturbations be z(P) = (u,v,w)(P). Moreover, let X and 1-1 be the 
effective Lam& parameters,k the effective bulk modulus, v the 
Poisson ratio and a the effective thermal expansivity of the fluid/ 
rock systems. Since the half-space is assumed to be Hookean, the 
elastomechanical equations for the displacement are 

-+ - + +  
~ I I u  - (h+p)VV*u = b, 

-+ 
where II = - V 2  is the Laplacian operator and b is the body force 
density field resulting from the temperature and pressure pertur- 
bations. The boundary condition at&he ground surface C is that 
of no stress. In the present case, b is a sum of two terms, one 
of thermoelastic origin associated with the perturbation tempera- 
ture field T and a second one that results from the perturbation 
p of the pore pressure. Because of the discontinuity at the 
groundwater surface, it is convenient to split the second contri- 
bution into two parts, one associated with the perturbation 
pressure field in the wet formation and the other one resulting 
from the draining of the formations by the subsidence of the 
groundwater level. We have thus 

where 
( 2 )  

f = f  + f  + f  (3 )  

-+ 
b = -Vf, 

T P  g 
where the f's are scalars and the subscript T refers to temperature, 
p to fluid pressure, and g to groundwater level. 

On the basis of the theory of thermoelasticity (Boley and 
Weiner, 1960) we obtain the first factor 

f = akT ( 4 )  T 

There is some uncertainty as to the proper form of fp. 
tor depends quite heavily on pore/fracture geometry and connec- 
tivity. For the present purpose we will adapt the classical 
procedure of Biot (1941) by assuming 

This fac- 
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f = op ( 5 )  P 

where 0 i s  a p o s i t i v e  d imenionless  f a c t o r  q u a n t i z i n g  t h e  e f f e c t s  
of t h e  p o r e  p r e s s u r e  p on t h e  r o c k  matrix.  C l e a r l y ,  t h i s  f a c t o r  
i s  less t h a n  u n i t y ,  b u t  a c t u a l  v a l u e s  may v a r y  w i t h i n  r a t h e r  wide 
l i m i t s .  Few e x p e r i m e n t a l  r e s u l t s  are a v a i l a b l e .  We can o n l y  
q u o t e  e l a s t o m e c h a n i c a l  d a t a  c o l l e c t e d  by R i c e  and Cleary  (1976)  
from which v a l u e s  of 8 = 0.2 t o  0.8 can  b e  i n f e r r e d .  The lower 
v a l u e s  a p p l y  t o  samples of marble  and g r a n i t e s  whereas  t h e  h i g h e r  
v a l u e s  are o b t a i n e d  f o r  s a n d s t o n e s .  Along t h e  s a m e  l i n e s  t h e  
t h i r d  f a c t o r  on  t h e  r i g h t  of (3) can  a l s o  b e  e s t i m a t e d  on t h e  
b a s i s  of (5) where p i s  t h e n  t h e  n e g a t i v e  h y d r o s t a t i c  p o r e  p r e s s u r e  
i n  t h e  d r a i n e d  r o c k  above t h e  groundwater level .  
T(P) ,  t h e  problem of s o l v i n g  (1) f o r  t h e  d isp lacement  v e c t o r  u(P)  
i s  now w e l l  d e f i n e d .  

Given p(P)  5nd 

A s i m p l e  procedure  of  s o l v i n g  (1) a t  t h e  above d e f i n e d  con- 
d i t i o n s  h a s  been p r e s e n t e d  by Bodvarsson (1976).  W e  w i l l  r e f r a i n  
from d i s c u s s i n g  d e t a i l s  of t h e  method and q u o t e  o n l y  t h e  r e s u l t  
of main i n t e r e s t ,  t h a t  i s ,  t h e  e x p r e s s i o n  f o r  t h e  ver t ica l  d i s -  
placement  component w a t  t h e  ground s u r f a c e  1. L e t  S = ( x , y , o )  
b e  a f i e l d  p o i n t  on C and Q = ( x ' , y ' , z ' )  b e  t h e  s o u r c e  p o i n t ;  
t h e n  

W ( s )  = /gw(S,Q)f(Q)dVQ (6)  

where dvQ = dx 'dy 'dz '  and gw(S,P) i s  t h e  a p p r o p r i a t e  Green ' s  
f u n c t i o n  

(7)  

( 8 )  

3 
gw(S,Q) = [ ( l - ~ > / n ( X + 2 u ) l z ' / r s Q  , 

2 2 2 
= (x-x')  + (y-y')  + ( z ' )  2 where 

+ 
rSQ 

i s  t h e  d i s t a y e  from Q t o  S .  
from (6)  by t = -Vhw where Vh = ( 2 x , a x , o ) ,  t h e  h o r i z o n t a l  g r a d i -  
e n t  i n  1. T h i s  v e c t o r  can t h u s  b e  expressed  i n  t h e  same form as 

The t i l t  v e c t o r  t ( S )  i s  o b t a i n e d  

-+ 
where h = -Vhg. 

Simple S i t u a t i o n s  

To p r e s e n t  a n  overview of r e l e v a n t  f i e l d  a m p l i t u d e s ,  w e  w i l l  
c o n s i d e r  ground s u r f a c e  d i s p l a c e m e n t  and t i l t  f i e l d s  g e n e r a t e d  
by t e m p e r a t u r e  o r  p r e s s u r e  p e r t u r b a t i o n s  w i t h i n  bounded compact 
s o u r c e  r e g i o n s .  Moreover, l e t  t h e  a v e r a g e  d e p t h  of t h e  s o u r c e  
r e g i o n  b e  r a t h e r  l a r g e r  t h a n  i t s  g r e a t e s t  l i n e a r  dimension.  
v i o u s l y ,  t h i s  s i t u a t i o n  i s  b e s t  p o r t r a y e d  by a s p h e r i c a l l y  
symmetric s o u r c e  r e g i o n  of r a d i u s  R p l a c e d  such  t h a t  t h e  d e p t h  
d of t h e  c e n t e r  is  a few times l a r g e r  t h a n  R. I n  t h e  case of t h e  
f i r s t  two f a c t o r s  i n  ( 3 )  t h e  i n t e g r a l s  i n  (6) and (9)  can  t h e n  
b e  q u i t e  w e l l  approximated by s i m p l e  e x p r e s s i o n s .  With r e g a r d  
t o  t h e  ground s u r f a c e  d isp lacement  w e  are most i n t e r e s t e d  i n  t h e  
maximum v a l u e  wm t h a t  i s  o b t a i n e d  a t  t h e  p o i n t  0 v e r t i c a l l y  above 

Ob- 
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the center of the region. 
that applies quite well to common rock, and taking that z’=rOQ”d, 
we obtain on the basis of (6) and (7) that 

Assuming the Poisson relation X = 1.1 

(10) w = (15/36r)AV/d2 = 0.13AV/d 2 m 

where 
AV = ( l / k )  /fdVQ 

is the total volume increment. In the particular case that f is 
homogeneous over a spherical region of radius R equation (10) 
leads to 

( 1 2 )  
3 2  wm = (5f/9k)R /d 

A little algebra reveals that the maximum ground surface tilt 
is obtained at a distance (d/2) from the center 0 and amounts to 

(13) 
3 t = O.llAV/d m 

or in the spherical case 

(14) 
3 3  t = (0.48f/k)R /d m 

A s  already emphasized these expressions hold for the tem- 

Since the third factor fg results from the low- 
perature snd pressure perturbations involving fT and fp in 
equation (3). 
ering of the groundwater level the source region for this effect 
is quite different from the compact region assumed above in the 
case of fT and fp. In fact, fg is generated by an unloading of 
the half-space because of the drainage of the formations above 
the groundwater level. This results in two effects. First, a 
contraction of the drained formation as indicated directly by 
equations (3) and (5). Second, the unloading results in an 
upward displacement of the ground surface due to elastic rebound 
of the entire half-space. The second effect can be estimated on 
the basis of the Bussinesq formula for the surface loaded half- 
space (Love, 1927). Although analytical expressions are available 
for the form of the drained volume (Bodvarsson, 1977), we will 
here assume that to the first approximation, the form is that of 
a disk of thickness h and a diameter D. Using (3), (5) and the 
Bussingesq formula in combination with Poisson’s relations we ob- 
tain then upon some algebra the maximum vertical ground surface 
displacement that occurs at the center of the disk 

where @ is the porosity, g the accelation of gravity and p the 
density of the fluid. It is important to emphasize again that 
this result is based on the assumption of a compact homogeneous/ 
isotropic half-space. The seccnd term in (15) will dominate under 
such circumstances. However, the presence of unconsolidated non- 
Hookean surface layers would invalidate the first term in (15) and 
generally lead to very much greater displacements as observed in 
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some areas ( s e e  f o r  example Hat ton ,  1970).  

An estimate of t h e  maximum ground s u r f a c e  t i l t  a s s o c i a t e d  w i t h  
t h e  second term i n  (15) is  g iven  by 

Gravity.  and D.C .  Conduction Changes 

Assuming t h e  same s i t u a t i o n  as above, t h e  lowering of t h e  
groundwater l e v e l  l e a d s  t o  a reduced g - f i e ld  a t  t h e  c e n t e r  of t h e  
d i s k  of 

Ag = - 2 ~ y $ p h  (17) 

-11 where y = 6 . 6 7 ~ 1 0  S I  is  t h e  g r a v i t a t i o n  cons t an t .  

Re fe r r ing  a g a i n  t o  a temperature  p e r t u r b a t i o n  T(P)  w i t h i n  
a compact source  r eg ion ,  w e  can assume t h a t  t h e  e lec t r ica l  
conduc t iv i ty  w i t h i n  t h e  r eg ion  i s  increased  by a l ( P )  over  t h e  
homogeneous ha l f - space  t h a t  has  an  uniform conduc t iv i ty  00 .  More- 
over ,  l e t  t h e r e  be  a n  impressed h o r i z o n t a l  u n i d i r e c t i o n a l ,  uniform 
e lec t r ica l  f i e l d  Eo t h a t  i s  s c a t t e r e d  by t h e  conduc t iv i ty  
inhomogeneity. I n  the  p a r t i c u l a r  case t h a t  t h e  source  
r e g i o n  i s  homogeneous s p h e r i c a l  of r a d i u s  R w i t h  t h e  c e n t e r  a t  a 
depth  d ,  t h e  h o r i z o n t a l  e l e c t r i c a l  f i e l d  a t  t h e  ground s u r f a c e  
r i g h t  above t h e  c e n t e r  is  g iven  approximately by (Grant and West, 
1965) 

where 
E = Eo(l-a) (18) 

(19) 
3 3  a = [2al/(ul+3ao)]R /d 

Discuss ion  

Continued product ion  of t h e  magnitude r e f e r r e d  t o  i n  t h e  
i n t r o d u c t i o n  may l ead  t o  average  r e s e r v o i r  source  r eg ion  pres-  
s u r e  d e c l i n e s  of t h e  o r d e r  a few 105Pa. The groundwater l e v e l  
may be , lowered  by a few t e n s  of meters and t h e r e  may be  a t e m -  
p e r a t u r e  d e c l i n e  of t h e  o r d e r  of a few t e n s  of c e n t i g r a d e s .  
Focusing our a t t e n t i o n  on t h e  p a r t i c u l a r  case of T = 5OoC, p = 
5x105Pa and assuming k = 2x1010Pa and 8 = 0.4, w e  f i n d  t h a t  
f T  = 100fp. C l e a r l y ,  t h e  the rmoe las t i c  e f f e c t s  tend t o  dominate 
t h e  p r e s s u r e  e f f e c t s  and thereby a l s o  t h e  e f f e c t s  of t h e  lowered 
groundwater l e v e l .  Moreover, i n  conjunct ion  w i t h  T = 50°C l e t  
a = ~ X ~ O - ~ / " C ,  R = 300 m and d = lo3,. Equation ( l o )  and (13) 
g i v e  then  t h e  v a l u e s  wm = 15  rnm and t m  = 1 2  prad.  Re fe r r ing  t o  
t h e  same s i t u a t i o n ,  l e t  01 = -0.20, and equat ion  (19) g i v e s  
a = -0.004. 
from (17)  Ag = m / s 2  = 0 . 1  mgal. 

Assuming $ = 0.05, h = 50 m ,  p = 103kg/m3, w e  o b t a i n  

V e r t i c a l  ground displacement  can be  monitored w i t h  a p r e c i -  
s i o n  of about  one mm, s u r f a c e  t i l t  wi th  a few 10-I prad,  g r a v i t y  
w i t h  about  10 pga l  and D.C .  conduct ion i n  producing geothermal ar- 
eas w i t h  no b e t t e r  p r e c i s i o n  than perhaps one p a r t  i n  100. 
t h e  above numerical  d a t a  are g r o s s l y  inadequate ,  t h e  r e s u l t s ,  

Although 
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nevertheless, tend to indicate that in the absence of adequate bore- 
hole data, tilt observations at properly designed solid rock surface 
stations evidently offer the most appropriate method of monitoring 
large scale reservoir temperature evolutionary processes taking place 
at moderate depths. 
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