
AN IMPROVED APPROACH TO ESTIMATING bi 
TRUE RESERVOIR TEMPERATURE FROM 

TRANSIENT TEMPERATURE DATA 

. .  

I . .  

Brian Roux, A t l a n t i c  Richfield Co., . S. K. Sanyal and Susan Brown, Stanford University ,* 

INTRODUCTION 

For t h e  purpose of evaluating geothermal reservoi rs ,  t h e  static formation 
temperature -should be es tab l i shed  as accura te ly  as possible. A knowledge 
of the t rue ,  s ta t ic  formation temperature is  required i n  estimating the  hea t  
content of geothermal reservoi rs .  The i n t e r p r e t a t i o n  of e l e c t r i c  logs requi res  
accurate formation resistivities, which are dependent on temperature. Reliable 
s ta t ic  temperature is  important i n  designing completion programs and es tab l i sh-  
ing  geothermal gradients.  

Unfortunately, t h e  temperatures recorded during logging' operations are 
usua l ly  lower than t h e  s ta t ic  temperature. 
t o  the  cooling e f f e c t  of t h e  mud during c i rcu la t ion .  
s tops ,  t he  temperature around t h e  wellbore begins t o  bui ld  up. 
pera ture  recovery i n  a new w e l l  may take  anywhere from a few hours t o  a few 
months, depending on t h e  f o p a t i o n  and w e l l  characteristics and the  mud cir- 
cu la t ing  time. 
s i z a b l e  increases i n  d r i l l i n g  cos t s ;  hence a quick and easy method is needed 
f o r  ca lcu la t ing  s t a t i c  temperature using ea r ly  shut-in da ta ,  

Following t h e  p r a c t i c e  of pressure  buildup analysis f o r  w e l l s ,  t h e  common 
p rac t i ce  i n  t h e  goethermal indus t ry  i s  t o  use Horner p l o t s  f o r  estimating 
s t a t i c  reservoi r  temperature from temperature buildup data. In t h i s  method, 
t he  buildup temperature is p l s t t e d  aga ins t  t he  logarithm of dimensionless 
Horner time, (t + At)/At,where t is the c i r cu la t ion  time before shut-in and 
A t  is t h e  build& t i m e ,  e dataPpoints are then f i t t e d  t o  a s t r a i g h t  l i n e ,  
which is extrapolated t f i n i t e  A t ,  i.e., a dimensionless Horner t i m e  of 
unity. The extrapolated temper re corresponding t o  t h i s  po in t  is taken as 
the  true reservoi r  temperature, is method is  based on t h e  " l ine  source 
solution" t o  t h e  d i f  f u s i v i t y  eq on describing the  r a d i a l  conductive hea t  

These low temperatures r e s u l t  due 

Complete tem- 
As soon as c i r cu la t ion  

A long w a i t  f o r  complete temperature recovery would cause 

n f i n i t e  system with a v e r t i c a l  l i n e  s ink  withdrawing hea t  a t  a 

Unfortunately, as w i l l  be  shown later, t h i s  conventional Horner p l o t  
approach y i e l d s  values of apparent s ta t ic  temperature t h a t  are lower than 
the  true re se rvo i r  temperature. 
an improved approach so t h a t  t h e  estimated static temperature w i l l  be c lose r  
t o  the  t r u e  r e se rvo i r  temperature than is  poss ib le  from the  conventional 
Horner plot.  

The goa l  of t h i s  inves t iga t ion  was t o  develop 

. _  
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THEORY: 
the system: 

This paper makes the  following simplifying assumptions regarding 

1. 
2. 
3. 

4. 

5. 
6 .  
7. 

8. 

Cylindrical  symmetry ex i s t s ,  with the  wellbore as the  axis.  
Heat flow is due t o  conduction only. 
Thermal properties of the  formation do not vary with tempera- 
ture.  
The formation can be t rea ted  as though i t  is  r ad ia l ly  i n f i n i t e  
and homogeneous with regard t o  heat  flow. 
No v e r t i c a l  heat flow i n  the  formation. 

- 
-- 

The presence of a mud cake is  disregarded. 
The temperature a t  the formation face is instantaneously 
dropped to  some value and is  maintained a t  t h i s  value through- 
out  c i rculat ion.  
After mud c i rcu la t ion  ceases, the  cumulative r a d i a l  heat flow 
a t  the wellbore is negligible.  

A few words should be mentioned t o  j u s t i f y  the  l as t  two assumptions. 
The assumption 7 implies constant mud temperature which is a l so  taken t o  
be equal t o  t h e  temperature a t  the  formation f a f e  during circulat ion.  To 
simplify the complex problem, Edwardson, e t  al. assumed t h a t  t he  d i f f e r -  
ence between the  s ta t ic  formation temperature and the mud temperature re- 
mained constant during the  c i r cu la t ion  period. This is not s t r i c t l y  t r u e  
since.the mud which rises in the annulus becomes h o t t e r  as the  w e l l  is 
d r i l l ed  deeper. The change i n  gud tempeGature in a petroleum w e l l  a t  any 
depth fs of the  order of 1 t o  2 F/ 100 f t .  d r i l l ed .  
e t  a l .  
temperature as being constant and numerically solved the  equation t h a t  des- 
cr ibes  the temperature buildug in a w e l l  f o r  a value of the  dimensionless 
producing time t (= K t  / c  pr ) equal t o  0.4t . f .  

Figure 1 shgws a tgpigal  temperature proPile f o r  a geothermal w e l l  
(from Imperial Valley, California) characterized by a f i n i t e  linear gradi- 
ent i n  the  conductive zone above the  geothermal reservoir ,  and a prac t i ca l ly  
zero gradient due t o  convection within the  reservoir.  Hence, the  mud tem- 
perature w i l l  increase rapidly as the  w e l l  is d r i l l e d  deeper i n  the  region 
above where the  sharper break occurs i n  the  geothermal gradient. 
zone below t h e  break point the mud temperature remains r e l a t i v e l y  constant 
as the  depth of the w e l l  is increased. Tlius, the  mud temperature w i l l  not 
increase but w i l l  s t ay  r e l a t ive ly  constant as d r i l l i n g  proceeds through 
the geothermal reservoir.  

After s i r cu la t ion  ends, heat  
w i l l  still  be flowing i n t o  the  wellbore. Raymond s t a t ed  t h a t  the  amount 
of f l u i d  i n  the  wellbore is  extremely small compared with t h e  volume of 
formation whose temperature has been affected by circulat ion.  Hence, t he  

. 
1 

However, Edwardson, 
considered t h i s  change slow enough t o  allow them t o  take the  mud 

D W 

In t he  

Now l e t  us  look a t  the  assumption 8. 

* .  conduction of hea i n t o  the  wellbore can be  neglected. An analysis  of t he  5 system by Raymond 
negligible. 
i n  and out of t he  hole has no e f f e c t  on the  temperature buildup. 

around a w e l l  as a function of r a d i a l  dis tance and time is given by the  

a l so  shows t h a t  f r e e  convection within the wellbore is 
It is assumed t h a t  the  running of logging too ls  repeatedly 

With these assumptions the  t rans ien t  temperature i n  the  formation 

t 
1 

m 

c 

‘u * Nomenclature a t  the  end of the  paper 



-375- 

following partial differential equation in terms of dimensionless variables: 

a2TD 3 - 
2 + f  

arD 

With Initial Condition: TD(rD,O) = 0 

Inner Boundary Condition: TD(l,tD) = 1 

and Outer Boundary Condition: lim TD(rD,tD) = 0 

r + =  D 
The dimensionless quantities in the above equation are defined as: 

A =: 
TD Ti - Twf 

2 
P W  

5 = Kt/C pr 

rD = r/rw 

(3) 

(4) 

(7) 

Ehlig-Economides3 solved the problem of pressure buildup for a well 
produced at constant pressure, 
buildup described in this report except that Ehlig-Economides 
deals with pressure instead of temperature. 
perature buildup is given by the following equation in dimensionless form3: 

This is the same problem as typerature 
solution 

The general solution for tem- 

A computer program was developed by Ehlig-Econ~mides~ to integrate 
numerically Eq. 8. This program was modified and used to develop a family 
of dimensionless Horner-type temperature buildup curves shown in Figure 2. 
These curves describe the dimensionless temperature rise (T 
bore as a function of dimensionless producing time, tpp' is defined as: 

DWS ' . less Homer time. Dimensionless temperature buildup, 

) at the well- 
anpfhe dimension- 

where < is an average heat flow rate at the wellbore during circulation. 
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Figure 3 shows a t y p i c a l  Horner-type curve considered in t h i s  study L, 
f o r  a T It can be seen from Fig. 3 t h a t  i f  a Horner-type ana lys i s  
is used w i t h  e a r l y  shut-in da ta ,  t h e  temperature ex t rapola ted  f o r  a dimen- 
s ion le s s  Horner t i m e  equal t o  one w i l l  always y i e l d  valEes of s ta t ic  tem- 
pera ture  lower than they a c t u a l l y  are. 
t o  poin t  t h i s  o u t  i n  t h e  l i t e r a t u r e .  By looking a t  Figure 5 i t  can be  seen 
t h a t  using ve ry  long shut-in da t a  w i l l  y i e ld  t h e  proper s t a t i c  temperature. 
A long shut-in t'ipe required t o  ob ta in  such da ta  ties up expensive r i g  t i m e .  

It is widely be l ieved  t h a t  s t r a i g h t  l i n e s  can be drawn through-the 
da ta  when us ing  t h e  conventional Horner technique. 
p l o t s  are usua l ly  taken over a s h o r t  period of shut-in t i m e .  
of ca l cu la t ing  s ta t ic  formation temperature from s h o r t  t i m e  shut-in da t a  
has been approached i n  t h i s  r epor t  i n  t h e  following manner. 

(Fig. 2) is a funct ion  of both dimensionless producing ( i n  t h i s  
and dimension- case, producing and c i r c u l a t i n g  are synonymous) t i m e ,  t D, 

less Horner time, (t + A t ) / A t .  
time, w e  can approxigate TDws as being a s t r a i g h t  l i n e  on semi-log coordinates 
(see Fig. 3). The equation of t h i s  l i n e  is: 

= 10. 
PD * 

Dowdle and Cobb were t h e  f i r s t  ones 

The d a t a  used i n  these  
The p r o b l b  

TDWS 

Over shor t  ranges of d!hnensionless Homer 

(t ) + b ( t  1 Log (t + A t ) / A t  ( 10) 

is defined as: . PD 

TDws = T ~ s  pD PD t, 1 
where T* (t ) is  t h e  i n t e r c e p t  Horner time o f  u n i t y  and b ( t  ) is t h e  

s lope  o P f h e P f i n e .  T&?S 

corresponds t o  a dimensionless temperature drop between t h e  t r u e  

I 
% ; i k m p e r a t u r e  (T i ) and a f a l s e  i n i t i a l  temperature (TGs) obtained by 
ex t rapola t ion  of a conventional Horner l i n e .  

w e  ge t  
Csmbining Equations (9), (10) and (11) and manipulating the a lgebra  

where 

and m is the s l o p e  of t h e  conventional Horner s t r a i g h t  l i n e .  
shows t h a t  t h e  term 

Equation (12) 
TDB(t D) is t h e  dimensionless co r rec t ion  f a c t o r  f o r  

PD' 
~ temperature buildup a t  a d%nensionless time t 

F -. 
i APPLICATION 
2 

TDB(t ) were determined by least-square f i t t i n g  TDWs curves i n  Fig. 2 
i n  ranges 8f (t + A t ) / A t  where i t  w a s  f e l t  t h a t  t h e  c u m e  could be approxi- 
mated as a s t ra?ght  l fne .  
t o  2, 2 t o  5 ,  and 5 t o  10. 
slope, b ( t  ) t o  g ive  TDB. This procedure w a s  car@ei o u t  f o r  a number of 

These ranges of (t + A t ) / A t  w e r e  chosen t o  be 1.25 
The i n t e r c e p t ,  Tgs ( t  ) w a s  divided by t h e  

PD 

c 
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t ' 6 .  Then a smooth curve w a s  f i t t e d  through t h e  points.  The r e s u l t  
igDa curve t h a t  describes T and a range of as a function of both t 
(t + A t )  / A t .  See Figures 4 t irough 6. PD 

P 
The curves n Figure 2 were evaluated using an "average" hea t  flow 

rate, q. Horner suggested t h a t  t h e  last es tab l i shed  flow rate q ( t  ), 
and a corrected flow t i m e ,  t* = Q ( t  ) / q ( t  1, should be used i n  t h e  bressure  
buildup anaysis; Since bothPQ(t ) h d  q(g 
impossible, to  determine €or thePtemperatufe build-up case, an average 
flow rate-(<) was used so t h a t  t h e  t r u e  producing time, t , could be used 
i n  the  analysis,-and the  conventional Horner p l o t ' s  assumFtion of constant 
hea t  flow rate (9) cay be  s a t i s f i e d .  

s t a t e d  t h a t  using t h e  average rate p r i o r  t o  shut-in 
was  j u s t i f i a b l e  i f  v a r i a t i o n  i n  qD is s m a l l  f o r  O < t  <t . Ehlig-Economides 
a l s o  confirmed t h a t  t h i s  method was  co r rec t .  
of t he  p a r a l l e l  problem of pressure buildup is: 

- i! 

are very d i f f i c u l t ,  i f  no t  

3 
The b h 8 $  equation i n  terms 

Jacob and Lohman 

- c 

J 2zKh(Pi - Pws)/qu = 1.1513 Log 

where t h e  constant,  1.1513, is t h e  s lope  of the semi-log s t r a i g h t  l i n e .  
The s t r a i g h t  l i n e  i n  Fig. 2 has t h i s  "proper" s lope  of 1.1513. 

Eqba6ifB,i$41,$s of t he  same form as t h e  one proposed by earlier 
authors ' ' ' . As is evident from Figure 2, t h i s  equation does no t  
match t h e  theo re t i ca l  buildup curves unless Horner time is less than 1.3. 
Hence the  need f o r  t h e  cor rec t ion  f a c t o r  presented i n  t h i s  paper. 

l a r g e  changes i n  q occur during c i r cu la t ion .  
usua l ly  too s h o r t  t o  a l lowthe  co r rec t  semi-log s t r a i g h t  l i n e  t o  develop f o r  
e a r l y  shut i n  data. Nonlinearity a l s o  occurs i n  buildup curves f o r  systems 
produced a t  a constant rate when flow t i m e  is shor t .  

As shown before, t h e  cor rec t ion  f a c t o r ,  T , used t o  multiply t h e  slope,  
m, is a function of t This parameter, t ,Dfs a function of t h e  therplal 
conductivity, R, s p e c f h c  hea t ,  C , and dengpty, p, of the  formation as w e l l  
as the  wellbore rad ius  and c i r cu lg t ing  t i m e .  These rock proper t ies  are not 
always known,especially in exploratory regions. These proper t ies  can be 13 
estimated by examining the  d r i l l  c u t t i n g s  and using t h e  da t a  from Somerton 
I n  t h e  author 's  opinion, i t  i s  not c r i t i ca l  t o  know exac t ly  what t hese  ther- 
mal proper t ies  are. A 250 percent e r r o r  i n  t wi lg  create an e r r o r  i n  t h e  
calculated i n i t i a l  temperature i n  t h e  range @ .f10 F. 
Horner p l o t  using shut-in d a t a  i n  t h e  range of (t + A t ) / A t  between 5 and 
10, is usedowithout cor rec t ing  T&, l c u l a t e t  f i n a l  temperature could 
be about 30 F too  low. 

The so lu t ion  presented i n  t h i s  is based on a conductive model 
and should not be used t o  estimate t h e  equilibrium temperature f o r  a zone 
where s i g n i f i c a n t  l o s t  c i r c u l a t i o n  has taken place. 
a t i o n  temperature niay still be estimated i f  l o s t  c i r c u l a t i o n  takes p lace  
a t  t h e  bottom of the  hole. 
f a r  enough away from the  poin t  where l o s t  c i r c u l a t i o n  began so t h a t  convective 
hea t  flow i n t o  t h e  reservoir can be ignored. 

. The nonl inear i ty  of t h e  curves i n  Fig. 2 are due t o  two reasons. F i r s t ,  
Second, c i r c u l a t i n g  t i m e  is 

. 
If a conventional 

However, s ta t ic  form- 

I f  t h i s  is t h e  case, then a datum can b e  chosen, 
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EXAMPLES hiv 
& Eased on t h i s  study w e  recommend the  following procedure f o r  calcu- 

l a t ing  i n i t i a l  reservoi r  temperature: 

1. 

2. Deteriiine c i rcu la t ion  t h e ,  t . 
3. 

Choose depth of i n t e r e s t  and f ind t h e  t i m e  t h e  b i t  reached this 

Read shut-in temperature f o r  8epth of i n t e r e s t  from temperature 
log and ca l cu la t e  corresponding shut-in t i m e  from da ta  on when 
logging runs began and ended and the  logging speed. 

4. P l o t  T vs. ( t  + A t ) / A t  on semi-log paper and f i t  t h e  bes t  s t r a i g h t  
l i n e  txzough thg data  extrapolating t h e  l i n e  t o  ( t  

5. Determine TZS and m from p lo t  of Tws vs. (t + A t ) B t .  

7. Determine rgnge of (t 4- A t ) / A t  t h a t  t h e  shut-in da t a  f a l l s  into.  
Then go t o  Figures 4 through 6 ,  choosing t h e  one t h a t  corresponds 
t o  t h i s  range, and f ind  TDB as a function of t D. 

t depth. 

? 

+ A t ) / A t  = 1. 

6 .  Calculate  t using Equation 6. P 

8 .  Calculate  T using T*, m, and T with Equatiog 12. i DB 
Reference 5 provides a TI59 pocket ca lcu la tor  program f o r  quickly determining 
the i n i t i a l  r e se rvo i r  temperature a t  the  d r i l l i n g  s i t e .  Two f i e l d  examples 
of the  proposed method a r e  given below. 

Example'l: Data are plot ted i n  Figure 7. 

Shut-In Wellbore Temperature 
Depth - 4980 f t .  

Circulation Time, t = 15 hours 
P 

Shut-in Time Dimensionless Homer Time Shut-ig Temperature 
A t  (hours) (t + A t ) / A t  Tws ( F) 

7 
11 
13.50 

3.14 
2.33 
2.11 

286.0 
308.0 
312.0 

From Fig. 7, TGs = 364.5'F and m = 155.1 

Since t h e  parameters K, C , p, and r w e r e  not  given with t h e  above dala ,  
i t  has been assumed t h a t  f o r  t he  purpose of t h i s  example, t h a t  K/C prw 
is equal t o  0,4/hours, which is  a good average number f o r  most cOmmO8 litho- 
logies. Then t = 15 hours (0.4/hours) = 6.0. 

= 0.137. From Figure 5 ,  
computed by means of Equation 12. 

W 

PD 
The i n i t i a l  reservoi r  temperature may now be  T~~ 

Ti = 364.5 + (155.1) (0.137) = 385.8'F. 

The s ta t ic  temperature f o r  t h i s  depth w a s  later determined t o  be  379'F. 
Thus, t h e  predicted f i n a l  temperature w a s  within 2 percent of t h e  equi l i -  
brium temperature, while conventional Horner ana lys i s  y i e lds  a value of 364.5'F. 

e 

c 

LJ 
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Example 2: This example is from Kelley Hot Springs geothermal reservoir, 
Modoc County,, California and-the data are from 3,395 Ft. 

Circulation Time, tp = 12 hours 

Shut-In Time Dimensionless Horner Time Shut-gn Temperature 
At (hours) (t + At) /At TW ( F) 

14.3 1.84 183 
22.3 1.54 194 
29.3 1.41 202 

The data are plotted in Fig. 8, from which we get T* = 225.2'F and 
m * 166.1. 

The parameter K/c pr is 0.27lhour. Thus t = 0.27 IC 12 = 3.24 2 
P W  PD . 

i 
i From Figure 4, TDB = 0.0345. 

& 
I 
I 
! 

Using Eq. 12, Ti = 225.2 + (166.1)).0345 = 230.9'F I 

The initial reservoir temperature for this depth was later found to be 
239'F, as compared to a value of 225.2'F estimated from conventional 
Homer-analysis. 
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