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, ABSTRACT 

Pressure-transient testing of a hydraulically fractured geothermal 
.T 
c’ 

reservoir i n  low-permeability crystalline basement rock has involved 
constant rate injection and pressure bui ldup tests under a wide range of 
field conditions for a number of fractured regions. Following conventional 
reservoir analysis methods, da ta  are treated i n  terms of a transient d i f -  
fusion equation tha t  relates f l u i d  flow and pressure levels i n  the main 
fracture system, associated joints, and the matrix perrneabi 1 i ty .  Pressure- 
flow da ta  are compared t o  type curve solutions of the diffusion equation 
for various flow geometries. The following po in t s  are considered i n  detail: 
1)  The limits on the fracture geometry, aperture and d i f f u s i n  areas as 
determined from the diffusion parameters, 2) The parameters 4 flow impedance, 
diffusivity) of the flow-through systems are related t o  those governing 
the pressure i n f l a t i o n  of the main fractures. 3) The relationship of the 
rock properties t o  the reservoir compressi b i l i  ty ,  effective porosity and 
permeability are discussed. In particular,  laboratory experiments show 
t h a t  the flow properties of a l l  sizes of cracks from large single frac- 
tures t o  the microstructure are pressure dependent if  the f l u i d  pressure i s  
near the confining stress, 4) The competition o f  flow i n t o  the various 
types of porosity (main fractures, joints, and microstructure) and the 
effect on the interpretation of type curves are discussed. 
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servoir consisting of fractures con- 

2 -2 and EE-1) a t  Fenton Hill, New Mexico was first 
established i n  October, 1975. The fracture system, which is located i n  low- 
permeability granite a t  a depth of approximately 2900 meters, has been 
altered since then by two redrilling operations i n  the production hole 
(GT-2) and subsequent hydraulic fracturing attempts i n  both EE-1 and GT-2. 
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*Work performed under the auspices o f  the U.S. Department o f  Energy. 
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* Many experiments i n v o l v i n g  the pressurization of one or both boreholes from 
which the fracture originates have also changed the flow characteristics 
of the system. These experiments have continued t o  give information on 
the permeation flow into the surrounding rocks, the properties of the 
reservoir rock, the geometry and extent of the main fractures., and the 

d 

flow through properties of the heat exchange paths. * 
The field reservoir i s  shown schematically i n  Fig. 1 .  Detailed descrip- 

tions of the drilling history are provided in refs. 1 through 5. Briefly, 
the chronology i s  as follows. GT-2 was drilled f i r s t  t o  a depth of 2.929 km 
and cased to.  2.917 km. Hydraulic fracturing experiments produced a fracture . 
system with the main exit from the wellbore a t  2.81 km. 
t o  a depth of 3.06 km b u t  d i d  not intercept the main fracture system of 
GT-2 because of directional drilling problems. Subsequent hydraulic frac- 
t u r i n g  of EE-1 produced several injection zones w i t h  the main exit a t  2.76 
km, b u t  did not produce a low impedance connection t o  GT-2. Two further 
attempts t o  obta in  a low impedance (<15 bar-s/!L) connection were made by 
cementing off and redrilling GT-2A and GT-26 ( F i g .  1).  Hydraulic fractur- 
i n g  experiments i n  GT-2A again d i d  not produce the desired impedance. 
However, GT-2B d i d  produce a connection w i t h  a low enough impedance t o  
permit long-term heat extraction and flow tests under a variety o f  borehole 
pressurization conditions. 

Injection 
tests were done on the four wellbores w i t h  the other active well s h u t  i n .  
These consist mainly of constant flow or step flow tests; and, the majority 
were injection i n t o  EE-1. They include the attempts a t  massive hydraulic 
fracturing. Second, circulation tests were usually performed by pumping i n t o  
EE-1 and producing through the active branch of  GT-2 (see Fig.  1) .  The GT-2 
well head pressure was most often maintained near zero (hydrostatic) ; the notable 
exception was a h i g h  back-pressure flow test between EE-1 and GT-2B w i t h  GT-2B 
pressurized t o  near the effective confining stress. 

Pressurization of the reservoir can result in water storage i n  or  
permeation through several different types of pores or fractures. The 
small scale porosity associated w i t h  the gra in  boundaries has been ex- 
amined u s i n g  core specimens i n  the laboratory (Refs. 6 through 8) w i t h  
Hassler-type equipment. These core o r  matrix orositie a r  of the order 

vdarcy) under the c o n f i n i n g  stresses typical ly  encountered 

EE-1 was drilled 

The data available i s  from two main types of experlments. 

10-3 and the associated permeabilities from 10-79 t o  10 -3 m 5 (0.1 to 0.01 
the reservo i r  . 
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f! Considerable natural j o i n t i n g  i s  observed in the cores and i n  well- 
bores (Refs. 1 and 4) .  These joints have many orientations and’spacing of 

cond.ition. Possibly, opening of thes Jo in ts  by pressurization can increase 

scale porosi t y  could be i n i t i a l l y  homogeneous throughout the reservoir; 

i n  the naturally occurring porosity may also be anisotropic. The orientation 

centimeters t o  meters and are usually sealed w i t h  calcite i n  the normal 

b u t  there i s  no certainty, especially for the large scale j o i n t i n g .  

9 

the effective permeability t o  2 x lO-f7 m2 (Ref. 3). T h i s  and the small c 
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of the large j o i n t s  i s  no t  necessari ly i so t rop i c  and anisotropic ear th  
stresses can induce anisotropic f low propert ies. 

The n a t u r a l l y  occurr ing poros i ty  and j o i n t s  can be a l te red  by the 
ressur izat ion and f low o f  the system and new fractures can be created. 

!he extent t o  which a1 tered ex i s t i ng  j o i n t s  an( new fractures compete t o  
determine the dominate character is t ics  o f  the system i s  no t  y e t  known. 
However, new fractures are e8pected t o  be perpendicular t o  the minimum 
earth stress and the e x i s t i n g  f ractures t h a t  are hear ly perpendicular 
t o  the m M n u r n  ear th  stress are expected t o  open most r e a d i l y  under pres- 
sure and may become important f l o w  paths. I n  any event, the pressur izat ion 
o f  the four  wellbores produced an extensive, anisotropic, and heterogeneous 
reservoir .  The i n f l a t i o n ,  and possibly the flow-through character ist ics,  
of the EE-l/GT-2B system, were determined i n  p a r t  by the presence o f  the 
GT-2 and GT-2A f ractures and t h e i r  connections t o  EE-1.  

As i n  conventional r.eservoir analysis, the model describing the system 
i s  based on a d i f f u s i o n  equation f o r  pressure derived from a Darcy-type 
flow law and the conservation o f  mass. The ea r l y  i n  s i t u  data (Refs. 3, 4, 
and 5) and laboratory experiments on small scale 
and on large s ing le  f ractures (Refs. 9, 10 and 11 P necessitated the use o f  
ressure-dependent permeabili t i e s  and system compressibil i t ies .  This model E as provided reasohable f i t s  t o  the data examined thus f a r  (Refs. 4 and 5). 

I 

(Refs. 6, 7,and 8) 

MATHEMATICAL MODEL 

It i s  assumed here t h a t  the average flow ve loc i t y  i s  determined by the 
Darcy equation, 

where k i s  the permeabil i ty tensor, p the f l u i d  v i scos l t y  and P the pore 
pressure. The con t inu i t y  equation i s  

w i t h  p the f l u i d  densi ty and 8 the porosi ty.  Equation (2) can be rewr i t t en  
using Eq (1) t o  obtain the d i f f u s i o n a l  form o f  the pres 

The f l u i d  densi ty can be expanded as p = p (lWwP); and by using the com- 
p r e s s i b i l i t y  o f  water B,,, 2 5.0 x loo4 MPa-?, the fol lowing s i m p l i f i c a t i o n  
resul ts ,  
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.@ Here, d0/dP depends on the bulk properties of the rock, which is about 
twenty times less compressible t h a n  water. So i t  is  n o t  clear which term, 
i f  either, of Eq. (4) will dominate depending on the magnitude of 8. 
Similar considerations hold for  the lef t  hand side o f  Eq. (3). Because 
of the low porosities expected, the term 0&p i n  Eq. (4) should not 
dominate and t h a t  p can be considered constan?. T h i s  assumption must be 
justified later. These assumptions result i n  a simplification of Eq (3) 
to: 

-Y 

The related quantities k,  8, and B 5 de/dP, and i n  particular their depend- 
ence on pressure cannot be determined exactly since they also depend on the 
pore volumes, shapes, orientations, and distribution i n  space, nhfch are, 
t n  general, n o t  known. In addi t ion,  each depends on the three components 
o f  stress, which i n  turn are determined by the i n  situ earth stresses and, 
t o  some extent, the pore pressure. 

Equation (5 )  has been solved numerically with the f ini te  element 
AYER code (Ref. 12).  The i n  situ data  were matched by developing empirical 
equations t o  describe the pressure-dependences o f  0 ,  k ,  and B (Ref. 3 and 
4) .  The pressure-dependence of these empirical expressions also f i t  labora- 
tory da ta  on the GT-2 cores reasonably well (Refs. 4 and 5 ) .  

The porosity is assumed t o  be controlled by the minimum earth stress a3, 

0 =  
[ 1 -c ( a3 t P  ) IOL 

L 
a(.'. 

The permeability tensor is assumed t o  have three non-zero components. The 
two components perpendicular to  the least horizontal  stress are 

(7)  
* a '  

- kt 
k3 - rl-C(u3+P)l3 

t The component parallel t o  the least stress i s  

a *  

where 0; and k i  are evaluated a t  a3+P=O. 
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where u is the intermediate horizontal stress. For the data considered, 
P < S $he mlnimum principle earth stress and the following approximations -+ 

t; provi a e accurate fits to the data: 
a) 
b) 
c) 

u3 2: Sg, the minimum earth stress. 
a2 2 S2, the intermediate earth stress. 
a 2: 0.6 (determined parametrically). 

This reduces eqs (61, (7) and (8) to: 

b 

nd 6, are evaluated at P=O (the hydrostatic condition). * 
IN-SITU DATA FITS 

-& The first detailed computer fits to the Fenton 
data were.produced with AYER using solutions to Eq (5 
grid with the diffusional properties given by Eqs. (9 

pressure and flow 
a two-dimensional 

As longer 
flow periods were examined, however, it was found that two-dimensional effects 
were not observed. Also, no flow dependence was included with only linear, 

e 
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Darcy-like effects modeled. Only recently has the role of flow dependence 
been apparent, after the accumulation of much data. 

is t ics  of a limited number of flow parameters. The early-time inflation 
data is determined entirely by the parameter a = Am . T h i s  parameter 
results from f i t s  d u r i n g  the one-dimensional , linear flow period where pres- 
sure varies directly w i t h  the ,E a t  constant injection rate or  injection 
rate decreases linearly w i t h  l / f i  a t  constant injection pressure. In this 
case, the Dressure dependence of k and B is only seen i n  the ini t ia l  values 
o f  k(P( t=O))  and B ( P ( t = O ) ) .  The time constant for the conversion from one- 
dimensional t o  multidimensional flow, TA = ApB/k, has not been measured b u t  
lower limits have been obtained. For interference or flow-through tests, 
the time constant for flow gr pressurization between wells, y = a2pB/k, and 
the flow impedance, I = AP/Q = ap/Ak, are determined. The discussion of how 
important fracture or rock properties are i n  determining these parameters 
i s  discussed later i n  the paper. For now, we examine only numerical f i t s  
t o  a few selected sets of data to  determine the parameter magnitudes and 
their pressure and flow dependences. 

d 

4 These circumstances have resulted in the determination of the character- 
-Y 
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Experfment 111 (Fig.  2)  consisted of a pressurization of the injection 
hole (EE-1) i n  steps, i n  constant flow and constant pressure phases (upper 
curve o f  Fig. 2 ) .  The flow and pressure were recorded i n  EE-1 and the 
pressure was recorded i n  the production hole (GT-2) which was shut i n .  
The f i t s  t o  the GT-2 pressure (lower curve of Fig. 2)  verifies the pressure 
dependence of B/k. The f i ts  to  the EE-1 pressure for the constant flow 
phases (Fig.  3) give the pressure dependence of Am. However, unless i t  
is assumed t h a t  the reservoir is homogeneous, the inflation and flow-through 
properties are not the same. Because the reservoir is clearly heterogeneous 
w i t h  bo th  fracture and matrix flow important t o  different sections these 
parameters are not expected t o  be measuring the same properties (Ref. 13). 
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Figure 3 i s  an example of a pressurization of EE-1 w i t h  GT-2 s h u t - i n ,  
first a t  2.14 a / s  (34 gpm) then a t  0.56 a /s  (9  gpm). T h i s  and longer 
pressurizations established a lower limit t o  the time constant for the con- 
version from one to  mu1 tidimensional flow. 

The same model was used t o  obtain f i t s  t o  the water loss da ta  for a 75- 
day heat  extraction experiment (Ref. 13). In this tes t ,  the injection well- 
head pressure was maintained between 86 and 55 bar while the injection 
flow rate increased from 7.5 t o  a maximum of 15.0 liter/sec a t  the end of 
the 75-day period. Fluid was continuously produced i n  GT-2B w i t h  a constant 
surface pressure of tlO.0 bar. Figure 4 compares the data for the integrated 
flow into a l l  permeation w i t h  the calculated results. 

ir 

4 

DISCUSS ION * 

Even though  the mathematical model provides good f i t s  t o  much of the 0 

data, the resulting empirical diffusion parameters cannot be interpreted 
(d 
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i n  terms of a unique,flow or fracture geometry. From the time of the 
formation and activation o f  the f i r s t  fractures a t  Fenton Hill i t  has been 
assumed t h a t  the early time pressure and flow history of the fracture 
system was'determined by permeation flow out of a large low impedance 
(infinite conductivity) main  fracture into the surrounding matrix or joints. 
Considerable evidence now suggests t h a t  much of this early time data can 
also be adequately characterized by linear flow into and inf la t ion of dis- 
crete fractures of moderate impedance. 

crete fractures, whereas a t  later times flow in to  the reservoir is con- 
trolled by matrix and/or j o i n t  permeation. Some of the characteristics 
of the system t h a t  support this view are as follows: 

Consequently, the early time period may be dominated by flow i n  d i s -  

1)  No large zero-impedance fracture volume has been detected. 
2) The inf la t ion  parameters and flow-through parameters can come from 

fractures t h a t  have the same dimensions. 
3) The pressure dependence of the inflation and flow-through para- 

meters are the same and agree w i t h  those of large fractures 
examined i n  the laboratory i n  other rocks (Ref. 9, 10, and 11). 

4)  The long-term water loss data  Implies a large inf la ted fracture 
area and small t o t  

In Fig. 5 an attempt h 

matrix and j o i n t  permeability. 

been made t o  estimate the average fracture. 
width (small dimension perpendicular t o  the flow) and the average fracture 
height (large dimension perpendicular t o  the flow) for a l l  the fractures 
connected directly to  EE-1 after the 75-day experiment (Ref. 13). All 
calculations are for a fracture compressibility obtained from the pressure 
dependence o f  the im edance. The vertical line labeled fi is the squ re 

respectively, an estimate of the maximum zero impedance fracture volitme and 
the flow-through volume obtained from the dye tracer studies (Ref. 14). The 
line labeled a =300 cm3 is obtained from a nominal value of the inf la t ion 
parameter A & for fracture f low. The dashed lines are obtained from the 

pressure (Exp. 190). 

determine the long-term water losses of the system. By assuming t h a t  the 
small scale ermeability limits the size of the system and by assuming a 

(6 = 4.0 x 10-5 MPa-]), an upper limit on the permeating area and on the 
effective value of permeability can be determined. Figure 6 i s  a p l o t  of 
effective permeability confining the system versus the square root of the 
permeating area. Each straight line represents a lfmit set by some meas- 
ured parameter, the allowable portion of the graph i s  indicated by the 

root  of the heat exc f: ange area. The lines labeled VO=l  m3 and V-50 rn s are, 

flow-throug x impedance for a low EE-1 pressure (Exp. 184) and a h i g h  EE-1 

canonical va P ue of pore compressibility as obtained i n  the laboratory 

Approximate limits can also be obtained for those parameters t h a t  
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direction of the arrow. The parameters and limits annotated on the figure 
are: 

1 )  TO: l imits s e t  by one-dimensional nature of the flow. 
2) 
3) 

4)  k: limit set by smallest laboratory permeability. 
5) Am: 
6) Vv: limit set by approximate vent ing  volumes. 

Q: limit set by small value of long-term water loss rate. 
q: limit set by assuming t h a t  the permeating area is larger 

t h a n  the heat exchange area. 

limit set by assuming tha t  this parameter is determined 
only by the small scale porosity. 

CONCLUSIONS 

What we have tried t o  present i n  this paper i s  an objective discussion 
of a c lass ic  non-uniqueness problem that  faces us i n  the intepretation of 
our pressure-transient data. The deployment of infinite and f i n i t e  fracture 
conductivity models w i t h  linear Flow and pressure-dependent properties i s  
a departure from the more conventional reservoir engineering approaches 
which assume homogeneous and constant properties for k ,  6, and 13. Type- 
curve f i t s  from such approaches are inadequate,causing us t o  develop 
numerical simulations w i  t h  empirical representations of pressure-dependent 
effects.  
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