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CAPACITIVE PERTURBATIONS IN WELL INTERFERENCE TESTING .

by Gunnar Bodvarsson, School. of Oceanography, Cregon State Un1vers1ty
Corvallis, Oregon 97331

Introduction

Conventional well interference testing is applied to obtain
observational data on reservoir parameters such as fluid conductivity,
fluid diffusivity and structural inhomogeneities or boundaries. Test
results are usually interpreted on the basis of forward type curve-
matching methods (Ramey, 1970).

‘Field procedures are generally based on the use of standard size
wells for both injection and response monitoring. The pressure sensors
are placed into the wells that serve as observational ports. Obviously,
the monitoring wells consititute capacitive inhomogeneities that can
perturb the reservoir flow field and thereby distort the pressure
readings. In particular, the capacitance of wellbores with two-phase
fluids, gas caps or even a free fluid surface is relatively large and
the perturbation can then be substantial. Quite erroneous test results
may be obtained in such situations. Moreover, analog perturbations can
result from the presence of inactive high-capacitance wells and other
reservoir "soft spots” in the neighborhood of the test wells. For
example, geothermal systems that appear liquid-dominated may actua]ly
include local spots with two-phase pore fluids that have a higher

‘compressibility than the pure liquid. In particular, such soft-spots

are likely to develop in regions w1th temperatures c]ose to boiling and/
or high gas content liquids. _

As a matter of course, the capacitive effects are well known and are
in the petroleum industry usually referred to as wellbore storage effects.
A considerable literature exists, mainly relating to such effects in
single-well pressure-buildup or drawdown testing (see, for example, Ramey,
1970; Earlougher and Ramey, 1973; Raghavan, 1976: Chen and Brigham,

1978; Miller, 1979). For further references, we ‘refer to the monograph

by Earlougher (1977). A number of aspects relating specifically to
interference testing have been discussed by Prats and Scott (1975), Jargon
(1976) and Sandal et al. (1979) i ,

;'iInvpa551ng,’1t~1s of interest to remark that-sensor'capacitance is
a matter of extremely general relevance. For example, capacitive effects
interfere withthe measurement of time-varying temperatures. Just as we
refer to temperature gauges as thermemeters, we will here apply the term

_pressometers for the pressure monitoring devices. In interference test1ng,

the pressometer consists of the entire. row1tor1ng well setup.

The purpose of the present short note is to discuss the capaci-
tive effects from a rather qeneral point of view and, in parti-
ular, to derive some basic expressions to enable us to correct for
pressomater and soft-spot capacitance. The approach will be based on the
assumption of a forward type interpretational procedure. In other words,
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the development is based on definite field models that lead to a well-
posed problem setting. By varying the model parameters, the solutions

~yield the type-curves that are used to interpret field data. Data
. interpretation on the basis of so-called inverse procedures is usually

not feasible and would lead to a practica]]y impossible problem setting.

( Notation and basic equations are as given in the paper by -Bodvarsson
1978) .

An ultrasimple model

In the case of slowly varying fields, well pressometers can quite
often be lumped into an equiva]ent admittance (conductancé) A and an
equ1va1ent capacitance C. That is to say, that given the ambient time-
varying pressure field to be measured p(t) and the pressometer reading
Pm(t), the mass flow into the meter systenlsat1sf1es the following equations

= Alp-p;)»  a=0oCDp, " (1)

where D = d/dt and p is the density of the fluid. Let t = pC/A be the
pressometer relaxation or response time and the above equat1ons can then
be combined into one equation '

Py * t,0Py = P (2)

including only the parameter t,. It is convenient to introduce the
correction pressure p] that has to be added to py to obtain the ambient
field p such that p = (pm + p1). We have then the relation

P = tOme (3)

Depending on a number of circumstances such as the flow and phase situation
in the well, the parametersA, C and ty can be taken to be constant over a
limited range of pressure. Equation ?2 is then a simple differential
equation in pp and the relation (3) involves only a single differentiation.

In interference testing, we can usuaily take that pressure monitoring
proceeds from an equilibrium situation where py = p and because of linearity,

ve can then put p,(0) = p{(0) = 0, that is, the system is causal. 1In
operational form, the solution of (1) is then

p = (1+t,0)7'p S (4)

which yields a Taylor series in the operator t,D.
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An injection/monitoring well pair in a distributed reservoir model

" Consider now a more general situation involving a porous and
permeable fluid-saturated reservoir model with a.given fixed boundary
£ where prescribed conditions are to be applied. let ¢ = g8/v be the
fluid conductivity operator where g is the formation permeability operator

" and v the kinematic viscosity of the fluid. The density of the fluid is.

p, the wet formation capacitivity or storage coefficient is s and hence
the fluid diffusivity a = c/ps. Let P = (x,y,z) be the general field poxnt.

Two wells have been drilled into the reservoir, one for. 1nJect10n
purposes and the other is to be applied as‘a pressometer that is assumed
to have a known capacitance C taken to be constant within the pressure
range of interest. Moreover, the distance between the two wells is taken
to be very large compared with the dimensions of the formation/well
contact openings such that for mathematical convenience the injection zone,
as seen from the monitoring well, can be lumped into a point Q. This
situation 1s eas11y generallzed to the case of a d1str1buted source.

The prob?em settlng is now the following. The system is initially
in equilibrium and starting at t = 0 the mass flow f(t) is being injected
into the reservoir at Q. In the case of fluid withdrawal the sign of f(t)
is negative. The fluid injection raises the reservoir pressure 1ead1ng
to the reading py(t) at the pressometer well. We are interested in the
pressure p(P,t). at the monitoring well as unperturbed by the pressometer
capacitance and will therefore derive the correction pressure pj such that
at the pressometer p = py + p1. As compared with the s1mp1e situation in
the preceding sectIOn, the present case is more complex in that the cor-
rection pressure is a field function py(P, t) that has to be der1ved by
the integration of a diffusion type P%

To derive the pressure field equations, ve simplify the topology
of the reservoir by neglect1ng the conductivity perturbance of the
pressometer and replace it by an equivalent capacity function su(P) such
that the space integral over this function is equal to C. Obviously,
the function u(P) is 1oca11zed in that it is zero everywhere except at:
the pressometer well. Moreover, let n(c) be the generalized Laplacian
t?a§ in the case of a homogeneous and 1sotrop1c med1um s1mp11f1es to
n(c) = -cv

“In this sett1ng w1th the pressometer well inc]uded the total pressure
f1e1d (p-py) satisfies the equatxon
ps(1+u)at(p;p,) + 1(c) (p-py) *»fG(P?Q),,. (5)

where o(P Q) is the spatial delta-function centered at Q. The pressure
f1e1d p unperturbed by the pressomnter capac1tance sat1sf1es .

psdp + n(c) p = f8(P-Q), o (6)
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and hence the correction field Py satisfies
ps3.py + I{c)py = psua(p-py) » o (7)

To cope with this equation, we observe that the pressure within the
pressometer is constant and equal to the observed pressure p,. Since py
represents the total field there, we take that p, = (p-p1)overrthe sup-
port of u(P) and equation (7) can thus be expressed -

psa.py + I(c)py = osubp_ , - (8)

‘where D = d/dt and the expression on the right is now a known function in
space and time. Moreover, it is quite obvious that (p-pj) and p should
satisfy the same boundary conditions on I and py, therefore satisfies '
homogeneous conditions there. It follows that equation (8) can be in-
tegrated to obtain the perturbation pressure pj. Let the diffusion
operator on the left of (7) be expressed

H = psay + m(c), | (9)

and H'] be its inverse at the conditions specified. The solution of
(8) is thus formally

p(P,t) = pH'](squm) , (10)

This equation takes now the place of equation (3) which holds only in
the much simplifed jumped case of constant A. In fact, in the case of
fields varying so slowly that the time-derivative on the right of (7)
can be neglected, equation (8) reduces to a potential equation that can
be integrated to yield an expression for pj. For the field pressure

at the pressometer, this integral then reduces to the same form as (3).

It is of importance to remark that to correct the pressometer read-
ing pm(t), the pressure pj(t) has to be evaluatad at the source of this
field. The result is therefore strongly dependent on the selection of a
correct local model for the pressometer system. We will refrain from
entering into a detailed discussion of the integral (10), and limit our
remarks to perhaps the simplest case relevant in the present context. Ue
assume a homogeneous and isotropic reservoir of such an extent that as
viewed from the pressometer, it can be taken to be infinite. Moreover,
the pressometer system consists of, or is equivalent to, a spherical
cavity of radius R. To investigate the response of a system of this
type, we turn to a spectral type of analysis and investigate the integral

¢ @



(-

-89~ .
(10) when py = poexp(iwt) and » is the circular frequency. These
assumptions siméhify'the procedure very considerably. Omitting details,
we obtain for the amplitude of the correction pressure pj at the cavity

Py = TupCpo/AgL(1+i)(R/d) + 17 , S an

where C is the capacitance~gf the pressometer, Ac = 4xcR its static
admittance and d = (2c/psw)® is the skin depth oi.the pressure field
at the frequency w. This expression is useful in that it gives the

amplitude, of the spectral components of py. The dominant physical

factor is the ratio R/d.: Expression (11) 1s analog to (3) above.

. Soft sgots

As already stated, even small reservoir soft spots, that are
sufficiently close to the pressometer, can perturb the pressure readings,
For example, there may be an inactive well with a free liquid surface in
the close vicinity of the monitoring well. Considering such a case that
has a known capacitance K, we are interested in some estimates of the
resulting perturbation of pyp(t). Here, it is appropriate to make the
simplifying assumption that multiple pressure field scattering can be
neglected. In other words the secondary fields due to the pressometer
and the soft spot do not scatter and their perturbation of the primary
field is therefore additive. Hence, to obtain the perturbation due to
the soft spot at the pressometer we can neglect the capactance of the
pressometer. , . . , '

Under these circumstances, it is possible to ﬁfoceed in much the

. same way as above. Let pp(p,t) be the perturbation pressure field due

to the soft-spot. The field has then to satisfy an equation of the same

‘type as (7) above. There is, however, the important difference in

that there is no monitoring device in the soft spot and the pressure.
there is now unknown. The integration expressed by (10) can therefore
not be performed. There are nevertheless, the ameliorating circum-
stances that we are only interested in the value of p, at the press-
ometer. As viewed from this ‘distance, details of the model at the soft-
spot are less important and we can in many practically relevant cases
resort to a perturbation approach where the pressure field at the soft-
spot is taken to be equal to the primary tield at this position. On this
basis the integration prescribed by (10) can be performed by equating

pm With the primary field and we have ther an estimate of pp that can

be evaluated at the pressometer well. _

A variety of situations are of practical interest, but we will re-
frain from a detailed discussion. A simple investigation on standard

- size wells shows that in interference tests, the action radius of fnactive

wells is relatively small. Beyond distances of the order of a very few
hundred meters,open inactive wells can for the most practical purposes
be neglected.
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