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The objective of this work is to provide a means for analyzing 
pressure transients from drill stem tests (DSTS) in fractured wells 
dominated by linear flow in the formation. The consequent partial 
differential equations have been solved by numerical inversion of the 
Laplace transform. 
hole with packers and connecting it instantaneously with the atmos- 
phere by means of a drill-string. 
end of the test a level usually stabilizes in the string and the well 
does not produce spontaneously. 'The method can be applied only to the 
"analysis of DSTs in which the fluid influx into the drill pipe tends 
to kill the flow, giving only a partial DST recovery."1 The analysis 
is performed by type-curve matching, and leads to the determination of 
the initial reservoir pressure, flow characteristics of the formation, 
and wellbore damage. 
time pressure drawdown due to a constant flowrate. 

A DST consists of isolating an open stretch of bore- 

In water-dominated reservoirs, at the 

These parameters allow the prediction of early- 

Methods already exist in the literature' for analyzing these pres- 
sure transients in the presence of riidial flow in the formation. 
the fractured reservoirs found in some geotherma3 fields, linear flow 
models seem more appropriate than radial models. 

In 

DESCRIPTION OF THE MODEL AND RESULTS 

Figure 1 presents the assumed physical model. It consists of: 

a) A homogeneous one-dimensional rock formation in which the pres- 
sure propagates according to the diffusion equation: 

2 a v(x, t) & _av(x,t) 
2 rl at ax 

where: v(x,t) = pressure drawdown in the formation 
x = distance from well 
t = time 
rl = formation diffusivity, k/4pc 

. 

Editor's Note: this paper was presented at the Fourth Workshop, but 
inadvertently omitted from the Proceedings. 
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b) A concentrated flow resistance, R, that produces a pressure draw- 
down proportional t o  the flowrate through it. 
be caused by a layer of mud on the walls of the bore. 
equation therefore holds: 

This could, for example, 
Jr 

The following 

where q(t) = instantaneous volumetric flowrate 
u(t) = pressure drawdown at bottomhole 

c) The fluid produced by the formation is stored in the drill- 
string, causing a back-pressure on the formation proportional to the 
fluid stored. Therefore, we have: 

1 
- e - =  du(t) q(t) (3) dt 

where C is a con~tmt: 

0 
i o t e n a l  cross-section of drill pipe , A  = 

specific weight of fluid Y 

The partial ZSferential equation (Eq. I), along with the boundary 
conditions (Eqs. 2 znd 3), Eq. A6 (in the Appendix), and with the 
initial conditLcis : rt 

I 

v(x,o) = 0 

u(0) = v 

x > o  

4 
W ~ S  solved by means of the Laplac 
The solution is: 

transform, as in Carslaw and Jaeger. 

(i 
I 

I 
I 

where G(p) is the Laplace transform of u(t) and p its parameter, while 
0 is a dimensionless constant: I I 

W I 
See the Appendix zor further details. 
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Unfortunately, t h e  ana ly t i ca l  inversion of Eq. 4 i s  not  s t r a igh t -  
forward, so the  numerical method given i n  Eq. 5 is used. The r e s u l t s  
are given i n  Tables 1 and 2 f o r  d i f f e r e n t  values of G, and summarized 
i n  t h e  type-curves I, 2, and 3. The computer code is also included 
f o r  t h e  numerical inversion-of  Eq. 4. 

USING THE TYPE-CURVES 

a) I f  t he  i n i t i a l  reservoi r  pressure is  unknown, type-curves 1 and 
2 should be used. These show: 

h 

as a funct ion of t,, = B t  on a log-log graph. 
V-u(t), should be p lo t ted  aga ins t  t i m e ,  t ,  on log-log t rac ing  paper 
of the same sca le .  
t a t i o n  over t he  type-curves u n t i l  t he  bes t  match is  obtained. 
be estimated; hence, i n i t i a l  reservoi r  pressure from the  v e r t i c a l  match. 

The pressure recovery, 

The f i e l d  da t a  graph should be sh i f t ed  without ro- 
V can 

From the  hor izonta l  match, we can estimate the  value of t he  con- 
s t a n t :  

From the  selected type-curve, we obtain:  

G = BCR 

3) I f  t he  i n i t i a l  reservoi r  pressure is known o r  was estimated as 

In  t h i s  case, semilog t rac ing  paper is 
described i n  a ) ,  type-curve 3 should be used, since i t  permits  a b e t t e r  
evaluat ion of the  parameters. 
used, p lo t t i ng  u(t)/V versus t i m e ,  t. 
the  same as those of t he  type-curve. 

Once again, the scales should be 

In  t h i s  case,  we can obta in  the  match only by s h i f t i n g  the  da ta  
hor izonta l ly  over t he  type-curve, obtaining: 

and : 

w In  both cases a) and b) ,  having evalyated G and B and knowing 
C = A/y, we obta in  R and t h e  group ( S k h )  
l i n e a r  flow. 

l / n ,  which cont ro ls  

From the  above parameters, i t  i s  possible  t o  forecas t  the  early-time 
e pressure t r ans i en t  caused by a constant f lowrate.  I n  f a c t ,  from Eq. 6: 

LJ (5) 
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Hence : 

All the parameters in Eq. 6 are either known or determined by this 
analysis. 
to 2 / f i  E, stimulation could prove useful. 
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NOMENCLATURE 

A 

C * effective compressibility, Pa 
C = - = fluid storage constant in drill string, m kg Y 
D(p) = function independent of x, Pa 

2 = internal cross-section of drill pipe, m 
-1 

A 4 -$2 

E(p) 
k = formation permeability, m 
P = Laplace transform parameter 

q(t) 
R = concentrated flow resistance, m kg s 
S 

= function independent of x, Pa 
2 

3 -1 = volumetric flowrate from formation to drill pipe, m s 
-4 -1 

= fracture surface crossed by flowrate q. If fluid flows from 
2 opposite directions, this surface should be doubled, m 

t = time from when bottomhole valve is opened, seconds 
tD= Bt= dimensionless time 
u(t) = pressure drawdown in wellbore, Pa 

u(p) 
- 

= Laplace transform of u(t) , Pa 
v(x,t) = pressure drawdown in formation, Pa 
v(x,p> = Laplace transform of v(x,t), Pa 
V=u(o) = maximum pressure drawdown in wellbore at beginning of test, Pa 
X = distance from fracture (see Fig. 11, m 

a = 

- 

-1 8E n = a c 6 = a constant with respect to x and t, m 
Sic 2c 1 tD -1 

(3.. - - = - = a constant, s 

Y -2 lJC r l t  
= specific weight of fluid produced, m kg s - ~  

il 
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€ = -  skR = formation thickness equivalent to concentrated resistance, m 
1-I = fluid viscosity, Pa(s) 
(J = BCR = a constant 

1-I 

2 -1 = formation diffusivity, m s n = z z  
4 - porosity 
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APPENDIX 

SOLUTION OF THE PARTIAL DIFFERENTIAL EQUATION 

Introducing dimensionless time, tD = fit, Eq. 1 becomes: 

(A-1) 

Laplace transforming and remembering that v(x,o) = 0, we have: 

where v(x,p) is the Laplace transform of v(xytD) and p its parameter. 

Combining Eqs. 2 and 3, we obtain the first boundary condition at 
x = 0: 

(A-3 1 

and the constant 0 * BCR into tD Introducing dimensionless time, 
Eq. A-3, we get: 

J 

c 

Laplace transforming and defining the initial pressure disturbance, 
V = u(o), we obtain: 

where u(p) is the Laplace transform of u(tD). 

The second boundary condition at x = 0 derives from Darcy's law: 

which, combined with Eq. 2 ,  becomes: 



kd 

c 

P 
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Defining E: = -  

forming Eq. A-7, we have: 

introducing dimensionless time, tD , and Laplace trans- v 

Now w e  must solve Eq. A-2 with Boundary conditions (Eqs .  A-5 and A-8). 
The general so lu t ion  of Eq. A-2 is: 

(A-9 1 - 
v(x,p) = ' ~ ( p )  e-C1X + ~ ( p )  e*" 

6 and D(p) and E(p) two functions non x-dependent. with u = E= 
n i l  and t h e  so lu t ion  w e  are looking f o r  is: 

Since v(x,t), and hence v(x,p) are limited f o r  x * 00, E(p) must be 

- v(x,p> 5 D(P) e*x ' (A-10)- 

Subs t i tu t ing  Eq. A-10 i n t o  E q s .  A-5 and A-8, we get  t he  expression f o r  
D(p) and u(P): 

v (A-11) D(P) = 
Ji;(ap+Ji;+l) 
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a = O  

U - v 

0 = 0.01 a = 0.1 
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tD 

0.158490-011 

0.398110-01 
B o  63919 60-0 1 

8.251 1 9 0 4  I 

go 18BaBD+WQ 
D. 1.58490+0fl 
I. 25 11 9D+m!4 
0.398110+flfl 
0 6 3 a9 60+ flfl 
51.10oePo+al 
8.158490+(41 
8.. 2 5 1 1 9D+ fl 1 
0.39811D+fll 
8.63W9 60+0 1 
0.101fl01)0+!72 

158490+02 
0.25 1191)+62 

!I. 6309 60+ lI2 
a. 180GZ!O+VI3 

B. 25 1190+(n3 
g.39811O+fi3 
0,63fl9 6D+ 83 
0*100000+04 
0.158490t04 
fl,25119O+fl4 

398 1 10+64 
0.6 3Gf9 60+04 
0.lBG!FBCJO+B5 

0.398110+fl2 

0.158490+g3 

U - 
V 

a - 1  u = 10 

0.985640+00 

0.966fl8O+W~ 

8.923flCf0+08 
pl.8866 10+9c1 
0,8365 10+k30 
VI, 770520+08 
Om6R938D+fl0 

cl, 394740+0a 

0 . 186920+ Rg 
c3.146111)+Vifl 

0.977850+08 

0.946570+00 

59324D+Ba 
0a492170+fl!J 

f l o  3tl9a30+FJfi 
,fla240360+Qfl 

. 8,  1148flO+fl21 
0 e90 53RD-BJ1 
8 7 15890-@ 1 
0.567flID-@l 
8.049560-01 
fl.356690-91 
B 2831 20-al 
fl 2247904  1 
0.178500-01 
0 14 1760-0 1 
fl, 1126WD4l 

W 7 19330-02 
B 564230-62 

91 a8943mbfl2 

.4.998430+1Cf 
W,997520+6R 
91.996fl90+88 

, 91.99383D+flQ 
p1.998 2 RD+OE 
fl,98473O+m 

' 8 . 9.76t39D+Og 
R. 9 6273D+flCI 
ll.942260+!4a 

fl.865660+Rfl 
A.R0t7160+9g 
ti . 7 1 a43D+fln 
ll,595440+m 
fl 46 1640+@8 
R.325910+fi0 

tl 9 1 13 6 D M g  

Fle218910+8fl 
PJo 132560+OW 
8 880 25D-3 1 
0.633900-01. 
flw.47935D-mr 
fl.37fl700-61 
0 c 28969 0-31 4 
0.2281 go-0 1 
8,180140-a9 
I. 742580-01 
0*113!I0D-01 

a .'7 1 13 40 -02 
fl 8 9 6 320 -02 

. f l o  564330082 

0 = 100 
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COMPUTER CODE 

C QUEST0 PROGRAHMA..INVERTE' .LA TRASFOAMATA 01 LAPLACE LAP000  1 0  
LAP0f l0  2c3 
L A P  (300 3 F1 
LAP00P140 
LAPfMf l50  
LAPf l0060  
L A  P IM B 7  0 

1 0  T = T * l B . * * ( I . / S . )  . LAPBBB80 
C A L L  L INV(T,FA,N)  LAPi3f l090 
\ 'RITE (6,l )T  ,FA . L A P M  1 CIQ 

LAPB0 11 0 
CAPB0 1 2 0  
L A P 0 0 1 3 0  
LAPflO I & 0  

I .  ' LAP0015 f l  
LAPBf l160  

I LAPQ(I180 
LAPmR 198 XMPLICIT flEAL*8 ( A-HqOd) 

S 1GMA.t  l f ln m . LAP0820fl 
fiQ=DSQHT (ARQ)  LAPD0210 
P =  (SIGMA*RUf  1 ) / ( R c J G (  8IGMA*ARG+RQ+ I LAP0022CI 

L A P 0 0 2 3 f l  
LAP00240 

RETURN 

LAP0025QI 
END 

GIJRROUTINE L I N V ( T  V'FAVN } ' LAPBP126fl 

COMtJON ' G ( T P I ) ,  V ( 5 f l ) ,  H(25)i EA LAPfM2BO 
' LAPB0290 

LAP?S 3 '- 

I M P L I C I T  REAL+fl(A-H,O-Z) 
COMMON G (5 f l )  , V  (5f l  r H (  25 ,M 
N = I R  . .  
T=f lePII  . . 
WHITE ( 6 T 2 ) N  . .  2 FORMAT ( 7 X ,  'T '  15X, 'F,A8 * 7 X ,  'N= ' ,121 

1 FOAMAT(2E15.5)  * 

. IF(T.LT.1f lBf lP. )  GO TO 1fl 
STOP . .  

I 
N 
N 

(.I I 

END 

FUNCTION P (AHG) 
C 

C QUESTA E '  L A  TRASFORMATA D I  LAPLACE CHE DEVE EESERE ANTITRASFORMATALAPIW 1717 
C DALLA GUBROUTINE L I N V  , ' * 

) , 

C 

IMPLICIT PEAI,*fl (A-H.0-Z) CAPBfl278 I 

' D1QGTW.m ,69314718fl5fi99453 I 

IF ( t J I E 0 , N ) G Q  -TO-..I ffq 

d 4 c 
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c CALCULATE V-ARRAY 
* 1,i = rxi 

G ( l ) = l .  
N H = N / 2  

DO 5 I112vN 
5 * G (I  ) pG (1-1 )*I '. 

H( 1 ) = 2 * / G ( N H - l )  
DO 10  1.12," 
F I = I  
I F  ( I e E Q e N H )  GO TO R '. 

G O  T O  1GI 

' l a  C O N T I N U E  

H(I)=FI**NH*G ( Z * I ) / ~ ~ ( N H - I ) ' * ~ ( I ) U G ( I - ~  1) 

0 H( I )  =FI**NH"G (291) / (G ( I ) * G  ( 1 - 1  ) ) .  

SN=12*( N H = N H / 2 + 2 ) - 1  ' 

DO 5C3 I = l 7 N  * 

V ( I ) = S .  . .  

K 1 = ( I+ 1 ) /2 
K 2 - I  
I F  (K 2 GT . F I H ) K 2 = N H  
DO flfl K = K l 7 K 2  
I F .  ( 2 * K - I o E Q * P ) . G O  Tg 3 7  ' 

I F  ( I e E I J o K )  GO T O  38 14 ' 

V (I)=V ( I ) + H ( K )  /(G ( I - K ) * G  (2*K-I) ) 
GO TO 4fl 

. GO TO Clfl 
38 V(I)av(I)tH(K)/G(2~K..X) 
40 CONTINUE 

. 

37 V ( I ) ~ ~ V ( I ) + H ( K ) / ( G ( I I ) )  . 

u (-x+=sts-*u(-x-)-. 
6 N as - S N 

5 a  C O N T I N U E  
10f l  FAafl, 

A DLOGTW/T . 
D O . . I l f l  I m . 3 , N  
A R O r  I * A  

1 lfl FA=FA+V(I)*P(Af'?O) 
FAaA *FA 
HE TU I3N 
EN0 

, 

. .  

f .  

. 

G e 4. 

tAPBB318 
LAPfM.324 . 
LAP0033fl  
L A  PI30 34 0 
LAP0Cl350 
LAPBB360 
LAPCJB 370 

'LAP00 388 
LAP08.390 . 
LAP8048C) 
LAP004 10 
LAPBQ420 
LAPB84 30 
LAP 08 44 0 
LAP 00 458 
LAPfl0468 
LAPB0478 
LAPfl8488 
LAP0ff 49R 
LAPBB 50Q 
LAP0051fl 1 

LAP08520 
LAP88530 
LAP88 54 Q 
LAP00558 
LAPPIB568' 
LAP(30570 
L A P M ~ A B  
LAPfl9 59a 
CRPflB6RB 

* LAPflfl610 
LAPB0620 
LAP00630 
LAP 88 640 
LAPfl0650 
LAPI40668 
LAP06670 
LAPBflh80 . 
LAP8fl69(1 
LAP0070fl 

6 

1 
N 
w 
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Fig. 1 
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