ANALYSIS OF A "SLUG TEST" OR DRILL STEM TEST

FOR LINEAR FLOW
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INTRODUCTION

The objective of this work is to provide a means for analyzing
pressure transients from drill stem tests (DSTs) in fractured wells
dominated by linear flow in the formation. The consequent partial
differential equations have been solved by numerical inversion of the
Laplace transform. A DST consists of isolating an open stretch of bore-
~hole with packers and connecting it instantaneously with the atmos~-
phere by means of a drill-string. In water-dominated reservoirs, at the
end of the test a level usually stabilizes in the string and the well
does not produce spontaneously. ‘The method can be applied only to the
"analysis of DSTs in which the fluid influx into the drill pipe tends
to kill the flow, giving only.a partial DST recovery."l The analysis
is performed by type-curve matching, and leads to the determination of
the initial reservoir pressure, flow characteristics of the formation,
and wellbore damage. These parameters allow the prediction of early-
time pressure drawdown due to a constant flowrate,

Methods already exist in the literature1 for analyzing these pres-
sure transients in the presence of radial flow in the formation. In
the fractured reservoirs found in some geotherma} fields, linear flow
models seem more appropriate than radial models.

DESCRIPTION OF THE MODEL AND RESULTS

Figure 1 presents the assumed physieal model. It consists of:

a) A homogeneous one~dimensional rock formation in which the pres-
sure propagates according to the diffusion equation:

3%v (x,t) _

sz .

ov(x,t)
3t )

i
n

where: v(x,t) = pressure drawdown in the formation
x = distance from well
t = time
n = formation diffusivity, k/¢uc

Editor's Note: this paper was presented at the Fourth Workshop, but
inadvertently omitted from the Proceedings.
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1Eqdétion 1 describes fluid flow in a porous medium accdrding to Darcy's

law and the continuity equation, and assuming the fluid has a small con—

”stant compressibility.3

: " b) A concentrated flow resistance, R, that produces a pressure draw-— '
.. down proportional to the flowrate through it. This could, for example,
- be caused by a layer of mud on the walls of the bore. The following

equation therefore holds.

Rq(t) = u(t) - v(o,t) . 7 (2)

where q(t) = instantaneous volumetric flowrate-

u(t) = pressure drawdown at bottomhole

c¢) The fluid produced by the formation is stored in the drill-
string, causing a back-pressure on the formation proportional to the

fluid stored. Therefore, we have:

du(t) , :
-C= 5 q(t) 7 3

‘where C is a constant:

internal cross—sectioﬁ of drill pipe _
specific weight of fluid

< >

The partial dl:‘aren*lal equation (Eq. 1), along with the boundary
conditions {Egs. 2 and 3), Eq. A6 (in the Appendix), and with the
initial conditiocms: .

v(x,0) = 0

ufo) =

x>0

- was solved by means of the Laplace transform, as in Carslaw and Jaeger.4

The solution is:

u(p) _ 0/5+-1 : *)
Vo /plop+/prl)

‘where E(p) is the Laplabe transform of u(t) and p its parameter, while

0 is a dimensionless constant:
= BCR

x E 2
N Sk 1
where B = (uC) n

See the Appendix for further details.
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Unfortunately, the analytical inversion of Eq. 4 is not straight-
forward, so the numerical method given in Eq. 5 is used. The results
are given in Tables 1 and 2 for different values of 0, and summarized
in the type-curves i, 2, and 3. = The computer code is also included
for the numerical inversion of Eq. 4. o

USING THE TYPE~CURVES

~a) If the initial reservoir pressure is unknown, type-curves 1 and
2 should be used. These show:

V-u(t) _ 1 - u(t)
v v

as a function of = Bt on'a log-log graph. The pressure recovery,
V-u(t), should be plotted against time, t, on log~log tracing paper

of the same scale. The field data graph should be shifted without ro-
tation over the type-curves until the best match is obtained. 'V can

be estimated; hence, initial reservoir pressure from the vertical match.

From the horizontal match, we can estimate the value of the con-
stant: o

From the selected type-curve, we obtain:
0 = fCR
3) If the initial reservoir pressure is known or was estimated as

described in a), type-curve 3 should be used, since it permits a better
evaluation of the parameters. In this case, semilog tracing paper is

used, plotting u(t)/V versus time, t. -Once again, the scales should be

the same as those of the type-curve. -

In this case, we can obtain the match only by shifting the data
horizontally over the type~curve, .obtaining: o

t- uc SRR
and: S | o= BVR“

'C = A/y, we obtain R and the group (Sk/u)° ¢ 1/n, which controls
linear flow. : : L « L )

" In both cases a) and b), having evalyated.o and B and knowing

From the above parameters, it is possible to forecast the early-time
pressure transient caused by a constant flowrate. In fact, from Eq. 6:

v(o’t)azj—-‘/ﬁ—-o/gs-g—n_ﬂ_o/g (5)
YrSky /m  CVB

[N
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Hence:

u(e) = Rg + =+ —L .+ /E = qfe (o+——/ﬁ) RO '

/M e/B : %

All the parameters in Eq. 6 are either known or determined by. this
analysis. Where R is too high, i.e., where g is 1arge in comparison 3
to 2//— vBt, stimulation could prove useful.
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NOMENCLATURE

A = internal cross-section of drill pipe, m2

c = effective compressibility, Pa..1

C= %’ = fluid storage constant in drill string, makg_ls2

D(p) = function independent of x, Pa

E(p) = function independent of x, Pa

k = formation permeability, m2 ’‘
] = Laplace transform parameter

q(t) = .yolumetric flowrate from formation to drill pipe, m3s—l

R = concentrated flow resistance, m_4kg s-l : ‘ ~
) = fracture surface crossed by flowrate q. If fluid flows from

opposite directions, this surface should be doubled, m2

t = time from when bottomhole valve is opened, seconds -
ty= Bt = dimensionless time

u(t) = pressure drawdown in wellbore, Pa

u(p) = Laplace transform of u(t), Pa

v(x,t) = pressure drawdown in fbrmation, Pa
v(x,p) = Laplace transform of v(x,t), Pa

=u(0) = maximum pressure drawdown in wellbore at beginning of test, Pa

X = distance from fracture (see Fig. 1), m : »
a = '%F g /p = a constant with respect to x and t, m-l
B = Sk 2 -2 onstant 71

uc not - @cem ’ P -
Y = gpecific weight of £luid produced, m “kg s

C
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= —ﬁ—-= formation thickness equivalent to concentrated resistance, m

= fluid viscosity, Pa(s)
= BCR = a constant

= EEE formation diffusivity, mzs'-1
= porosity

S 3 Qr m
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APPENDIX

SOLUTION OF THE PARTIAL DIFFERENTIAL'EQUATION

~Introducing dimensionless time, tD = ft, Eq. 1 becomes:

Pvie,t) g WGty |
—2 "n T3 - D
ox D
Laplace transforming and remembering that v(x,0) = 0, we have:
357 ,p) _ Bp . = o
3 = V(x.p) ' - (a-2)

ox :
where v(x,p) is the Laplace transform of v(x,tD) and p its parameter.

Combining Eqs. 2 and 3, we obtain the first boundary condition at
x = 0:

c du(t) + u(t)-v(o,t)

dt R =0 B (a-3)

Introducing dimensionless time, tD’ and the constant ¢ = BCR into
Eq. A-3, we get:
du(tD)

dtD

o +‘u(tD) - v(o,tb) =0 : (A=4)

Laplace transforming and defining the initial pressure disturbance,
V = u(o), we obtain:

(op+1) * u(p) - v(o,p) = OV (A~5)
where Efp) is the Laplace transform of u(tD).

The second boundary condition at x = 0 derives from Darcy's law:

» _ Sk [ ov(x,t) _
a(e) = & (——~—-) (4-6)

9x x=0

which, combined with Eq. 2, becomes:

u(t)-v(o,t) . Sk [3v(x,t) - -
w(O(0,0) , 8 (——ax >X=o 0 (A-7)
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Defining € = —ﬁ_’ introducing dimensionless time, tD, and Laplace trans-
- forming Eq. A-7, we have: '

u(p) - V(O.p) +€ <§x§§*21) " =0 S (A-8)

vNow we must solve Eq. A—2 with Boundary conditions (Eqs. A-5 and A-8)
The general solution of Eq. A-2 is:

vox

v(x,p) = D(p) e F +E() € (a-9)

“with o = %$-= g-/_'and D(b) and'E(p)'two functions>non x-dependent.

Since v(x,t), and hence v(x,p) are limited for x = «, E(p) must be
nil and the solution we are looking for 1s.

T0x,p) = D(p) N o (A—lO)

Substituting Eq. A-lO into Eqs. A-5 and A-B we get the expression for -
D(p) and u(p):

v

D) = ‘ (a-11)
(0p+/f+1) .
MN=D®)'wf+1) o mdm
Hence: u(p),+ GVF.+ 1

: (A-13)
v ,/E(Gp+f541)‘ : :




2.158490+92
#.,251190+92
n.398110+02
A.639960+972
‘R.1033980+023
#.158490+73
© B.251190+93
- 3.398110+73
- B.637960+93
2, 1023@D+94
. 15849D+94
%.251190+74
7.398110+24
1,63396D+94
B.1097920+25

f.137620+00
A. 110450+29
?.883350~-21
#.784770-31
2.561410-81
7.446750-01
%, 355280-81
2.28241D0-981

- 8,22443D-11

#.178320-01
f.141670~-81

@.,112550-21

1.894970-82
2.,7108220-02
1,56416D0-92

f.137690+70
2.110490+02
a4.883560-31
f.704380-01

4.561470-81

#.446780-21
A.355250-%1
n.282420-91
%.22443D-91
7.178330-21
f.141670-31
f.112550-31
f.894280-0A2
n.719210-%2
f.564160-22

TABLE 1 ~20-
2
v
t | .
og=0 ¢ = 0.01 o= 0.1
9.15R490-15 #.99858D+0a7 #,99986D+07
1.25119D0-85 8.,998210+%% | 2.999770+73
#.39811D0-75 #.997750+30 1.99966D+90
n.6308960-25 %.997170+0¢ %.999470+97
f.140020-24 7.99644D+92 7.999200+91
#.158490-24 A.995530+87 | 2, ,99A79p+an
n,251190-34 B.99437D+9% 7.99823D4+78
8.398110-04 7.992920+08 | w1 ,9973an+27
8.639960-74 #.991170+20 p,996145+nn it
#.100380D-03 9.988820+33 ‘ﬂ.994460+5‘»3 ,

. 8.158490-03 7.985950+88 | 4,9921RD+72 7.998560+40
8.251190-03 1.982370+69 | .4,9891110+a9 8.997760+32
#.39811D-03 7.977880+28 | 19,98528D0+22 8.99655D+0%
1.639960-93 7.972280+02 f.97984D+7¢ | ©.994730+93
2.102000-A2 #.965290+00 | ‘a,973120+97 9.9920¢0+99
. 158490-42 M.956620+88 | {1.964620+M8 | 8.987970+78
#.251190-02 7.945870+88 | :19.,95394n+78 | £.982120+33
2.39811D-92 8.9326AD+00 | A.,94%640+10 #.973780+499
#.639960-92 7.916320+72¢ | '1.92423D+72 #.962130+498
0.100200-91 9.896460+37 | 9.90414D0+77 f.946230+90
#.158490-01 2.872410+99 | .3,87976D+7@ 8.925370+40
3.251190-91 2.84358D0+00 | :9,R5753D+7¢ 2.897660+93
#.398110-91. #.88947D+98% | 4,8153@0+%a | 9.86318D+1%0
#.637960-%1 | *2.76946D0+22 #.775250+a0 | 8.821980+%8
#.12830D+ %0 A, 723580+0¢ | +g, 728670+03 A.271240+70
7.158490+99 3.671910+00 2.676260+00 $.714130+80 -
#.251190+A2 8.615280+02 | '4,618670+92 #.650830+23
8.39811D+00 h.554250+3¢ f.557290+07 2.583960+0d
7.63396D+00 #.491270+0@ h.493220+27 4.513110+93
2.10808¢0+01 8.427580+02 Mn.429130+82 8.443530+94
7.15849D+01 8.365970+24d f.367330+00 8.376870+39
#.251190+91 n.338220+099 3.30891D0+93 3.315260+28
2,398 110+ 21 7.255900+29 | 'g,256320+79 8.263210+28
4.630960+21 @.209930+42 4.219170+92 8.212440+22-
7.19¢de2D+72 #.17358C+0¢ .4.17072D+22 Fe171990+32

8.13838D+842
2.1188360+34

- 3.885450-~-81

3.735850-01
1.561960~21
0.44703D-01
0.35541D-01
%2.282480-81
%.224470-~-01

- Be 17834001

2. 141630-21
2.112550-21
5.89489D-82
1.7198230-32
1.564170-22
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u
v
p - - -
g =1 o= 10 o= 100
2. 158490~-01 8.98564D+00 7.998430+47 £.999840+0%
#.25119D-31 #.977850+08 #,997520+%0 4.999750+89
2.398110-01 | 0.966A80+708 7.996A90+87 B.99967D+82
P, 63796001 #.94857D+0@0 ,#.,99383D+00 9.99937D+07
#.100200+09 . 0.923700+06 #.99028D+02 #.999A¢D+00d
f.158490+0¢ #.886610+70 #.984730+77 2.998420+08
#.25119D+48 8.8365 10+¢0 '8.976995D+07 2.997580+A0
#.398110+90 f.770520+0% #.962730+00 2.996850+89
0.6339 6D+ 27 @.688380+89 .942260+2% 2.993750+89
A.100000+21 #.593240+90 #.911360+97 8,95812D+80
#.15849D+31 #.492170+98 f.865660+02 2.98442D+00
@.251190+ 01 f.39474D+089 A.80016D+84 2.975480+00
3.398110+A1 | A.309430+04 A,712430+89 R.96154D+€8
- #.63A96D0+81 f.24836D+00 © 1.595440+0G B.339970+€3
' 3.1000%8D+02 8.186920+73 A,461640+00 8.986990+28
. 158490+%2 A.146110+04 4,325810+0% 2.857510+28
#.25119D0+0a2 "#.114800+02 .210910+02 fl. 785390+ 817
#.398110+92 - | 6.905380-81 #.132560+087 #.68487D+07
fl.63896D+02. #.715890-81 #.888250-31 B.554850+0%
3, 120820+83 | 0.567910-01 '@.633920-281. | £#.47078D0+83
g. 158490+03 f.449560-01 RNe47935D0-714 8.247650+00
#.25119D+%3 B.356690-21 f.37078D-814 B.126630+06
7.39811D0+A3 | ©.28312D-M1 8.28989D~-41 2.57518D-81"
2.63096D+083 | #.224750-21 8.228190-81 %.380730~9814
0.100000+04 - 0.178500-01 " B.18214D-81 A.2%3840~-31
0.158490+04 |  0.141760-81 7.14258D-01 Be15221D~21
f.251190+A4 | #.11260D=-01 6.113000-01 #.117580~-81
2.398110+124 7.89438D-0A2 f.896320-22 2.917950~-82
7.637960+04 | #.71933D0=-02 B.71134D0-02 f.721860-62
fe.56423D0=-02 2.56993D~-82

2.1a0880+95

#.564730-02




COMPUTER CODE

C

o Rw)

QUESTO PROGRAMMA INVERTE LA TRASFORMATA DI LAPLACE
IMPLICIT REAL*B(A=H,0-Z)
COMMON G(5¢), V(Sﬂ) H(25) M
N=18
T=0.01 . .
WHITE(6,2)N '
2 FORMAT (7X, ‘T’ ,15X, FA .7x, N- *,I2)

18 T=T*1p. %% (1, /5 )

CALL LINV(T,FA,N)
WHITE(6,1)T,FA

1 FORMAT (2E15.5)

. IF(T.LT.1000@.) GO .TD 10
sTOP -
END

'FUNCTIDN P(AHG)

QUESTA E’ LA TRAGFORMATA DI LAPLACE CHE DEVE ESSEHE ANTITHASFDHMATALAPHQ17H.

DALLA SUBROUTINE LINV
IMPLICIT HEAL*B(A-H,D-Z)
SIGMA= 100,
RA=DSART (ARG) -
P=(SIGMA*RQ+1, )/(HQ*(SIGMA*AHG+HQ+1 ))
RETURN

~ END

BUBROUTINE LINV(T,FA(N)
IMPLICIT REAL*8 (A=H,0-2) |
COMMON G(50), V(50), H(25); M
DLOGTW .=« 69314718ﬂ5599453
IF(M.EG4N)GO J0--104

LAPROB1D

LAPOAA2A
LAPABB3M
LAPBBAA4N
LAPARASE
LAPABB 6N
LAPNBA7A
LAPRAABO
LAPORAASA

LAPUB 100

LAPAD 110

" LAPPB128

LAPGB1340
LAPAR140

- LAP@BA5A

LAPPB 168

LAPBA48A
LAPRA 190

LAPOG20A

LAPBO21D
LAP@@220
LAPED237
LAPB0240
LAPBO250

LAPBA260
 LAPPP270 .
LAPAR260

LAPOR2908

CLAPAAAY

2z~




CALCULATE V-ARRAY
M=HN
G(1)=1n
NH=N/2
DO 5 I=2,N

"G(I)=G(I-1)*1 -

H(1)=2./G(NH=1)

00 18 I=2,NH

FI=I

IF (I.EQ.NH) GO TO B

H(I)=FI**NH*P(2*I)/(G(NH-I)*G(I)*G(I 1))-

GO TO 14
H(I)=FI**NH*G(2*1)/(6(1)*8(1 1))
CONTINUE . :
SN=2*(NH-NH/2#2) =1

DO 5“ I=1:N '

V(I)=”u

K1=(I+1)/2

K2=I :

IF(K2.6T, NH)K?aNH

DO Af K=K 1,K2

IF (2%K~I, Eu ). 60 Tp 37

IF (I.EQ.K) 60 TO 38 + -

' v(I)=v(I)+H(K)/(G(I-K)*G(Z*K-I))

37

GO TO 44
V(I)=V(I)+H(K)/(G(I-K))

. G0 TO 44

38
a0

50
100

119

V(I)=V(1)+H(K)/G(?*K-I)
CONTINUE

V (TSN (E)
BM=«~58N .
CONTINUE

FA=‘1U

A = DLOGTW/T
D0..119 Iwq,N

ARB= I#*A .
FA:FA+V(I)*P(ARB)
FA=A*FA

.RETURN

END

LAPAg310

LAPAN324
LAPPB330
LAPPB340

LAPER350
LAP@Z 360 -

LAPRAA378

‘LAP@A 388

LAPAR.390
LAPABA AP
LAPOBA 10

- LAPAB420

LAPQBA3D

LAPBBA4B

LAPBB 450

LAPNA468

LAPRB470
LAPAR4BE

" LAPBO49A
- LAPPB5A0

LAPBB51A
LAPAO 520
LAP@AS530
LAPRO540
LAPABS50

LAPAAS6R

LAPRBS74

LAPNAGAR.

LAPNI599

LAPOOANG
- LAPOB 61D
LAP B0 620

LAPDB 637
LAP@R 64D
LAPAP 650

- LAPRB66A

LAPRBG70
LAPRR 68D
LAPAA 690
LAPRQ 700

-€Z~
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